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Calculations of the real part of the heavy-ion potential have been performed for the systems "C+ "C,
"0+ ' 0, and Ca+' Ca using the Hartree-Pock method with a constraint on the center-of-mass distance.
The interaction used is the Skyrme force SIII. For the case of ' 0+ ' 0 a detailed discussion of the nuclear
structure with increasing overlap of the ions is given. It is found that the individual shell structures of the two
' 0 nuclei survive until the density in the neck region has reached about 50% of its maximum value. The
calculated potentials have been used in an optical model code to calculate elastic excitation functions. The
agreement with the empirically determined best fit potentials is remarkable.

NUCLEAB BEACTIONS Self-consistent constrained Hartree-Fock calculations
of HI potentials. Structure of 0+ 0 at large overlap; potentials calculated for

C+ C, 0+ 0, C + C; p d ith xpe i t lfit .

I. INTRODUCTION H. T%0-CENTER HARTREE-FOCK METHOD

One of the main problems in heavy-ion (Hl) phys-
ics is the determination of the optical potential for
heavy ions. Whereas for the imaginary part only
very few calculations exist so far,"many attempts
have been made to calculate the real part of the
optical potential. ' " Because of its simplicity one
of the most popular approaches has been to use the
folding method. ' " However, that version of the
folding method that uses nucleon-nucleon potentials
emPA'i@a/ly determined from n-particle scattering
can obviously not easily be extrapolated to heavy-
ion systems. If, on the other hand, one starts with
a free nucleon-nucleon force then many of these
forces yield HI potentials that are too deep at the
strong absorption radius. ' Satchler' has hinted
that this effect could be due to the neglect of dy-
namical or static distortions of the nuclear densi-
ty distributions as the nuclei come into contact.

On the other hand it has been shown that the
Pauli principle plays an important role in HI po-
tentials even at small overlaps. This is not taken
into account in the folding procedure. " It was,
therefore, our aim to determine the real part of
the potential in a method that is free of this short-
coming. To this purpose we have performed Har-
tree-Fock (HF) calculations with the distance be-
tween the centers of mass of the two ions as a con-
straint. The Skyrme force was used as an effective
interaction. The energy curve as a function of the
distance was then interpreted as the real optical
potential. The underlying concept for this pro-
cedure is the Born-Oppenheimer approximation.
In Sec. II we present a detailed description of our
method and apply it to the investigation of the
structure of the "0+"0 system in Sec. III.

The extensive application of the Skyrme force by
Vautherin and Brink" and Flocard et al." to nu-
clear ground state properties has opened up new

possibilities in a theoretical treatment of nuclei.
The main advantage of this type of force in HF
calculations is the fact that the total energy E of
the system can be written as a functional of a few
densities and that the resulting HF equations are
partial differential equations. Presently we re-
strict our investigations to systems with axial
symmetry consisting of two identical nuclei, which
have an even number of protons and neutrons. As
reported earlier" we solve the HF equations in the
basis of the eigenfunctions of the two-center har-
monic oscillator. " %ith these basis functions one
can describe in a natural way the various nuclear
shapes from very small deformations to even sep-
arated systems. It should be noted explicitly that
for center distance zero this basis agrees with the
usual deformed harmonic oscillator basis.

The degree of deformation in our model is fixed
by the expectation value of the operator

for the distance between the centers of mass (e.m. )
of the interacting nuclei with mass number A/2.
Here z is the coordinate of the symmetry axis, i.e.
the axis through the two centers of mass, with its
origin in the middle of the two centers. This dis-
tance is fixed in our HF calculations by means of a
quadratic constraint

& = 2P(~ —~,)'
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in order to obtain all points of the curve E(r). The quantity p is a fixed coupling parameter and r, is a
variable which can be used to force the system into various deformations r=(r). With this constraint
one has to solve the following set of constrained HF (CHF) equations:

