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When the cluster model approximation is used with the antisymmetrized coupled equations formalism for the
scattering of complex nuclei there results an approximate method which appears to be an attractive alternative
to the resonating group method. The antisymmetrized coupled equations formalism leads to a Schrodinger

type of equation which has unique solutions in contrast to the resonating group method equation for which
redundant solutions exist. The two methods are compared by applying them to the model problem of
dineutron-dineutron scattering, and we find that the predicted cross sections are qualitatively similar. In
addition, it is shown how the results of a cluster model calculation, which presumably provides a description
of direct interaction effects, can be used as input into a Feshbach projection operator type calculation for
compound nucleus formation effects.

NUC LEAR REACTIONS Alternative to resonating group method for treating
exchange effects in nuclear reactions. Calculation of dineutron-dineutron

scattering.

I. INTRODUCTION

The resonating group method' (RGM) has been
widely used in recent years to analyze the scatter-
ing of complex nuclei. It is unique in its capacity
to include the effects of exchange symmetry. Ap-
plication of the RGM requires the solution of an in-
tegrodifferential equation having a kernel that is
momentum dependent and energy dependent. The
solution of this equation is not uniquely determined
by the boundary conditions. This can lead to cer-
tain mathematical difficulties. ' Formally exact
integral equations for multiparticle scattering can
provide a framework for applying the cluster model
approximation to achieve an alternative to the
RGM.

In this article we introduce an alternative to the
RGM which is based on the same physical assump-
tions as the RGM. The new method is the result
of making the cluster model approximation in the
antisymmetrized coupled equations formalism4
(ACEF) for nuclear reactions. It results in an in-
tegrodifferential Schrodinger equation for the scat-
tering function. The kernel of this equation is not
energy dependent; it is derived directly from the
interaction potential of the original Hamiltonian.

The new ACEF formalism appears to be some-
what easier to use than the RGM and should give
equivalent results. This is demonstrated by apply-
ing both methods to the dineutron-dineutron ('n

—'n) scattering problem. Since the ACEF is a
formally exact multiparticle scattering theory
which is still relatively new, it is instructive to
compare it with other methods that have proven
themselves to be trustworthy.

Besides comparing the RGM and the cluster
model ACEF (CM-ACEF) in the single channel ap-
proximation, we also compare their multichannel
forms. In addition, we indicate how these formal-
isms may be extended so as to include compound
nucleus effects.

In Sec. II the RGM is presented. The cluster
model approximation is applied to the ACEF in
Sec. III. The application of the RGM and the CM-
ACEF to the 'n-'n scattering problem is carried
out in Secs. IV and V. The effectiveness of the
Born approximation in the RGM and CM-ACEF is
tested in Sec. V. In Sec. VII we describe how the
results of a CM-ACEF can be used as input to a
calculation that will account for compound nucleus
formation effects on the scattering cross sections.
Section VIII is devoted to a summary of our re-
sults.

II. RESONATING GROUP METHOD

Consider a system of N nucleons which we regard
at the outset as being distinguishable. For each
partition a, p, . . . of the nucleons into two sets or
clusters there is a decomposition of the Hamilton-
ian into two parts:
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H=H +V =H +V ='''
H contains the kinetic energy and the intraclustex'
interactions for the partition e while V is the sum
of the intercluster interactions for that partition.
The channels a, a', a", . . . associated with parti-
tion e are identified with the various possible unit
IQCIdent amplitude elgenstates 4' of H havxng
eigenvalue E:

y'1 =(4'((»I y'(&(I&& (&) I+ (I»H(& 'H ' '& (4a)

@I,(~) = @~(~)e $(l) p(l)
y

identify by a(1), a(2), .. . , a(H ). Let P (n) be the
nucleon exchange operator which tx'ansforms 4'„»
into 4,&„&. Then the transition amplitude for scat-
tering from the physical channel a (associated with
the family [a(i)j of unphysical channels) to physi-
cal channel 5 is

