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A model two-body K matrix is introduced which leads to simple Brueckner-Hartree-Fock equations similar to
those resulting from Skyrme forces. The main features of the present model are determined by basic nuclear
matter properties. Experimental nucleon removal energies for finite closed-shell nuclei are used as a criterion
for setting the single-particle energy levels in our model. This is accomplished by parametrizing the Brueckner
rearrangement potential which augments the single-particle potential producing single-particle level densities in
better agreement with experiment than Skyrme-potential models or density matrix expansion theories. Good
fits are also obtained to total binding energies, rms radii, and electron scattering form factors of the magic
nuclei ' 0, ' Ca, Zr, ' 'Pb. Extrapolated results for the magic superheavy nucleus ' '114 are presented and
discussed.

NUCLEAR STRUCTURE Nuclear matter; fitted Brueckner K-matrix model
parameters, Q, 4 Ca, Ca, Zr, SPb, "'yy4; computed, and compared with
exp. Wi,&, R~„E,~, p(r), electron scattering data. Oscillator basis, self-

consistent BHF method.

I. INTRODUCTION tion matrix in this approximation. We shall as-
sume

Considerable progress has recently been made
in performing accurate nuclear- structure calcu-
lations related to various Hartree-Fock (HF) or
Brueckner- Hartree- Fock (BHF) approximations. ' '
These efforts are all based on the assumption that
a useful representation of a many-nucleon wave
function consists of a single Slater determinant.
Although they differ widely in the choice of the
effective nuclear interaction, all these "BHF mod-
els" seem to give good results for the binding en-
ergies and radii of nuclei. We attempt to remove
this ambiguity to some degree by considering a
general density- dependent reaction matrix in the
nuclear-matter limit. For finite nuclei this is
amended by an energy-density functional method.

The main emphasis will be to obtain a single-
particle reaction matrix that is essentially con-
sistent with the theory of an optimal nuclear po-
tential. " By this we mean an effective Hamiltonian
whose eigenvalues coincide with the observed re-
moval-energy thresholds (or addition energies) for
single nucleons.

We shall see that experimental quantities, such
as binding energies, radii, single-particle ener-
gies, and density distributions, determine fairly
uniquely the details of the single-particle reac-

h=t+ v+4»

)t occ

hex= e),C'),

in a suitable model consistent with our theory of
an optimal nuclear single-particle potential. "
Here, e, are the (real parts of) physical removal
and addition energies, t is the kinetic energy, and
v is the single-particle nuclear potential resulting
from the two-body Brueckner reaction matrix.
The quantity &~ denotes the Brueckner rearrange-
ment potential resulting from higher-order dia-
grams' which do not significantly contribute to
the total energy. " Many properties of the two-
body reaction matrix will of course enter into the
calculation of v and &~; they are therefore not in
fact completely independent. The various meth-
ods mentioned earlier differ mainly in their esti-
mate of the rearrangement potential &~, which in
turn changes the spectrum of the &'s. It is possi-
ble to choose ~~ such that &~ represents the shell-
model eigenenergies defined as single-particle
removal threshold energies. ' We shall concern
ourselves only with this last choice. (For other
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choices, see Refs. 7-9, 12, and 13.)
In nuclear matter, v and 4~ naturally depend on

the particle momentum k and the density p or
Fermi momentum k~. This property allows us to
come back to finite nuclei by replacing (1/3v')k~'
by p(r), a, suitable neighborhood average of the
local density at r. This density approximation
has been used in the past"'"" to study the den-
sity dependence of the two-body reaction matrix.
The use of v and &3 makes the difference between
the various methods previously used more trans-
parent. Ordinary "nuclear HF" calculations set
4~= 0 at the outset. " The binding and stability
conditions„ to be described in more detail later,
then demand that v be quite nonlocal, so that an
(average) effective mass I*/I =0.4 is obtained.
The single-particle spectrum is therefore ex-
panded and the level spacings are usually wider
by factors of 2 or 3 than shell-model values. In
Skyrrne-interaction HF models, g a term equivalent
to our &~ enters in the total energy equation with
the small factor 6. However, these models have
so far used a mome'ply SEE-2%depe'fldegt +~ al ound
&s= 20 MeV. This results in m*/m & 1 (in the
sense of Ref. 16), but forces the nuclea, r corn
pressibility to be unrealistically high at around
350 MeV. These models also predict incorrectly
low level densities, especially near the Fermi sur-
face. The models to be discussed here allow ~~ to
be momentum dependent so that the realistic""
v3lues 10-12 MeV at k=kz and &=25-40 MeV at
0=0 can be used. The effective mass is then
state dependent, i.e. , is a function of momentum
and does not depend only on p(r), so that the com-
pressibility comes down to 150-200 MeV.

The above topics are discussed in Sec. II. Sec-
tion III deals with applications to finite nuclei; in

particular, isospin considerations, spin-orbit,
and Coulomb forces are discussed. A graph of
neutron-matter binding curves is shown and a
discussion of the symmetry energy is presented.
A brief outline of the method used to diagonalize
12 is given. Further details are given in Ref. 19.

Sections IV and V contain the results for closed-
shell finite nuclei. There it is seen that good re-
sults are obtained for the radii, binding energies,
shell-model energies, and electron-scattering
form factors of nuclei. %'e note that the only two
new pa.rameters entering the finite-nucleus calcu-
lation are the spin-orbit strength V„and the
averaging distance f for the smeared Thomas-
Fermi replacement k„-p'~'(r) [see Eq. (3.1)].
These plus the nuclear matter parameters, such
as BE/A, kz, e„(the energy at which the potential
become»epulsive), nonlocality a, ~ (compressi-
bility), and b„( symmetr yenergy), constitute
the adjustable parameters of the model (see Table
1). Since many of those are fairly well determined,
the model has few degrees of freedom which can
only be varied over quite limited ranges.

The fundamental approximation comes from
assuming a two-body reaction matrix. This
should provide accuracy to order q', where q is
the hole- line expansion parameter~' of order 0.1.
Thus one expects essentially a 1% accuracy for
the physical quantities. As we shall see, this
appears to be realized.

Section VI discussed extrapolations to super-
heavy nuclei where the compressibility and sym-
metry energies become all important in predicting
the shell-structure shifts implied by the Coulomb
force.

Finally, Sec. VII emphasizes how this model
unifies some of our present knowledge of nuclear-

TABLE I. A-matrix model parameters and input used for their determination.