2

H"„4 = -V —,& +U -i% ~ ~xc 4 =& 42m* 'JC 'Z

with

8'
+-,'(t, +t,)p+-.'(t, -t,)p, ,E

f/, „=t,[(1+-.'z, )p-(z, +-.')p, ]+-'.(t, -st, )~p+ „(st,+—t,)&p, + ,'(t, +-t,)r+ .'(t, -t,)r-,

+ ,'t, (p' p,-') —,'g, (rrJ + vg, )+ g, [Vc-e,'(3/z)"'p, "']+p(~ r, )-2/A iz, i,

and the densities v„and v, are the oscillator parameters of the two-
center oscillator. zo is its distance parameter.
Ir„al 8 the Laguerre polynomials and D~ (z) ls 'the

parabolic cylinder function":

J, =-i 4* &4 &0'

written in a condensed way. The Coulomb exchange
potential is treated in the Thomas-Fermi approxi-
mation.

Here 0 indicates the spin operator. V~ is the di-
rect term of the Coulomb interaction. The quanti-
ties to, I;„ t2, t„xo, and 5'0 are the Skyrme
parameters. All calculations reported in this
paper are done with the set Skyrme III.'0 As men-
tioned above, we expand the eigenfunctions 4 ~
which are classified by the component of the angu-
lar momentum in z direction 0, the parity g, and
a third quantum number n:

4'» =Q c, 4„K= (&, l/, n), j = (n„n„,n, ),

ein~ et'/In+ I ~ff e-r/2pln+ I /2I I nol (p)~
j.

/ ~2 n r 8g

x 4 ~EC,D„(M2$)P,

J./2
g=vtf, (izi z,),

r

N„= M2 D„'(t)dt
-&2' &0

- 1 for z &0 and negative z parity

1 otherwise

D„(z)=e +"Q "' z»V»

OWE
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N I,

—v 27/ 1' '(-n,}—gd„+0(iz'i " ')

(12)

x iz i-"e~",

with the abbreviations

c — —,n —, , n&, -z
d„=[(-n,+—)„(—'n, +-,')„]/[n! (—'z')"],

(a)„=a(a+1) ~ ~ (a+n -1), (a), = 1.

Since + and g are good quantum numbers one only
has to diagonalize submatrices with fixed (0, z).

The self-consistent calculations are performed
as usual in an iteration procedure. Initial guesses
for the densities p and v' are obtained either from
the lowest two-center oscillator wave functions or
through the diagonalization of a deformed %oods-
Saxon type potential. For computational efficiency
the values of the basis functions at given mesh
points (IJ) =-(p/, $/) are calculated only once initial-
ly and then stored. From these the densities are

x(2-&nr-»&/21 [ '(n If)+ ~]]-i

(»)
For large values of z and small n, there is a semi-
convergent expansion for D„(z):

N

D„(z)=z" e-"" gc„+0(iz'i-"-'), z»1,
—8W
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calculated by summing the single particle densi-
ties in x space instead of using the density matrix
as described by Vautherin. "

The location of the mesh points is determined by
the integration formula, used for the calculation of
the HF Hamiltonian matrix. In the p direction we
use an 8 point Gauss-Laguerre and in the $ direc-
tion a 16 point Gauss integration formula. In this
latter case a finite interval formula was found to
yield more accurate results than a Gauss-Hermite
formula.

From the initial guesses for p, ~, and J one cal-
culates the effective mass m,* (IZ) and the poten-
tials U, (IZ) a.nd W, (IZ) that determine the HF ma-
trix. After diagonalization its eigenfunctions can
be used to calculate new potentials for a repetition
of the iteration procedure. %e have found that an
averaging over results of consecutive iterations
considerably improves the convergence.