= Qge (( ()'+ outgolllg wRves ) (2b) &0,

X.(,&=+ (-1}' (")S'.(8),

(E —H )(t),e'"o'~ =0, (2d)

», !(H n,)!—
partitions in the family of physically indistinguish-
able partitions associated with partition e. I et
us 1Rbel tile pR1'tltlolls 111 tllls fR11111y by (I(1)
&I(2), . . . , o(H, ). The associated channels must be
similarly distinguished. So we have families of
physically indistinguishable channels which we

whex'e x'I is the relative dlsplaceIQent of the two
clusters in the partition 0.. The internal motion
wave functions like tIP) 3 "~ for the individual clusters
associated with the vax'ious channels will be taken
to be antisymmetric with respect to nucleon ex-
change

The fact that the N nucleons comprising the sys-
tem are physically indistinguishable causes it to be
possible to arrange the partitions of the system into
sets or families containing physically indistinguish-
able configurations. Suppose that .q and X —n
are the numbers of nucleons in the two clusters of
partition e. Then thex e are

where &I (») is the parity of permutation P (&().
Equations (2) and (4) summarize the theory of

scattering reactions. To calculate the transition
amplitude one must solve the Schrodinger equation,
Eq. (2a), Subject to the boundary condition Eq.
(2b). Then the solution is substituted into Eq.
(4R). The execlItloIl of tllls tRsk is diff lclllt becRuse
of the multidimensional nature of the differential
equation and the boundary condition.

%e restrict ourselves at first to situations where
only a single channel need be included. The moxe
general case will be discussed later.

The HGM simplifies the problem by assuming
that the cluster model approximation to the scat-
tering wave functlony

(M(&& a&&& u(I&~()(l&~e(r()() )

[A (,),H]=0,

Eq. (2R) cR11 be tl'Rllsfol'Illed lllto

(&)),(,)(&(r-r )I(E-H)A (, )I&f(~,)&=0.

Combining Eqs. (5) and (I) gives

(8R)

& (r, r') =(4.(&)&)(r —r. ) I
1'.(I)& (I)+(E—H (1))(l —& (1)) I A.(&)(i("—r.)).

Equation (8) is the ROM equation. The interaction kernel W,(r, r ) is seen to be both energy and momentum
dependent»

I et us transform to momentum space:
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The integral equation form of the RGM equation is
thus

setting

(E —H a(q)+ iK)

k'(k, ' —k'+ i&)

(19)
Symbolically, this may be written

and assigned the formal solution

X.=(l-g.M.) '
~

Combining Eqs. (9), (5), and (4a) gives

d'k U, k,', k X, k = ~„k,', k, ,

(12)
Combining Eqs. (17)-(19) leads to the following in-
tegra3. equation for the transition amplitude:

7'„(k', q) = U,(k', q)1,y „(k',k)2m U, (k, q)

(20}

U, (k'„k) =(y„„e&"'
i
V.&„A.„,i

y„„e"). (14b}

Now make use of Eq. (13):

a( & } (~a(l) i a()) a()) I & ())

(21)

=U,(1 g, M,)-'

=U, + V„g,M, . (15)

In explicit notation this reads

7'„(k'q) = U,(k', q)

1 ' „, r„(k', k}2m. i&f.(k, q)

III. CLUSTER MODEL ANTISYMMETRIZED COUPLED

EQUATIONS FORMALISM

(16)

Equation (16) is the RGM integral equation for the
transition amplitude.

Equation (20) is the CM-ACEF integral equation.
It differs from the RGM integral equation, Eq. (16),
by virtue of having U~ ' as kernel instead of
M,. UQ, ' is simpler than M„ it is not energy
dependent, and it is not momentum dependent ex-
cept insofar as V &» is momentum dependent.
Thus the CM-ACEF equation is simpler than the
ROM yet it is based on the same physical approxi-
mations.