Parameter

ko

t12

&3,0,

Value

157.13 MeV fm

114.66 MeV fm6

—183.70 MeV fm3

1.1549 fm

0.203 82

0.4 fm
0.35 fm

175 MeVfm

Input used to
determine value

Eg =16.4 MeV

'=250 MeV

kp-~ =1.36 fm

ft =150 MeV

Bsym = 66 MeV

Nuclear force b

Optical model, '
finite nuclei binding,
and shell effects

Nuclear

matter

' Energy at which the nuclear single-particle potential becomes repulsive in nuclear
matter; inferred from optical model data.

b Neutron-proton force to be twice as strong as proton-proton or neutron-neutron force.' Energy dependence of optical potential.
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matter theory with the known properties of finite
nuclei. Consequences for fission, heavy- ion
fusion, and other reactions as well as further
refinements of this model will also be discussed.

We next suppose that Ko(ki, k2, [s]) ls a smooth
analytic function of k, and k, in the range of inter-
est so that it can be represented by a symmetric
separable expansion

II. SINGLE-PARTICLE E MATRIX IN NUCLEAR MATTER K (k„k„[n])= g J,(k„[n])j (k„[n]), (2.4)
The aim of this section is to discuss the main

features of our two-body K-matrix model in the
simpler nuclear-matter limit, where the label of
state n is k, its linear momentum. In a later
section, we return to finite nuclei by performing
a density-functional approximation.

Note that we do not derive anything in this sec-
tion. The model used here is given in general
form by Eq. (2.9) below. The reader might start
from there reading backwards to analyze general
features or forwards for the details of our
para metrization.

A. E-matrix expansion

Consider the BHF theory of infinite nuclear
matter, where the K matrix is assumed to be a
functional of the set [n] = (n)„,n,„.. . ,n),P, and n),
is the occupation number of state k. Vfe choose
the normalization of the K matrix so that the total
energy per nucleon E~ can be written as

where

f.(k, [n]) =Q g.i([nl)f. (k)

We insert (2.5) in (2.4) and perform the a sum to
define a G„„[n]such that

(2.5)

K,(k„k„[n])=—Q G„„([n])f„(k,)f„(k,) . (2.6)

This last equation constitutes our working model
for the form of the K matrix to be used in Eq.
(2.3). Our aim will be to devise in the next section
a simple two-term expansion with convenient
forms for f, (k) and f, (k). As we will. see, there
appear to exist such models which have most of
the features of a useful and realistic theory of
spin- saturated nuclear matter.

%e proceed with our development by defining

F„() ) f)."deaf ()')= =0'deaf {l) tk), (2.7)

which, upon insertion in (2.3), gives
3

2k ~'(4v) 2

ky
d k~ d'k. (k.k. IK([sl) IkP &

3 AE,(k~) =— k~'

(2.1)
where a fourfold nucleon degeneracy is assumed
per state of given k, all states with k &k~ being
occupied. The density is

=2 3p= +k~, (2.2)

and the matrix element of K is assumed to be
antisymmetrized and Galilean invariant, so that
it can be written as K(~k, k, ~, [n]). A multipole
expansion of K in momentum space can be per-
formed as

and substituted in Eq. (2.1). Since the Fermi sur-
face is spherical for the finite closed-shell nuclei
considered here, only the L =0 term of the K~ ex-
pansion contributes to Eq. (2.1), which thus sim-
plifies to

38'
E =— -ky

5 2m

K(Ik, —& ~, [nl) = P g K.(k„k„[n])Ff(k,)Ff"(k,),
I,-"0 N-" L

+,Q Gi.([~l)F.(kAF. (kz) (2.8)

k '+ Q Gi. ([&])fi(k )F,(kz)

+, , P G„.([~]) F,(k,y„(k ).

ft should be kept in mind that the notation E„(k~)
act ally stands for y'„([n],n(k) =l, k-k ), etc
The expression (2.8) for the binding energy per
nucleon will be used later to compute the binding
energy as a function of k~ and neutron excess
(N Z)/A. The Eq-. (2.8) can also be used to per-
form the functional derivatives needed for the
Euler- Lagrange or Hartree- Fock type single-
particle equation. Following Ref. 10, we find the
single-particle Hamiltonian h and, from the usual
Lagrange multiplier needed for the orthonormality
constraint (completely analogous to deriving the
Hartree-Fock equation), the eigenvalue of k as

3
2k~3

k' dk, k'dk k„k, n . 2.3
0

The three terms occurring in (2.9) are, respec-
tively, the kinetic energy, the nuclear potential
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energy v, and the Brueckner rearrangement term
In the next section, the k~ dependence above

will be replaced by an averaged energy-density
dependence. Note that we have chosen a version
of the BHF theory"" mith a ~~ that gives an &~

which agrees with the single-particle removal
thresholds which we call "shell-model single-
particle energies" here.

of the repulsive-core short-range force. Whereas
Bethe used an expression equivalent to

ll([ ]) 11+Gll E

we want to stay somewhat more general since it
is the equation for G»([n]) which will dictate the
momentum dependence of ~e(k), the Brueckner-
rearrangement potential. Thus, we set

B. Specific models for e and h~ G, =G +G kdkgknk . (2.13)

The simplest model for K, is the one mhere only
one term in Eq. (2.6) is considered. Thus, we can
define v(k, k„)=g(k~)f(k), where g(k~) represents
the product of G(kz)F(kz) in the nuclear potential
part of Eq. (2.9), which then reads

h'
k +f(k )g(kz)

+—-~ F(k~) f(k~)g(k—~)
eg

E F
(2.10)

where some simplifying assumption concerning
the rearrangement potential has been made. "
The two functions f(k) and g(k) can be chosen from
physica1 intuition concerning the behavior of the
nuclear potential. ' Recent models"" used the
form

k= 1+(ak)'

g(k) k'[1 —(k lk,)'],
(2.11)

where V„a, k„and e are to be adjusted to give
the desired values of k~„ the equilibrium density;
E„ the binding energy per nucleon; ~s(k = k~),
the Brueckner rearrangement energy; and x, the
nuclear- matter compressibility.

Although the model discussed above has the
advantage of simplicity, its relation to our basic
knowledge of the nuclear-matter reaction matrix
is not straightforward. In particular, the intro-
duction of isospin leads to a lack of uniqueness
in the dependence of g(k„) on the respective Fermi
momenta of the neutrons and the protons. For
these reasons, we devise a somewhat more phys-
ical and more elaborate tmo-term model.