Since in practical calculations the basis size is
limited, the HF result depends on the basis param-
eters v„, (d„and z,. Therefore, one has to vary
these quantities in order to obtain the lowest pos-
sible energy. This procedure, however, leads to a
difficulty: The constraint parameter xo is fixed
when one varies the basis parameters. For each
set of (&o„uy, z,) one obtains different values for
the energy E and the expectation value x. If one
plots each pair (r, E) in a diagram, the resulting
lower envelope of these points supplies the desired
curve E(r)

In order to obtain the total intrinsic enex gy of the
system we subtract the kinetic energy of the total
A-particle system. A completely correct treat-
ment of the operator

system consisting of two "0 clusters. Both sub-
structures have magic character. Therefore, it is
interesting to study the breakup of these stable
shell structures when the nuclei come into contact.
Furthermore, the "0+"0 scattering data require
an exact knowledge of the potential even at dis-
tances smallex' than for neighboring systems.
Finally, the compound system "8 has a prolate
ground state deformation. A good description
should provide this deformation. First results on
these points have already been published else-
where" (see also Hef. 26).

As a basis we have used the lowest 44 two-center
oscillator wave functions, which corresponds to 4
oscillator shells for each of the "0 nuclei in the
limit of large separations. In Fig. 1 we present
the single particle spectrum for protons (for the
neutron spectrum see Fig. 1 in Hef. 21). The sin-
gle particle energies are plotted as a function of
the separation distance r of the c.m. of the "0
clusters. It should be noted that because of the
definition (1) the point x =2 fm corresponds to the
spherical configuration of the compound system.
Here one recognizes the usual degeneracy of the
spherical single particle levels. They are class-
ified by the quantum numbers of the spherical os-
cillator. The region of large x values corresponds
to the case of two well separated "0 nuclei. Here

7/$

3/2

-)0

in the framework of Skyrme HF calculations is
quite tedious. %e, therefore, subtract the direct
term only which ca,n be done by replacing h'/2m
by I'/2m (1 —1/A).

In the Born-Oppenheimer approximation we now

identify the difference E(r) —E(~) as the real part
of the potential U(r). It has to be pointed out that
the question of treating the remaining enexgy of the
relative motion is still open. For a discussion of
this problem see e.g. , Refs. 11, 21, and 25. As
will be shown later, we give results only in the
region of relatively large x. There the redundant
relative energy is nearly constant and can be ne-
glected [see Fig. 2(b) in Hef. 11].
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III. STRUCTURE OF THE ~ 0+ ~Q SYSTEM

Before presenting the potentials for the various
scattex ing problems we discuss our results for the

FIG. 1. Single particle energies of protons for the
system '60+ 60 as a function of the c.m. distance r.
The asymptotic spherical shells are characterized by
their quantum numbers. For three single particle states
also (Qm.) is given.
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again one can use the classification of the spheri-
cal oscillator. In the region between these two
limiting cases only the quantum numbers 0 and 7t

can be used to classify the states. The proton
spectrum has qualitatively the same structure as
the neutron spectrum (see Ref. 21). The Coulomb
force pushes the levels up and changes the shapes
of the energy curves somewhat.

The shells of the magic "0 nuclei dissolve in the
region of large density overlap (i.e. , small r)
For distances r~4.5 fm, however, they remain
remarkably intact. One sees from Fig. 1 that even
though there the ~ degeneracy of the single parti-
cle states is broken, the occupied states still have
the same structure as at r -. In particular, the
highest occupied states are (&3t) = (3-) and (-, +)
states originating in the fragment Py/2 shell. This
means that the density distribution of the "0 nu-
clei is somewhat distorted but not destroyed. At
r4. 5 fm this situation, however, changes: A
(-,'+} state of the d, &3 shell dives down through the
Fermi surface and crosses a (3 -) state of the p, &3

shell of the spherical "S configuration. At this
point, therefore, the density is changed consider-
ably; matter is moved from the z into the p direc-
tion, thus filling in the neck.