In Ref. 4 tw'o versions of the ACEF were pre-
sented. Equation (18) is the single partition form of
the antisymmetr ized Baer-Kouri coupled equations
formalism (ABKCEF). An alternative version is
the antisymmetrized Kouri-Levin coupled equa-
tions formalism (AKLCEF) which gives the follow-
ing equation for T in the single partition case:

Ta —&a () )Aa() )Ha Ga () )[Aa &, )Ga (, ) + Ta],

(17)

For the case where there is only one open chan-
nel, the equations of the ACEF4 reduce to

r„(k'„k,)=((t,(,)e'" '
i Ti t(&,))e" ' },

where

G &, )
= (E —H (,)+ ie) '.

(22)

(23)

Ta —Va(, )Aa&))+ Ta(E —Ha&)&+(&) 'Na 'Aa&, )i a&, ) ~

(18)

The cluster model approximation applied to the
ACEF integral equation, Eq. (18), results from

This expression is equivalent to one given by Ko-
walski. '

Applying the cluster model approximation Eq.
(19) and then substituting Eq. (22) into Eq. (17)
gives

] 3 „, U.(k', k)2m. r..(k, q)
cc ~q = c ~q+ N k'(k', —k'+is}

where

2'.(k'sk)=((t. ())e'" 'a
i
I'a&))Aa(. P'a 'Ga(. )Aao)Ga(() 'i & (.)e"a" }. (25)
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The expression for Z, becomes easier to interpret when G "' is eliminated as follows:

G A, G, '=G A„(G'+V )=G G'A, +G A V, =G, (G ' —V )A +G,A V, =A +G [A, V].
Thus Eq. (25) becomes

I
V &»+ (»+ V (i&+ &i&+ G ti&(+ (i» V ii&t I 0 fi&s ) ~

Equations (20) and (24) are the CM-ACEF equa-
tions. Equation (20) is the CM-ABKCEF equation,
ancl Eq. (24) ls the CM-AKLCEF equation.

IV. APPLICATION TO THE DINEUTRON-DINEUTRON

SCATTERING PROBLEM

%'e have presented a scattering formalism that
is based on the same physical approximations as
the RGM but yields an integral equation having a
simpler kernel than the RGM integral equation. To
test whether the RGM and CM-ACEF are really
equivalent, we apply them to the same physical
system and compare their predictions. The system
used is the two dineutron system. For this system
we use as the two-body force the Brink and Boe-
ker' Bl force. An RGM treatment of the 'g-2n
system using the j31 force has been published by
Giraud et a/. ' The Sj. force potential is

V.(i,k) = g (2l+1)S,(cose) U, (k, k'), (31b)

for the RGM,

r,(k', k) = U, (k', k)

, 1 "„,r,(k', p)2m', (p, k)

and use similar expansions for U„M„and Z,.
8 is the angle between k and k'. Inserting these
partial wave expansions into our integral equations
gives

E,(k', k}= f'&(k', k)

1 "„,r, (k', P)2m'&f, (p, k)
2», k'(k, ' —p'+i&)

V.&i &

= V(&13}+V(&&4)+ V(&23)+ V(&24}

V(r) = g S,.(1—n, +n,I&„)exp(- .r'/li', .), .

(28a)
for the CM-ABKCEF, and

r, (k', k) =Z,(k', k)

, V, (k', p)2m r, (p, k.)
2»', 6If'(k, ' P'+i&-)

(33)

where I'z is the Majorana exchange operator and

S, = 140.6 Mey, 8, =389.5 Mey,

P.1 = j..4 fIQ q

A)1 = 0.4864,

p2 =0.7 fm 2

yg, = 0.5290.

The channel state wave function is taken to be

4'. (,&= 4(r„)4(~,.), (29a)

4(&) = ~ "'b '"exp(-r'/2b')X. '(-', -'), (29b)

u(1) 13 23 14 24 13 24 &

and N is 6. The reduced mass m is the nucleon
mass m.

Let us expand the quantities that appea, r in our
integral equations in partial waves. We set

Xo is a singlet state spin wave function. The anti-
symmetrization operator is

(34)

for the CM-AKI CEF. The explicit expressions we
find for the quantities that appear in these equa-
tions are shown in the Appendix.