We follow Bethe" and suppose that Kp can be
separated into a long-range and a short- range
part. We consider the short-range part first.
To begin wi, th, it is natural to assume that short-
range forces mould give rise to local potentials,
i.e. , potentials which are independent of k. Thus,
we set f, (k)=1. Bethe goesontopointout that
this short-range part is expected to contain most
of the density dependence of K, due to the large
renormalization implied by the greater strength

This will give rise, according to Eq. (2.9), to the
momentum-dependent ~s(k, k~)

bs(k, k.)= "g(k) 9~. (2.14)

4 +n 9 k2
g(z)= V' —e' z=—~—Y

np 0
(2.16)

where the parameter k, is near but not necessarily
equal to the Fermi momentum and is to be ad-
justed for optimum fits in finite nuclei. We will
return to a discussion of the choice of kp Gyp,

The reason for the choice (2.13) is transparent:
the term G,', represents an unrenormalized part
of the bare repulsive interaction. The term in
G', , represents fo d kn(k)g(k) which is the first
type of term to result from three-body-cluster
contributions to the density dependence of the K
matrix. The details of the momentum dependence
of 4s(k) are not well known" except that
'e(k=0) =30 MeV and ~e(k=k~) =—10 MeV.""

The question is "What functional form should we
use for b,s(k)'?". Let us consider two simple
limiting cases. Suppose first that me take a
schematic particle-hole interaction of the form
K;z, -5„6~ to calculate the usually dominating
rearrangement diagram which results from the
Pauli operator change, that is,

~ n,n~(1 —n, ) ~Z;1„~' (2.16)
e~+ ~y- ee- eo

Using the reference spectrum, or other similar
approximation involving a finite level density at
the Fermi surface, results in a simple step func-
tion, i.e. , He4~ -n .

The other limiting case is an analytic calcula-
tion of the same diagram using a Yukawa interac-
tion as performed by Brueckner and Goldman. "
This results in a smooth decreasing function for
He ~~(k). [See Fig. 6 of Ref. 21.] We assume
that a realistic model will fall between these two
limits, e.g. , should look like a Fermi function.
In order to simplify the computation in an oscil-
lator basis, we represent such a rounded step
function by the expression
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and G~» after we discuss the long-range part of K,.
The long-range part of K, is much weaker than

the repulsive core, so that in first order G» is
independent of n and C» is to be neglected. The
function f, (k) should then represent the attractive
long-range part. Previous authors have approxi-
mated the effect of the long-range part of K, by
choosing an interaction so that f, (k) -k'. Here we
wish to avoid this zero-range approximation and
set instead

80 I I I I I I I I I I I

60—
6('s. p. )40—

20—

-40-SD-~
I I I I I I I I I I I

-60 -40 -20 0 20 40 60 80 100 120 140160 180

E, , («vy

FIG. 1. Net nuclear singl, e-particle potential v(k, p) vs

1
~'( )=1+( k)' (2.17)

The momentum dependence of most popular nu-
clear potentials is weak at A;=k~ and a is very
high (-200 MeV or higher, in the Skyrme-type

The importance of using a finite value (-0.4 to 1.0
fm) for the nonlocality range a for finite nuclei
calculations has been emphasized previously"';
it was shown that, in addition to being a more
physical representation of the two-nucleon inter-
action, the finite-range expression (2.17) provides
a better representation of the continuum single-
particle energies. Thus one expects to obtain im-
proved agreement with optical- model calcula-
tions"'" by using the expression (2.17) instead of
the zero-range models provided by Skyrme's in-
teraction" or Mozkowski's modified 5 interaction. "
We should also keep in mind that since K, is sup-
posed to represent antisymmetrized matrix ele-
ments, its exchange parts generate a nonlocal
potential of finite range.

We now discuss the determination of the force
parameters a, G'Ox&, i'„and Gu. From consider-
ations of the energy dependence of the real optical
potential, a first estimate of a = 0.5 fm was ob-
tained. An approximately constant depth of the
net potential v+ 4~ in the neighborhood of k = k~
is maintained by requiring an appropriate value
of the slope of g(k) near k = kr [see Eq. (2.14)]. The
ratio a(k = 0)/b, (k = kr) next determines k, to be
about O.eh~„where k~, is the equilibrium Fermi mo-
mentum. The two parameters G»(k~) and G» are
determined by solving simple linear equations
resulting from a specification of the equilibrium
Fermi momentum k~, (=—1.26 fm ') and of the
value of the binding energy/nucleon, E, (—=16.4
MeV) at equilibrium. The empirical shell-model
requirement that the effective potential has a
slightly inverted slope as a function of k = k~ (see
Hefs. 16 and 26) is met in the present If'-matrix
model. An ancillary quantity of some importance
is the compressibility

02+y~(k, p)+4(k, p}= —k 2+v(k, p),

models, for example). Here we find values of s
near 150 MeV; this is more in line with first-
principle estimates based on realistic two-body
interactions. "

The precise values of the parameters entering
in the model can be expected to vary several per-
centage points about their average values when
fitted to individual nuclei. This was done for the

60—

40—
QP

20—
UJ
CQ

-20
0 0.5 1.0 1.5 2. 0 2. 5

FIG. 2. Nuclear matter bindigg energy vs kz„, the
neutron Fermi momentum, for several values of Z.
A slight increase in the equil. ibrium neutron Fermi mo-
mentum is noted as Z/N decreases. This represents a
tendency to maintain constant totuE equilibrium density
as Z/N is decreased [see Fig. 3(a)l. The smallest value
of Z/N to give zero binding energy is about 0.13 and oc-
curs near kz„= 1.2 fm ~.

taking p =p 0= 0.170 fm 3. The dependence of 63 {k,p 0)
is also given for comparison. The net potential is -61.1
MeV at zero kinetic energy and actually becomes repul-
sive at EI p 250 MeV, in agreement with optical model
findings (Ref. 23).
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magic nuclei "0, "Ca, and ' 'Pb, where the
binding energy, charge radii, and single-particle
spectra were considered in optimizing the param-
eter sets. Most of the results presented in this
paper were obtained with parameters given in
Table I. These lead to the values G» 157 13
MeVfm', Gyp 114 66 MeVfm', and Gy2 183 70
MeV fm'.

We show in Fig. 1 a plot of the strength of the
single-particle net potential v+ 4~ vs the single-
particle energy e(k) at equilibrium nuclear density
(of 0.170 nucleons/fm'). The essential features of
the shell mpdel and pf the pptical mpdel ' can be
seen. The potential decreases with increasing
energy above zero, but actually gets slightly
deeper with increasing energy near the Fermi en-
ergy & = -16.4 MeV. Besides giving realistic
single-particle densities near the Fermi level,
this wiggle also allows the compressibility to re-
main below 200 MeV. We show in Fig. 2 the net
total energy per nucleon for various values of
Z/N, as will be explained in the next section.