In Fig. 2 the curve E(r) represents the intrinsic
energy of the system after removing the energy of
the center-of-mass motion of the total system and
the spurious energy of the relative motion of the
two "0 fragments. The latter energy is calculated
according to an interpolation formula

r(r) —2'(33S)
PP( } PP( }T( ) T(32 )

(13}

where T(r) is the total kinetic energy as obtained
in the HF calculations and T„(~) is the spurious
energy for infinite distance. A motivation for this
formula can be given by means of a cluster model
analysis of the n+ n -'Be system. " The value of
T„ is similar to that obtained in Ref. 11 on the
basis of a generator-coordinate consideration.

For large r values E(r) exhibits a barrier whose
maximum is located at 8.4 fm. The barrier height
relative to the value at infinity is in good agree-
ment with the experimental data of Maher et al."
The absolute minimum of the curve which is inter-
preted as the ground state of "S lies at r = 3.5 fm.
This corresponds to a proton quadrupole moment

q~ = 45 fm', which has to be compared with an ex-
perimental charge quadrupole moment Q, =47 fm'.
The difference in binding energy for the ground
state of Bc»=265 MeV and B,~=271 MeV can be
improved by increasing the basis and by projecting
to good angular momentum. In the present con-
text we are interested only in the interaction poten-
tial, i.e. the value of E(r) relative to its value at

- 240—

-250-

-260—

I

IO

r (fm)
l5

FIG. 2. Total intrinsic energy of the '60+ ' 0 system
as a function of the c.m. distance r. The height of the
inner barrier at r= 5 fm is sensitive to the exact pairing
strength and, therefore, somewhat uncertain.

r -. Therefore, the potential should be much
more reliable than the difference between the theo-
retical and the experimental binding energies
might otherwise suggest.

Another interesting feature of Fig. 2 is the oc-
currence of a second minimum at r =4.9 fm be-
sides the ground state minimum. The correspond-
ing value for the proton quadrupole moment is Q&
=195 fm'. Krieger and Wong obtained a quite sim-
ilar result using a Nestor two body potential" in a
CHF calculation. They obtained two minima at
mass quadrupole moments Q = 102 fm' (ground
state) and Q =340 fm'. The relative height between
the two extrema was 4 MeV whereas our result is
of the order of the value in the liquid drop model
(8-9 MeV). The existence of the second minimum
can be understood in terms of the single particle
spectrum. Stretching the "S nucleus the energy
increases due to the (3+) state which rises strongly
with r. At r =4.5 fm the quantum numbers of the
highest occupied level change and a lower energy
is obtained if the last particles fill the (3 -) state.
At this point, therefore, the energy drops down
somewhat. At still larger r the rise in energy
continues creating the second minimum.
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32S
Pn r= 9 fm
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,
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FIG. 3. Contour plot of the neutron density of 0+ 0 at a c.m. distance of 9 fm. The contour lines are drawn in

steps of los of the central density from 10 to 90%.

Vershinin and Cherdantsev" have studied the in-
fluence of an additional minimum in the potential
on the scattering cross sections. They found that
this minimum can cause intermediate structure in
the excitation functions. The experimental data
show such structure in the elastic scattering cross
sections of the "0+"0 scattering. Therefore, the
intermediate structure of the excitation function
could have its origin in the level crossings of the
single particle states of the oxygen systems. How-
ever, it remains to be seen whether inclusion of an
imaginary potential in the calculation of the excita-
tion functions would not smooth out and thus de-
stroy any intermediate stucture.

In order to study the structure of the "0+"0
system we now present some density distributions.
%ith their help one can obtain information on when

the shell structure of the two "0 nuclei is dis-
solved and the "S cluster becomes domina, nt. For
this purpose, we show contour plots of the neutron
density for various values of the distance r. The
lines represent curves of 10%, 2%o, . . . , 9' of
the central density. The symmetry axis is given by
z; x denotes a coordinate perpendicular to this
axis. %'e start with a plot at x=9 fm, i.e., just
outside the interaction barrier (Fig. 3). The "Q
clusters are separated. But one recognizes a
sma. ll polarization of the oxygen systems since the
density lines a.re no longer circles. The next plot
in Fig. 4 gives the density just inside the barrier
at x=8.3 fm. The deformation of the "0 clusters
has increased; the 10% line is connected. In Fig.
5 the density at the second minimum (r-4.9 fm) is
shown. The shape of the nuclei has changed dras-

x (fm)