The integral equations for the three cases are
seen to have the same structure provided the
transpose of the equation for the CM-ABKCEF
case is taken. Thus in the ensuing discussion the
RGM integral equation will be used, but the dis-
cussion applies to the other two equations as well.

Rather than solve the T matrix equations given
above it is more convenient to solve the associated
X-matrix integral equation a d theI: .„-. et the r ma, -
trix by means of the Heitler equation. Define the
RGM E matrix to be the solution of

Xi(k', k) =M, (k', k}

r..{k,k') = g (2f+1)f,(cost&) r, (k, k'), (3 la.)
Let us use symbolic representations of Eqs. (32)
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and (35):

W= U+ ~gM,

x=m+3:g"'m =a+kg"'x.
(38}

{37)

, =-fv5(k'-s')
k —s'+ ie k —s'

The Heitler equation connecting 7' and X is then
derived in the following manner:

T = [U+ 9 gM~(1+g&o&X) sg&o&X

= U+ Ug' 'X+ r(g g' ')-X. (38)

Now we revert to explicit representation and use
the fact that

00 v Ik'
9 (k' k) = U {k' k)+ d

2 2 Pp 8.2(k ~ p2)

k, V'&(k', k, )2m X,(k„k) (40)

The partial wave transition amplitude is the on-
the-energy shell value of K„ for which Eq. (40)
becomes

U,(k., k.)+ (ms'/v'k') f,"dPP'[U, (k.,P)X,(P, k.)/(k. ' P')]
1+ (fmk. /2&&ff') X&(k„k,} (41)

This would reduce to the conventional form of the
Heitler equation with just X,(k„k,) in the numera-
tor 0 we had Us=M

Our calculation consisted in solving the integral
equations for the partial wave E-matrix ampli-
tudes, Eq. (35). This was done by approximating
the integral by a Gaussian quadrature sum and
solving the resulting set of linear algebraic equa-
tions. The on-the-energy shell T-matrix partial
wave amplitudes were calculated from the Heitler
equation, Eq. (41). Then the total scattering cross
section was determined by means of

(7 (K,) = ~p (2f + 1)
~
s,(k„k,)

~

', (42a)

K =ff'k, '/2m .
The total scattering cross section as a function

of K„ the kinetic energy in the center of mass
frame, is plotted in Fig. 1. The RGM, CM-
ABKCEF, and CM-AKI CEF results are plotted to-
gether. The two CM-ACEF results are practically
indistinguishable. Fox' energies beyond 30 MeV
the agreement between the RGM and the CM-ACEF
is pretty good. Below 30 MeV the agreement is
only fair.

The calculation was repeated with the sign of the
Majorana exchange terms in the nucleon-nucleon
potential, Eq. (28b), reversed. This produces a
much more strongly attractive interaction. As a
result the cluster model approximation cannot
work so well. The cross sections are plotted in

Fig. 2. All three formalisms predict a maximum at
K, =O and all approach the Born approximation at
high values of E,. All thxee cases have a broad
resonance at about E,= 10 MeV.

For the ACEF calculations the phase of the reso-
nance amplitude is opposite that of the background

amplitude so that there is destructive intex'ference.
For the RQM, on the other hand, the phase of the
resonant amplitude sweeps through p radians
across the resonance so that the interference
changes from destructive to constructive. The
zero energy peaks in the cross sections are not
shown on the plot. These are very different, being
about 8.6 b for the RQM, 66 b for the CM-
ABKCEF, and 112 b for the CM-AKI CEF.

%e conclude that the cross sections predicted by
the three methods agree pretty well when a rea-
sonable two-body force is used. %hen a very
strong two-body force is used we find that the de-
pendence on energy of the cross sections predicted
by the three formalisms is still roughly the same,
Below 30 MeV kinetic energy in the center of mass
frame the three methods differ considerably.
Above 30 MeV there is rough agreement. In the
absence of the exact solution it is hard to say how
significant these discrepancies are. Some light
will be shed on this matter in the next section.