C. Isospin considerations

The next refinement to be introduced before we
turn to finite nuclei is isospin. We let k~ (v=+1)
be the Fermi momenta of the protons and neutrons,
respectively, and rewrite the K0 matrix as a
2 x 2 matrix in isospin space, as follows:

ffo"(k'„k;, [n]) = p G„„[n]h~,'f„(k;)f,(k ), (2.18)

where

G„„=2G)o Q k dkg„(k)+ Gkk

0

and h~~„ is the usual isospin matrix

1 —t „'„1+('„
1+fg~ 1 —tg

(2.19)

(2.20)

so that t,'„ is the relative strength of the T=1
component to the T = 0 component of the inter-
action. ' The equation relating t,„ to the param-
eter "~"used in Ref. 5 is approximately

CC+7 ~ 12 (2.21)

One notes immediately that the Brueckner rear-
rangement potential ns(k, ) is the same for both
the neutrons and protons. This comes mainly
from the assumed T =0 dependence of the
strengths G~„on the occupation number function
n, . The total binding energy per nucleon can also
be easily obtained as

An exact comparison is not possible due to the
dependence of t' on the X and p, indices. The
equation (2.9) can now be rewritten a.s

2

&'(k„kz~, kz„) = k,'+ P G„,[n]fk(k, )F (k~.)h'„'„'

(2.22)

+—Q gk„(k,)F),(k~,)F„(k~.,)h;,"".

2

E (k, k )= — Q k '+ —Q G,„[ [k'„k' (k )k', (k, )I Q k (2.23)

This expression was used to obtain Fig. 2, which
shows E~ vs k~ for several values of

k~, =g(k~~+k~„) ) k„~=g(k~~ —k~),
and we consider the expansion

(2.24)

The values of t„„were t»=0.20382, t»= 3.
choice is favored because the repulsive term cor-
responding to X, p = 1, 1 in Eq. (2.23) is expected
to be nearly T=O (e.g. , n-n repulsive force=nP
repulsion); the choice t» ——s yields a neutron-
proton force twice as attractive as the neutron-
neutron or proton-proton force and has been
previously used in this type of calculation. '4

This known ratio of the T=1 to T=O term can
be related to the nuclear matter symmetry energy
coefficient b, as follows. We let

1 (k~, —k~,)' 9 (k~~)'E(k ~k )=-E +2 k
+

Fe Fe

(2.25)

where kF, is the common neutron and proton
saturation Fermi momentum kF, = 1.36 fm '. A
comparison of Eqs. (2.23) and (2.25) shows that
b, and x can be obtained as a second derivatives
of (2.23). The value 5, =66.0, obtained for the
above values of t~0„, is close to the ones b, =61.1
and 70.0 discussed by Myers and Swiatecki. "
These authors have pointed out that the contribu-
tion of surface effects makes it difficult to de-
crease the error on the extracted value of b, .
Still another test of the isospin dependence can
be obtained by comparing our prediction for the
neutron-matter binding-energy curve with other
calculations. For kF=1 fm ', Bethe" quotes cal-
culated values of E~ in the range 6.4 + 0.8 MeV,
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to be compared with our predicted value of 5.35
MeV. At k~= 1.7 fm ', Bethe again quotes E,
= 18+ 3 MeV, whereas we find E~=20.18 MeV.
We end this section by noting that the values of
tc and b, are quite critical in determining the prop-
erties of superheavy nuclei since they govern
the interaction of nuclear and Coulomb forces for
neutron-rich species. This topic will be taken up
again in Sec. VI.

III. FINITE NUCLEI HAMILTONIAN

Having constructed the nuclear Hamiltonian for
infinite nuclear matter, we now turn to the ques-
tion of performing the proper modifications in
order to use this model for finite nuclei. We con-
tinue to follow the ideas of Bethe" and perform an
energy-density approximation. The spin-orbit
term is introduced phenomenologically, and the
center-of-mass (c.m. ) kinetic energy correction
is discussed along with the Coulomb Hamiltonian.

B. Spin-orbit interaction

We take into account the effect of the two-body
spin-orbit force and tensor terms in the usual
way'~ '" by introducing a one-body local spin-
orbit potential of the form

V', .,(r)=g 1 o "—h;, p.. .r dr (3.2)

other points in the expression (2.22), the actua. l
density was substituted for 3n'k~'. Thus one ar-
rives at a net potential consisting of a nonlocal nu-
clear part (12 terms), a local nuclear potential
(21+11 terms), plus a nonlocal Brueckner rear-
rangement potential ha(k, p(r)). This wa. s opera-
tor averaged with its Hermitian conjugate in the
calculations of single-particle energies and eigen-
functions from a suitable starting density, and the
calculation was repeated until self-consistency was
achieved. Since we come back to this in Sec. IV,
we now discuss other finite nuclei corrections.

1
=(2 ~), d'r'e ' '

p, (r'); (3.1)

that is, a Gaussian kernel was used in all calcula-
tions reported here and we used p,~(r) instead of

p, (r) in the nonloca. l attractive part of the nuclear
potential

1
G„l ( P), (v'P) .

This is the only part where p was used, since this
is the only place where an inhomogeneity correc-
tion is necessary (however, see Ref. 19). At all

A. Density functional and inhomogeneity correction

The first approximation of this approa, ch is the
replacement of kr, in Eq. (2.22) by [3v'p, (r)]'~',
i.e. , the Fermi momentum of kind 7 is taken to be
proportional to the cube root of the spatial-density
distribution of the same kind. This replacement is
accurate only to the degree that p varies slowly as
a function of position. The next correction term is
proportional to V'p, and has been shown to be nec-
essary in the surface region where p changes rap-
idly. " However, the V'p term is just the first of
an infinite series of terms involving higher deriva-
tives of the density distributions (see, for example,
Ref. 28). Indeed, we have found that the addition of
a V'p term alone did lead to instabilities in our nu-
merical procedure for the calculation of the high
frequency components of the density distribution
when the size of this correction term was large
enough. We therefore summed an infinite series
of such terms in the space-averaged density

p„(r) =e «ap&'p, (r-)

where p, is the particle density of kind v', and
h'„ is the isospin matrix for the long-range at-
tractive part. The value V„=—175 MeVfm' was
found adequate to give a reasonable spin-orbit
splitting for the nuclei studied here. Although non-
local expressions have been considered'" in the
past, the Eq. (3.2) was used here because of its
simplicity. The presence of the nonlocality does
not significantly affect the total energy or the
single-particle energies, it merely requires a re-
normalized parameter V„. The isospin matrix
used here is the same as the one for the 12 nuclear
term.