Ji

32S

= z (fm)
6

'

7

FIG. 4. Neutron density contour plot of 60+ ~60 at a c.m. distance of 8.3 fm.
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FIG. 5. Neutron density contour plot of ' 0+ '60 at a c.m. distance of 4.9 fm (second minimum).

tically. But there is still a two-center structure.
Finally we present in Fig. 6 the contour plot for
the ground state minimum. Now the dominant
maximum of density is located at the center of the
system. The oxygen structures are completely
washed out. The density is determined by the
shells of the compound system.

In the last paxt of this section we compare the
self-consistently calculated direct term of the
Coulomb energy E~~ with the energy of two point
charges V~ and that of a point charge in an ex-
tended charge distribution (dot-dashed curve in
Fig. 7) as usually used in optical model codes. In
Fig. 7 we show these quantities as a function of the
separation distance. The difference between all

curves is very small in the region t'~ 5.5 fm of the
order of 100 keV. One may conclude that the finite
size effect with regard to the Coulomb energy is
not large and can be neglected. This result is in
agreement with an earlier, more phenomenological
study of this point. " It has also been noted in
Refs. 30 and 31 that even larger discrepancies in
the Coulomb potential in the overlap region would
be masked by the absorptive part of the potential.

IV. POTENTIALS AND EXCITATION FUNCTIONS

In this section we present the self-consistently
calculated potentials U(r) together with excitation
functions calculated from them in an optical model

3O
5

FIG. 6. Neutron density contour plot of the ground
state of 328.

FIG. V. Coulomb energy Ec of the extended 0+' 0
system compared with the Coulomb energy Vz of two
point charges and the potential of a point charge in the
field of an extended distribution (dot-dashed) as usually
used in optical model calculations as a function of the
c.m. distance t'.
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TABLE I. Woods-Saxon parameters of empirically determined (exp) and calculated (CHF)
potentials.

t2C+ i2C

Exp. ' CHF
18p+ 16p

Exp b CHF
Ca+ Ca

Exp CHF

Vo (MeV)
z(r )
&( )
W (MeV)

14
6.13
0.49
0.4+ 0.14Ec m

14
6.13
0.56

17
6.8
0.49

+ ' Ec.m.

19
6.69
0.56

25
9.23
0.49
0.8+ 0.35E~m

25
8.94
0.58

Reference 31.
Reference 34.' Reference 39.

code using the empirically determined imaginary
potentials. For this purpose we have fitted Woods-
Saxon potentials to the outer tails of our self-con-
sistently calculated energy curves. The potential
parameters obtained in this way are listed in Ta-
ble I.

~~C +~~C. For this system measurements have
been available for quite some time. "" The ex-
citation function can satisfactorily be described by
the parameters also given in Table I.

The real part of —V is shown in Fig. 8 as a func-

tion of the distance r. The dashed curve gives our
self-consistently calculated potential. One rec-
ognizes quite good agreement whereas a potential
based on a surface-energy related folding pre-
scription proposed by Krappe and Nix" (KN) bas
a significantly different slope in the outer region of
the interaction.

The calculated barrier radius is somewhat larger
than the experimental one and correspondingly is
the barrier height of the experimental potential
some hundred keV higher than that of our CHF po-

10

0= 90
12

C 12C

10—

Exp. Fit
———CHF

KRAPPE, NIX 10

10

MOTT

0.1—

10
r (fm)

15 10 20 30
E (MeV)

I

40

FIG. 8. Comparison of the real part of the optical
potential for ' C+ C. The full line represents an ex-
perimental fit. The dashed curve shows the result of
our CHF calculations. The dashed-dotted line was cal-
culated according to the Krappe and Nix prescription.