V. ALTERNATIVE CALCULATION OF THE

RGM CROSS SECTION

Using the conventional form of the Heitler equa-
tion leads to the following expression for the par-
tial wave transition amplitude

X,(k„k,)
1+ (imk. /2»g')X {k., k&,) '

and the associated cross section is

m2
c (Z,)=, g(2f+1) ~r", (k„k,) ~'.

This is what we would have gotten in place of Eqs.
(41) and (42) if the driving terms in Eqs. (32) (34) were
identical with the interactions occurring in the kernels.
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FIG. 1. Total cross section for dineutron-dineutron scattering calculated by means of the resonating group method
(RGM), the cluster model-antisymmetrized Baer-Kouri coupled equations formalism (CM-ABKCEF), and the cluster
model-antisymmetrized Kouri-Levin coupled equations formalism (CM-AKLCEF). The Brink and Boeker Bl two-body
force is used. RGM(K) is the total cross section deduced from the asymptotic behavior of the RGM wave function.

The RG1Vl cross section calculated in this manner
is shown in Fig. 1 and is referred to as the K cross
section. The K cross section is seen to be rather
different from the total cross section. For the RGM
we would argue that the discrepancy between o~ and

o ~ is a measure of the quality of the results since we
would have 0~ = cr~ if the RGM were an exact formalism.

The K cross section o~ is the result one gets for
the total cross section by calculating particle
fluxes in the asymptotic region from the solution

P, of Eci. (8). This would be the scattering due to
the interaction 8',. The total cross section 0~ is
derived from the scattering amplitude calculated
by inserting this same wave function into the ex-
pression shown in E(i. (4). These two ways of cal-
culating the cross section give the same result
when the exact wave function is used. The extent
to which they differ is an indication of how much
the RQM wave function differs from the exact one.

The RGM o~ is much smaller than the RGM o~.
The two have resonances at the same energy but
the resonances have different characteristics. The
difference between the RGM o~ and the CM-ACEF

o~'s is less than the difference between the RQM
v~ and the RQM 0~. On this basis one can say that
the CM-ACEF agrees with the RQM within the
limits of uncertainty created by neglecting excita-
tion, rearrangement, and breakup effects.

The K cross sections calculated for the CM-
ABKCEF and CM-AKLCEF are equal to each other
and are very much smaller than the corresponding
total cross sections. However, in contrast to the
RGM, there is no basis for expecting the ACEF
o~ to equal the ACEF 0~.

As in the RQM case, the ACEF 0~ can be inter-
preted in terms of a wave function. Let us define
the wave function O'BK» by the requirement that

Te 4g(z)e ~0. (x) +n(x)+a(z) ~

where for T one substitutes the formal solution
of Eq. (18):

n(1)~a(1)( n(1) a a(1) a(1)) a(1)

BK= i' ())& (»+.()) (46)
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FIG. 2. Same as Fig. 1 except that the two-body B1 force potential has had the sign of the Majorana exchange potential
reversed.

where

Ga &) &

—(E —Ha&) &+ &C} ', (47)

Wa(, )
= Va())Aa())+ (E —H (,&)(1 A (,)) (52a)

=A (, ) V (,)+ (1 -A (1))(E—H (,)), (52b)

(E Ha(1)} a(l) ~a(1) a(1)
w w

eI "a' re
a(1) a(1)

Thus we can set

4', (, )
——(1 —Ga())Na 'A ())V a&, )) 'a@a())

=@ (1)+ G
& ) ( )V (1&+ (1)

(48)

where the quantities that appear need retain only
terms that are not projected to zero by A (1) Op-
erating on Eq. (49) by E —H &» gives

(E —Ha(, ))4',(")) = Na 'A (, ) Va)4a',&)). & (50)

BG RG
a(l ) a(1) e (1) e (1) a(1) 0 (51)

Equations (49) and (50) are the equations for the
ABKCEF wave functions in the single partition
case. For comparison we write the RGM counter-
parts to these equations:

2 TI'
e (1) "e(1) a(l) e e(1) e (1) a(l ) 7

operating on Eq. (50) with A,» yields

BK BK
u &) &( e (1)} a(1) a (1) 0 (1) a(1)

(54)

(55)

which is identical to Eq. (53). However, the cor-
responding integral equations, Eqs. (49) and (5),
become inequivalent once the cluster model ap-

Using the cluster model approximation to G,(1)
shown in Eq. (19) and the cluster model approxi-
mation to Ra&el) shown in Eq. (5) causes Eq. (51}to
become identical with the RGM equation, Eq. (8}.
Neither of the two equations, Eq. (50) or Eq.
(53), is identical with the Schrodinger equation,
Eq. (2a), however.

Since



1362 R. RAPHAEL, P. C. TANDY, AND %. TOBOCMAN 14

proximation is inserted for the Green's function
operator G (».

Finally, let us get the equations for the AKLCEF
wave function in the single partition case. Define
the wave function 4',"&L» with the help of Eq. (22}
and Eq. (48):

KL
e (1) e (1) a(1) e a(1)

1—~e(1)&e(1)&e Ge(1)

"l+ ( &G ()&
'+ T'.14'.&)) (56}

Thus we can let

KL 1
a(l) Ge (1)+e +e (1)Gn (1) a(l)

n(l) n "n(l) e(1) a(1) '

Operating on Eq. (57) with (E H&») -gives

KL 1 KL(E Ha, ()) a&1) +a Vu())+a(1) a(1)

Just as in the RQM case, the A cross sections
for the CM-ACEF correspond to the total cross
sections for elastic scattering for the states whose
wave functions are 4,(» and 4,(». However,
there is an important difference between the RQM
and the ACEF in this regard. The RQM integral

equation

Te = Ve(, )Ae(1)+ TeGe(, ) We(1) (16a)

used to calculate the scattering cross section is
derived from Eqs. (51), {4a), and (17). Thus it is
based on the assumption that 4',"(» equals the true
scattering wave function 4,(», solution of the
Schrodinger equation, Eq. (2a). Thus the RGM
assumes o~= og. The sIngle partItIon ACEF, on
the other hand, is based on integral equations
which are exact, except for the r estriction to a
single partition. The ACEF does not require 4', (1)
or 4,(» to be the solution of the Schrodinger equa-
tion. Thus o~ has no special significance for the
ACEF. 4,(» and 4,(» are just certain auxiliary
functions which happen to produce the same result
as 4,(» when substituted into the expression for
the transition amplitude Eq. (4a}.

Our result that o~ is much smaller than o~ for
the CM-AKLCEF is very interesting with respect
to another facet of many-body scattering theory.
There is an alternative approach we could have
used to evaluate the CM-AKLCEF driving term
Z, which appears in Eqs. (24) and (25):

~t ~

~,(k, k)-{&t}«»e ~
~

V~&»&.&»Ã, 'G. &»~«»G
Ne

= g (-1) ' {&t},&»e'" '"
~

V &»~ &»X, G &»G
n=l

We could ha, ve made use of the results of the anal-
ysis of Lippmann' and set

G ( }G &„} ~&t} („)e' " ")=6„,~&t} ( )e' ). (60)

This would then give the result
~Q I»

~ (k' k) ={0 (
)e'" '

~V ( &+ ()&iV

=N 'U, (k' }k)

as an alternative to Eq. (27). Equation (24) for the
CM-AKLCEF transition amplitude would then have
become

U+ / Ug

Since the driving term in this equation is the
same as the interaction in the kernel, the cross
section o~ would have been identical with o~. We
have found that o~ is much smaller than o~. That
means that using Eq. (27) for the driving term of
the CM-AKI CEF integral equation for the transi-
tion amplitude gives a much larger cross section
than using Eq. (61). We are forced to conclude that
the Lippmann prescription for evaluating

G &»G«„& '&t},&„& exp{ik r«„&}is not valid. If it were
valid, we would have found that o~= o~ for the
CM-AKLCEF.