C. c. m. kinetic energy and Coulomb energy

The subtraction of the kinetic energy of the
center-of-mass contributes a renormalization of
the single-particle kinetic energy from p'/2m to
(p'/2m)(l —I/A) plus a. two-body exchange term. '

Since the residual c.m. kinetic energy two-body
exchange term contributes an effective potential
not unlike the nuclear one, we have chosen to ab-
sorb it in the definition of the potential param-
eters, i.e. , we have absorbed its small effect of
order A. ' ' MeV in the model parameters. This is
of no quantitative importance for the heavy nuclei
of prime interest here. Therefore, only the term
(p'/2m)(1 —I/A) is used here. This method also
avoids the ambiguities which would result if we
attempted such an exchange correction in a heavy-
ion calculation.

The Coulomb energy is handled with considerably
greater care since its interference with shell
structure determines the properties of heavy and
superheavy nuclei. A convenient treatment of both
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the direct and exchange Coulomb potentials and

energies has been discussed in some detail by
Kolb and Cusson. " Since we are dealing with

spherical nuclei, the direct single-particle Cou-
lomb potential can be easily calculated from the

expression

vc(r) = e' d'r' p(r')
Ir —r I

4me' I

y'
r'*a p( '& f w p( '1

The exchange Coulomb potential

(3.3)

(3.4)

is also important and could pose a more serious
problem because of its nonlocality. Since vc, is
density dependent and nonlocal, we set"

]6 4 yn
vc, (k, k ) = —

4
e'k Q —,e ',

n=o

y= —,'k'/k, ', k, =l fm '. (3.5)

With this choice, we obtain the statistical model
total Coulomb exchange energy Wc,

A. Iteration scheme and method of solution

The net Hamiltonian to be solved is given by

h 'k~
2k,(k, r) = + v„,(k, r}+hs(k, r) + v„(r}

2yrl

+ v, .,+ Hermitian conjugate, (4.1)

where the nuclear potential depends on momentum
and position through p. Collecting the results of
the previous section, we have

v„,(k, p) = G„(ln]) Q k;; v'p, . + G„Q k;; F,(k,, )

(4.2)

The first two terms are local and depend on the
local densities p,(r). The last term is nonlocal
and depends on the averaged density p,~(r). The
sum of the local parts is weakly attractive at low
density and becomes strongly repulsive when the
density increases above the saturation density

p, =3v'k, '. This term is therefore highly non-
linear in p(F, (k ) = ak~ —tan 'ak }, as one should
expect from a renormalized effective potential due
to the strong repulsive core. The last term is at-
tractive, nonlocal, and linear in p, the actual nu-
clear density:

W = Wce 4 2&Z c& ~ (3.6)
p,(r) = Q (2J„+1)

~
C;(r)

~

', (4 3)

where We, is the (exact) total direct Coulomb ener-
gy. Equation (3.5} was found to predict We, to
about 5%, i.e. , to an accuracy of about 2 MeV for
even the heaviest nuclei. The density-functional
replacement k~'-[p~(r}]'~' is used in Eq. (3.5).

X occ

where 4', is obtained by solving the eigenvalue
equation

(4.4)

IV. RESULTS FOR CLOSED-SHELL NUCLEI

In this section we discuss the actual method of
solution and the results for the closed-shell nuclei
"0, Ca 'Ca, "Zr, and ' 'Pb.

and k, is given by Eq. (4.1). The initial density was
taken to be some suitable smooth function with a
realistic surface thickness.

A harmonic oscillator basis consisting of all the
states with major shell quantum number ¹ N

TABLE II. Energies and radii of closed -shell nuclei.

Nucleus 2981 14 208pb
82

90Z
40 20

48C 4'Ca
20

160
8 2He

Wt $(calc .) (MeV)
W«, (exp. ) (MeV)
r,h(calc. ) (fm)
r,h(exp. ) (fm) '
rp, (calc. ) (fm)
r„,(calc. ) (fm)
W (total) (MeV)
Wc, (MeV)
&ne xpr (fm)

2123.2

6.254

6.202
6.372

1372 ~ 5
—44.6

0.170

1637.0
1636.4

5.533
5.50
5.474
5.645

801.3
—32.4

0.171

778.2
783.9

4.300
4.27
4.224
4.300

244. 3
—16.0

0.076

410.5
416.0

3.551
3.48
3.458
3 ~ 650

72.7
—7.5

0.192

347.2
342.6

3.489
3.49
3.395
3.336

74.6
—7.7
—0.059

128.6
127.6

2.795
2.73
2.676
2.642

14.3
-2.7
—0.034

26.7
28.3
2.087
1.71
1.925
1.913
0.9

—0.5
—0.012

'See Reference 3.
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and oscillator parameters b was used. The nu-
merical values of b and N were adjusted for each
nucleus by picking R„, the semiclassical turning
radius of the biggest orbit in the basis, and K„,
the semiclassical turning momentum (in fm ') of
the most energetic orbit of the basis. This yields
the relations

0.25

0.20

b'=R„/K„, (Nm+ ~z) = 2K„R„. (4.5)

For example, we may pick K„=2.2 fm ' and

R„=13 fm for ' 'Pb. This gives b =—2.43 fm and
N = 14. It was checked that the saturation prop-
erties did not, in fact, require that K„or R„be
larger than those values. The calculation of ma-
trix elements such as (Nl

~
~g(k)f(s)

~

~N'l') was done
by expanding all the functions g(k) as

0. 15
E4-

O

z 010

g(k) = g~'~e *, x=kd, ,
P=

(4.6)

0.05
where d is the range of g, with P &20. It was
found that this could be done with good accuracy
and allowed (see Ref. 19) the calculation of the
matrix elements by using a one-dimensional
Gauss-Laguerre method. Thus the problem was
reduced to a matrix-diagonalization of dimension
~ 11 in all cases, and the wave functions thus
appeared as linear combinations of harmonic os-
cillator wave functions. This method provides a
considerable flexibility in the choice of the mo-
mentum dependence while retaining good conver-
gence for reasonably smooth functions of k and r.
Having diagonalized h and obtained wave functions,
one then obtains a new p(r) which is used to con-
struct the Hamiltonian for the next iteration.
Eight to 12 iterations were found to be sufficient
to stabilize most quantities to 1 part in 10', or
better. For further details see Ref. 19.