FIG. 9. Excitation functions for the elastic scattering
of C+ C. The Mott cross section is represented by
the upper full line. The prediction of our CHF calcula-
tions (dashed line) is compared with an experimental fit
to the data (full line).
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tential. The KN potential does not reproduce the
experimental curve nearly as well.

Figure 9 shows a typical excitation function at a
scattering angle of 90' in the center-of-mass sys-
tem. In the energy region between 10 and 40 MeV
the elastic cross section is much smaller than the
Mott cross section due to the absorption. The
curves are the results of using the potential of Fig.
8 in an optical model code. In both cases we have
used the same imaginary part which was fitted to
reproduce the scattering data" without further re-
adjustment of its parameters. The position of
maxima and minima in the excitation function is in
good agreement both with the experimental points
and the best fit result. The main remaining dif-
ferences are the peak to valley xatios and the in-
termediate structure which cannot be obtained with
simple Woods-Saxon type potentials.

O+ O. Let us now switch to our results for
the "0+"0 system and compare with data ob-
tained by Siemssen et c/. '4 The best fitting param-
eters obtained by these authors are also given in
Table I. In Fig. 10 we compare the real part of
their potential with our result. There is a quite
good agreement in the region x~ 7 fm. Again one
recognizes an obvious failure of the KN poten-
tial as far as the slope of the potential is con-
cerned. The difference between CHF and the

experimental potential which increases towards
smaQer x values disappears more or less if the
effect of the spurious relative motion energy is
taken into account.

If one calculates the corresponding excitation
function using the potentials of Fig. 10, one ob-
tains the results of Fig. 11. Above the Coulomb
barrier the cross section drops down over several
orders of magnitude. As in the case of carbon we
obtain a quite satisfactory agreement between ex-
perimental and CHF cux ves, although again one has
to keep in mind the discrepancy between measured
points and the prediction of the potentials. In par-
ticular, the peak to valley ratio has to be im-
proved. A possible way to do this is to use an 1-
dependent imaginary part. "

An interpretation of the intermediate structure
in terms of resonances on the second minimum
was proposed by Cherdantsev and Vershinin. "
However, this resonance effect depends strongly
on the form factor and the depth of the imaginary
potentials which we cannot calculate at present.
%e have, therefore, not included the second mini-
mum in our calculations.

The influence of the imaginary potential can also
be described in somewhat different words: The
CHF energy curve represents only the lowest pos-
sible configuxation and can be identified with the

103it

16O SO

Exp. Fit

10— PPE, NIX 10

lh

10
E

10
r (fm)

10 20 30
E (MeV)

40

FIG. 10. Heal part of the optical potential for ~O+~60.
For an explanation of the various curves see Fig. S.

FIG. 11. Excitation functions for the elastic scattering
of "O+"O.
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e couplingpotential for collective motion onl if th
between different configurations remains small.
In dynamical calculations, however, it was found

y Glas and Mosel" and Tazawa" that for the "O
+" system the jump probability into higher con-
igurations is very 1arge (of the order of 90%%) at

the first crossing with a formerly unoccupied state.
Since tlHs crossing fust leads to the second mini-
mum the existence of this minimum in the adiabatic
potential curve may be irrelevant for the dynamical
evolution of the process.

NCg +40Ca. For this system experimental data
have become available only quite recently. As the
two scattering partners are also tightly bound there
had been expectations" that also in this case the
excitation function should exhibit some gross
structure. This expectation, however, is not borne
out by the data. Instead, the excitation functions
obtained by Doubre et al. 39 are structureless with

termination of the real part of the potential is dif-
ficult.