The total energy was calculated from the rela-
tion"

0
0

0 ~ 10

0.08

0.06

0.04

I
f

I
(

Pch(nuc1ear matter)

W= Q (2J~+ 1)
)t occ

[(f)X+2(UN)k+ g( c)X 2(Vl a)k] & (4.7)

0.02

where (v„) signifies the expectation value of the
operator v~ for the state X. The states to be popu-
lated are those of lowest eigenvalues &~.

0
0

r (Sm)

B. Binding energies, radii, and density distributions

We present in Table II the calculated energies
and radii for several closed shell nuclei, com-
pared with experiment. We see that the binding
energies are in good agreement with experiment,
together with the calculated charge radii. We note
that in spite of the low compressibility the differ-
ence in the neutron proton radii remains generally
small: this is mainly due to the fact that the sym-

FIG. 3. (a) Total mass density distributions assuming
point nucleons for 60, Ca, +Ca, 9 Zr, Pb, and 2@114
vs radius in fm. One notes considerable density fluctua-
tions about the appropriate nuclear matter equilibrium
densities (Z/A = 0.5 and 0.4). As pointed out in the text,
these are partly due to the low compressibility of the pre-
sent model (& = 150 MeV). (b) Charge density distribution
for 60, Ca, Pb, and 114. Here one also observes
some deviations from the appropriate nuclear matter
values.
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TABLE III. Single-particle energies compared with shell-model energies. The solid lines indicate the Fermi sea.

nJ
e„, (MeV) ~, (MeV)

Th. Exp. (Ref. 3) Th. Exp (Ref. 3)

16O

1
n2

e„(MeV) (MeV)
Th. . E~. (aef. 3) Th. Exp (a.ef. 3)

208pb

18( /2

1P3/2
ip~ /2

id'/2
28( /2

18( /2

P3 /2

1Pi/2

id

5�/2
1ds /2

if?/2
2P3 /2

2P i /2

if5/2

1sg/2
1P3/2
ipi
1d5/2
28( /2

ifv/2

2P9/2
2P1 /2

if5/2

18( /2

ipse /2

ip( /2
1d5/2
id3 /2

28~/2
if v/2

2P3 /2

if5/2

2P/2

2d5 /2

2' /2

igv/2

18~ /2

1P3 /2

1P1 /2

id5/2
id3 /2

28&/2
if? /2

if5/2

-32.11
—19.59
-13,73

6.60
3.63

—40.55
-30.99
-27.28
-20.86
—15.84
—14.36

9.48
5.42
3.01
1.07

—39.1 5
-29.20
-26.35
—19.60
-16.05
—14.18

6.42
—4.01

1.79

-44.77
-36.31
-34.64
-28.40
-25.06
-24.91
-20.39
—16.42
—15.01
-14.62

—7.37
5.48

—4.70
—4.12

-45.78
-40.03
-39.27
-34.00
-32.46
-30.42
-28.12
—25.62

—21.8
—15.7
—4.14

3.63

4'Ca

—18.1
—15.6
—8.36
—6.2

—12.55
-12.52

5.14
3.11

—13.10
-13.50
-12.60

-12.00

7.20
5.63
4.88
4.46

-28.99
-16.33
-10.46

3.36
—0.58

—33.82
—24.15
-20.34
—13.96
—8.76
—7.38

—40.42
-30.64
—27.71
—20.81
—15,52
—15.14

—4.72
—2.50

1.79

—39.20
-31.10
-29.29
—23.20
—19~ 63
-18.35
—15.04

9.41
9.34

—7.55

—6.03

—0.09

-41.38
—35.30
—34.41
-28.82
-27.04
—24.69
-22.42
—19.55

40+8
1 8.4
12.1

—0.6
—0.1

—50+11

-34 + 6

—10.9
8.3

4

—55+ 9

—35+ 7

-15.3
—15.7

9.6

1.9
0.0

—54+ 8

—43~ 8

—27+ 8

2P3 /2

2P&/2

igs/2

2d5/2
2dS /2
1 hing /2
3s 1 /2

1hg /2
2fv/2
ii (3/2

2f5/
3P3 /2
3P g /2

2gs/2

3d5/2
2g'v/2

12 f5/2
48f /2

3d3 /2

18( /2

ipse /2

1Pg /2

id5 /2
id /
2sg /2

if5/2

2P3 /2

2P&/2

igs/2

2d5/2
2d3 /2
1h(( /2

38( /2
1hg /2
2fv/2

2f5/2

3P3 /2

3pi /2

2gs/2
15 /2

3d5 /2
3d3 /2

4S1 /2

ii ~3/2

1&~v/2

2hs/2

-24.03
-23.02
-22.28
-18.61
-17.88
-16.15
-16.02
—15.89

-10.96
-11.17
—9.04

8.74
8.77
7.84

—3.73
—2.46

1.30
0.97
1.26

—0.54
0.39

-46.23
-41.64
-41.21
-36.49
—35.46
-33„16
—31.26
-29.50
-27.02
-26.52
-26.12
—23.53
-21.45
-20.93
-20.47
—19.64
—17.34
—1 5.95
—15.33

-14.32
-13.47
-12.95
-10.56

9.91
—9.08
—7.66

6.81
—6.19

5.64

3.00
3.19

—2.13
0.57
0.17

—10.85
—9.72

9.01
—7.95
—8.27
—7.38

3.94
3.15
2.36
1.45
2.53
1.91
1.42

2981 14

—17.64
—16.48
—16.04
-11.86
-10.81

8.85
—9.26
—8.28

—3.58
3.46

—1.81.
+ 0.72
+ 0.43

—40.03
-34.49
-33.90
—28.61
—27.38
—26.13
—22.80
—20.73
—19.02
—18.33
-17.10
-14.05
-12.46
-11.36
-11.17
-10 ~ 84
—7.18
—6.13

5.27

—4.14
—3.95
—3.28

—15.43
-11.43
—9.70

8.38
—9.37

8.03

3.77
2.87

—2 ~ 16
—0.47
—0.95
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0— /
"S/2
31'1/2

li 13/2

2'/2

'4/2

&r
3d3/2
2'/2
4sl/2
3dS/2
'jls/2
1I11/2

-8 — '1/2
243/2

lh

-10—

31'1/2

2fs/2
31'3/2

li13/2

2'/2

1h9/2

Single-particle energies of Pb
208 shell-model representation. Previously it was

impossible to get good results for these values
while retaining a realistic level spectrum at mo-
menta far from the Fermi sea. Figure 4 illus-
trates the results for the case of ' 'Pb.

V. ELECTRON-SCATTERING FORM FACTORS

Given a ground-state charge-density distribu-
tion, it has now become a time-honored art either
to compare the elastic electron-scattering cross sec-
tion calculated from it with experimental data" '"
or to compare it with some fiduciary charge densi-
ties which "fit, " in some sense, the experimental

1.2

-12—

-14—

-16—

'8/2

Protons

Exp. Theo.

Neutrons

Exp. Theo'

'I. 0

0.8

E

0.6

0.4

FIG. 4. Calculated single-particle energy levels of
Pb. The experimental values are from the compilation

of Ref. 3.
0.2

metry energy remains high at about 66 MeV, as
required by the semiempirical mass law. How-

ever, we notice substantial fluctuations in r„—r~.
They result mainly from the low compressibility
which allows the radii of a given kind of nucleon to
shrink when large gaps result from shell closures.
The inclusion of the additional surface symmetry
potential proposed in the discussion, Sec. VII,
will lead to more sizable changes in r„—r~.

Figures 3(a) and 3(b) present the mass and

charge density distributions for the nuclei con-
sidered here. These will be discussed again in
the next two sections. Here we note the system-
atic tendency to oscillate around the equilibrium
values.

C. Single-particle energies

We show in Table III the calculated neutron and
proton single-particle energies compared with the
experimental shell-model energies. '

In particular, the number of levels per unit ener-
gy interval immediately above and below the Fermi
sea, together with the energy gap at the Fermi
sea, constitute a good test of the accuracy of the

0
0

1 ~ 0 I

i
l

J

i
i

I

i
I

f
1

0.8 208Pb

0.6—

0.4—

0.2—

(b)
0 ) I

0 2 6

r (fm)

I

10 12

FIG. 5. (a) Comparison of Ca charge distribution for
the Fermi distribution (Ref. 32) (FM), and parameter set
(B) (see Table IV). (b) Same as Fig. 5(a) except for
208Pb
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TABLE IV. I'arameters used to obtain models J3, C, D, E, and 5'. These models illustrate
the effect of changes in the nuclear and finite nuclei parameters on the electron scattering
fits (see Table V). t &2 is fixed at 3. Case A is contained in Table I and repeated for con-
venience only.

Parameter

Gg( (MeVfm )

G~&& (MeV fme)

6&2 {MeVfm )
k0 (fm ~)

0

g (fm)
g (fm)
y, .. (Mev fm')

157.13

114.66
-183.70

1.1549
0.203 82
0.4
0.35

175

144.86

89.88
-177.31

1.2036
0.210 05
0.45
0.35

175

151.34

96.54
-180.18

1.2034
0.203 82
0.425
0.35

175

156.10

110.24
—181.89

1.1596
0.209 61
0.4
0.35

175

157.13

114.66
-183.70

1.1 549
0.203 82
0.4
0.32

175

157.13

114.66
-183.70

1.1 549
0.203 82
0.4
0.38

175

Ea (MeV)
c„(MeV)

k~8 (fm )
w (MeV)
b~m (MeV)

16.4
250

1.36
150
66

Corresponding nuclear matter values
16.5 16.5 16.4

250 250 250
1.36 1.36 1.37

155 150 150
65 65 66

16.4
250

1.36
150
66

16.4
250

1.36
150
66

data. This second approach is illustrated in Figs.
5, which compare two charge densities for "Ca
and "'Pb; first a three-parameter Fermi distri-
bution" fitted to the data of Frosch et al. ,

33 and
the density corresponding to case 8 in Table IV.
The other cases give very similar density distri-
butions, a,s will be shown in Ref. 19.

The first approach mentioned above a.llows a.

more detailed comparison and is illustrated in
Table V which gives the y' values for the fits to
electron-scattering cross sections at various en-
ergies for "Ca and '"Pb. Case A corresponds to

the parameters given in Table I and is the one used
to obtain most of the results discussed in this
paper. The parameters of the six cases A-E are
given in Table IV and illustrate the variations in
the fit qualities which can be obtained. Case B
appears to give the overall best fit to the electron-
scattering data, and gave only slightly worse sin-
gle-particle properties than case A, the one stud-
ied in detail here. Case C differs from case B by
a change of the compressibility from 155 to 150
MeV. The fit to electron-scattering data is not as
good as it is for ca,se B. The parameter sets D,

TABLE V. g values for fits to experimental electron scattering cross sections at various
energies for Ca and 8pb.

E~at
Nucleus {MeV) N A ~ Fermj. Negele

40C

40Ca
40C

250 ~ 31
499.5 ' 14
757.5 ~ 31

422 206
276 118
130 72

318
184
94

276 218
184 194

98 124

706
418
198

28
28

1398

256
186
100

208pb

208pb
208Pb
208Pb

124 ~

167 ~

502"
750 '

24 108
26 86
37 4144
50 3204
33 490

74
38

2510
3080

580

92 66
58 38

3266 2486
3350 3166

540 600

66
48 196

2630 7098
4934 3618

866 318

10
50

200
552
436

72
82

3104
1474

244

~ See Tables I, II, and III. This case is the one discussed at length in this vmrk.
"See Table IV for parameters of cases B-X.

See Ref. 32.
d See Ref. 34.
e Number of data points in set.
'See Ref. 33.
& See Ref. 35.
"See Ref. 36.
' See Ref. 37.
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E, and F are similar to the set A and serve to
show the effects of small input variations. For
example, D resembles A except for an increase
in k~ from 1.36 to 1.37fm '. The X' values are
improved at the expense of single-particle prop-
erties. Cases E and F have the same nuclear-
matter values as A and differ only in the finite
nucleus parameter &, which is 0.32 and 0.38 for
E and F, respectively. The set E does improve
the fit to electron scattering; however, the re-
production of single-particle properties again
deteriorates. We see from Table V that a change
of the force parameters affects most fit qualities
in a similar manner, although the ' 'Pb, 750 MeV
case behaves somewhat abnormally. The values of
X' for the best overall Fermi distribution" and
Negele's data" are also given for comparison. We
see that our cases A and B compare favorably with
both of these form factors.

We show in Fig. 6 the calculated cross sections
together with the experimental points for "Ca,

I I I I I

-1
10

208pb

and in Fig. 7 for ~'Pb in order to illustrate the
fit quality to the cross section. Only case A is
shown to prevent clutter. The other cases, and
a similar graph and densities for a variety of
nuclei with atomic numbers between Ca and Pb,
are given in Ref. 19 where a discussion of the
normalization of the electron-scattering data and
other technical points inappropriate to the thrust
of this article will be presented.