The parameters obtained by the Orsay group are
also given in Table I. Noticeable is the strong im-
aginary part compared to the '60+ 0 case The
physical reason for such a large strength is not

yet understood. It should be noted how th t
th e strong absorption found by Doub t I '9 '

still disputed —at least in the low enew energy range-
in view of the recent contradicting results of the
Munich group. 4'

In Fig. 12 we show the real part of the potentials.
Our self-consistently calculated t t 1e po en ia is nearly
identical to the exper imental one. There is an ex-
cellent agreement for the total interaction poten-
ial including the Coulomb term. It is therefore

not surprising that we can describe the experimen-
tal cross sections very well (Fig. 13). One has,
of course, to remember that we always use the
imaginary part which is reported by the experi-
mental groups. However, we can conclude that the
predictions of CHF calculations for the real part
of the optical potential are quite reliable.

10—

GQ+ CQ

Exp. Fit
———CHF

0.1—
—.—KRAPPE, NIX

10

r {fm)

10'

"Co+"Co

10

Exp. Fit
——CHF

C 10

aP

FIG. 12. HeHeal part of the optical potential for the
Ca+ 0Ca system.

V. SUMMARY

It was the aim of the present work to study the
applicability of self-consistent methods to the cal-
culation of the real part of HI potentials. The ad-
vantage of such a method is threefold: First, it
avoids all ambiguities connected with the choice of
the nucleon-nucleon interaction by using tne same
effective force as for the calculat f 1

also have predictive power if applied to very heavy

Second, the force used yields very good nuclear

10

70
E {MeV)

FIG. 13.
of 40C 40C

Excitation functions of the clast'c tt
a+ Ca.

ic sca ering
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densities as judged from electron scattering.
Therefore, the tail regions of the HI that depend
critically on the density tails can be calculated
quite reliably. Third, the method is free of all a
Pt'foxy assumptions on the negllglbllity of antl-
symmetrization (AS) effects in the outer potential
tails that is tacitly assumed in all foMing-Inodel
approaches. In contrast, in the CHF method the
total wave function of the target-projectile system
is completely antisymmetric under exchange of
nny two nucleons at all distances.

The justification for neglecting the AS in the
folding method has to our knowledge never been
quantitatively investigated. Recent studies of this
problem performed by us""'4' have indeed in-
dicated that the AS effects become important as
soon as the nuclear potential starts to act and
yieM a repulsive contribution to the total HI po-
tential (see also Ref. 8). The two less general
assumptions of the CHF method are the use of the
adiabatic (Born-Oppenheimer) approximation that
identifies the total energy of the system at fixed 8
with the HI potential and the neglect of all possible
dynamical effects. The adiabatic approximation
should be justified for energies not too far above
the barrier so that the collective velocity in R di-
rection remains small. The validity of this method
is generally accepted in the literature as shown by
e.g. , Hefs. 3-8. The question of dynamical dis-
tortions has been investigated so far only in mac-
roscopic model calculations. "" Here, the ques-
tion is whether in actual collisions the nuclei "have

time" enough to rearrange their shapes such as to
attain the lowest possible energy (this, of course,
is assumed in a HF procedure). That this require-
ment may not be met is perhaps indicated by the
fact that our CHF potentials all have diffuseness
parameters that are too large by 0.07-0.09 fm
(see Table O. That the Skyrme force when used in
non-self-consistent calculations gives on the con-
trary a too small diffuseness for the potential~
points to effects of the self-consistency in our cal-
culations: The nucleons in one nucleus pull the
density in the other one over, thus increasing the
density diffuseness and correspondingly also that
of the potential.

Dynamical distortions can, of course, also be
described by a coupbng of the adiabatic to other
higher lying configurations. The few microscopic
calculations available on this point indeed indicate
a strong coupling inside a distance corresponding
to the sum of the two half-density radii. "'"

Besides yielding quite satisfactory HI potentials
our calculations have also shown that the shells of
the two magic "0 nuclei survive up to a remark-
able degree of overlap. Seen from the other side,
this means that in the symmetric fission of "S the
shells of the nascent '0 nuclei are felt quite early.
This finding may be related to one of the most im-
portant conclusions reached in the study of nuclear
fission by means of the two-center shell model,
namely that the fragment shells have a decisive in-
fluence on the potential energy surface for fis-
sion. 4'"
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