A consequence of the less saturating nature of
the potential in Eq. (2.22), resulting mainly from
the low values of x(-150-200 MeV), is the slightly
higher central density in our model as compared
to standard Fermi function fits. In a recent re-

I I I I

40Ca

I I

10
-2

124 MeV

10
-1

10
-3 167 MeV

X 10'

b

-2
10

10

-4
10

249. 5 MeV

499.5 MeV

'gX 10

b

~b

-4
10

-5
10

-6
10

248. 2 MeV

yX 10
~~

502 MeV

X 10

-5
10 -7

10

10

10-7
0

I I

0.5 1.0

757. 5 MeV

X 10

I I

1.5 2. 0 2. 5 3.0 3.5

qeff

-8
10

10'
0

I I

0.5 1.0

X 10

I I I I

1.5 2.0 2. 5 3.0 3.5

qeff
FIG. 6. Comparison between the experimental electron

scattering cross sections of Ca and the predictions us-
ing parameter set set A (given in Table I).

FIG. 7. Comparison between the experimental. eLectron
scattering cross-sections of Pb and the predictions
using parameter set A @ven in Table I).
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view article, "Friar and Negele showed that the
strictly nonrelativistic theory suggests a central
dip in the '"Pb charge density distribution some-
what deeper (5-10%) than the present work and

most other model calculations. However, a recent
paper of Miller" indicates that relativistic cor-
rections to the nuclear charge density might well
invalidate this conclusion, and that the present
results could be fortuitously optimal for a non-
relativistic single Slater-determinant theory.

VI. SUPERHEAVY NUCLEI

Tables II and III, together with Figs. 3(a) and

3(b), give the radii, binding energy, and density
distribution of the superheavy nucleus '"114. The
present value of the charge radius is close to the
ones (6.14 and 6.27 fm) obtained earlier. ' How-
ever, the value of r„—r~ presented here (0.170 fm)
differs by nearly a factor of 2 from earlier esti-
mates. ' From Figs. 3(a) and 3(b), we can observe
considerable fluctuations in the charge density
and the total density distributions. Indeed, the
charge density shows a substantial depletion near
the center. This is in keeping with a suggestion
that "bubble" type configurations could have equal
or greater stability towards decay into other con-
figurations. " We also note that a good neutron gap
of 2.64 MeV is obtained for Z= 114, while the pro-
ton gap is only 1.13 MeV. However, an increase
of the spin-orbit strength would increase the gap
substantially and is difficult to exclude on the
basis of our fit to the lighter species. Further
calculations with a deformed basis are of course
indicated and will be performed in the future.

We also note that the total density is fairly close
to the nuclear-matter value for Z/A=0. 4 [see Fig.
3(a)], and the charge density is also near the
Z/A = 0.4 nuclear matter value [see Fig. 3(b)]. The
occurrence of a rather high central proton density
indicates that the system prefers to drift towards
the N= Z values of the density, at least near the
center, thereby creating a substantial neutron
skin on the surface. This observation is consistent
with high energy E capture experiments in "'Pb,
which suggest that at r- 10 fm the neutron density
may be nearly one order of magnitude higher than
the proton density. "

Finally, the presence of the neutron skin indi-
cates that the surface energy would be mainly
T = 0, i.e. , independent of whether the matter in
the surface region is neutrons or protons.

VII. DISCUSSION

In this paper, we have parametrized a nuclear
shell-model potential based on BHF theory which

accounts for many of the known properties of both
finite nuclei and nuclear matter.

A major new element in this work is the presence
of a momentum-dependent realistic Brueckner re-
arrangement potential b,~ which allows simulta-
neous agreement with single-particle properties
of finite nuclei and total energy properties such
as E/A, compressibility, and symmetry energy.
We now discuss the properties of this b,~. We
note first that the Fermi level for most finite nu-
clei occurs near k = 1.05 fm ' (h 'k'/2m = 23 MeV)
rather than k = k~, =—1.36 fm ', due to surface cor-
rections. The cutoff k, in b, ~ therefore occurs not
too surprisingly near that k value, since the de-
tailed properties of b~ were determined by exarn-
ination of finite nuclei. The two parameters of
hs(k) are its strength [ns(k=0) -G~»] and the cut
off momentum k, . These parameters were deter-
mined together with G'„and G» by picking the nu-
clear matter parameters Eb and &„, the energy at
which the single particle potential becomes re-
pulsive, k „and z the compressibility, as in
Table I. In view of the present lack of "first prin-
ciple" calculations of ns(k), it is difficult to pass
a reliable judgment on the ns(k) obtained here.
Although the model developed here has most of
the required realistic features, an ab initio calcu-
lation of ns(k) would be desirable.

We now discuss our finite nuclei results. We
see from Table II that the radii calculated for
medium and heavy nuclei are quite accurate. It
is not possible in the present model to make the
charge radius of "Ca smaller than that of "Ca.
We have verified that this problem can be cured
by introducing an additional surface-asymmetry
potential. " The strength of this smaller potential
term can only be determined by considering se-
quences of nuclei near the closed shells and does
not significantly affect the results presented here
for closed-shell nuclei. We also note from Table
II that the calculated binding energy difference be-
tween "Ca and "Ca is smaller than experiment by
about 12%. Again we have shown that this can be
remedied" by including a fraction of the spin-orbit
potential in the Brueckner rearrangement poten-
tial. Once these additional refinements are in-
cluded we see that the present model has an ac-
curacy comparable to the successful phenom-
enological Nilsson model. "

An. important application of the present model
can be made to the calculation of fission and heavy-
ion potentials. A recent study" of deformed light
nuclei and of the fission potential of 6U has shown
the practicality of such calculations. They are
being repeated using the present model'4; it ap-
pears that one can indeed attain a considerable
predictive power for the fission and heavy-ion
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static potential energy surfaces. For example,
the more accurate level density at the Fermi sea
in our model leads to realistic values of multiple

hump fission barriers. In addition, the realistic
values of 5, and ~ used here should improve the

reliability of superheavy-nuclei predictions.
Another interesting application of the K-matrix

model developed here is the calculation of heavy-

ion reaction dynamics by numerical solution of
the time-dependent Hartree-Fock equations of mo-
tion. Here the realistic momentum dependence of
the potentials of our model again has an important
consequence, namely the effective mass for dynam-
ical collective excitations appears to be more
realistic. Detailed results of this study will be
presented elsewhere. "
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