VI. COMPARISON KITH THE BORN APPROXIMATION

Having solved the RGM equation and the CM-
ACEF equations for two examples of 'n+'z scatter-
ing, it is of some interest to compare the resultant
cross sections with those that are given by the
Born approximation. One is always curious to see
how well this widely used approximation compares
with the result of the more arduous exact cluster
model calculation.

Two types of Born approximation calculation
were done. First of all, the Born approximation
to the T matrix was done by setting 2, = U, for the
RGM and CM-AKLCEF and setting K, =Z, for the
CM-AKLCEF. Secondly, the Born approximation
to the A matrix was done by setting 3:,=M, for the
RQM, ~, = U, for the CM-ABKCEF, and JCr = U, for
the CM-AKLCEF. This K matrix is then used in
the Heitler equation to calculate the T matrix.

The results of the Born approximation calcula-
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FIG. 3. Total cross section for dineutron-dineutron scattering calculated by means of the Born approximation to the
resonating group method (RGM) or cluster model-antisymmetrized coupled equations formalism (CM-ACEF) T matrix
[T(BORN)], or calculated by means of the Born approximation to the RGM K matrix [BGM-K(BORN)] or CM-ACE F K
matrix [CM-ACKF-K(BORN)]. The Brink and Boeker Bl bvo-body force is used.

tions of the total cross section for 'n+'n scatter-
ing using the Brink and Boeker' 81 force are
shown in Fig. 3. The two forms of the Born ap-
proximation for the T matrix give results that are
essentially identical. The two CM-ACEF Born ap-
proximation to the K-matrix calculations also give
indistinguishable results for the total cross sec-
tion. The Born approximation is seen to work
quite well for this case at least for the CM-ACEF.
For the CM-ACEF the K matrix Born is less than
3/0 in error while the T-matrix Born error is al-
ways less than 19/0. For the RQM the E-matrix
Born approximation error is greater than 43/0 at
some energies while the T-matrix Born approxi-
mation is still worse.

The calculations were repeated with a reversal
of the sign of the Majorana exchange term in the
two-body force. The results are shown in Fig. 4.
%'ith the strength of the two-body interaction thus
increased we find that the Born approximation
works less well. The overall energy dependence
is reproduced except for the sharp peak in the

RGM cross section. The two forms of the T-ma-
trix Born approximation again lead to the same
cross section. In the vicinity of about 40 MeV the
A-matrix Born approximation is in error by about
8/o for the CM-ABKCEF and by about 15/o for the
CM-AKLCEF.

The definition we have chosen for the K matrix
was motivated by the desire to simplify the calcu-
lations for the transition amplitude. Qur K matrix
is different from that used by Kouri, Levin, and
Sandhas" for the coupled equations formalism. In
particular, we cannot show that any real approxi-
mation to our K matrix will necessarily lead to a
unitary collision matrix. Nevertheless, we find
that making the Born approximation for our K ma-
trix does give a great improvement over the same
approximation for the T matrix.

VII. MULTIPARTITION AND COMPOUND

NUCLEUS EFFECTS

VVe have seen how the CM-ACEF provides an al-
ternative to the ROM which is based on the same
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FIG. 4. Same as Fig. 3 except that the two-body B1 force potential has had the sign of the Majorana exchange poten-

tial reversed.

approximations but leads to equations that are
somewhat simpler in form. The discussion was
limited to the single channel case. When the more
realistic multipartition case is considered, then
the greater simplicity of the CM-ACE becomes
even more striking.

First let us discuss multichannel effects. Instead
of limiting ourselves to a single channel as here-
tofore, we now include several channels belonging
to the same partition. We thus allow for inelastic
as well as elastic scattering. The cluster model
approximation to the RGM function then becomes

&...(k', k)

= PJ, (k', k)

1 ', 9;.,„(k', p)2m M, „,(p, k)

(64)

The same sort of generalization of the CM-ACEF
equations is achieved by replacing Eq. (19) by

I g, .e'"'"&)2m (Q,,e'"
5'(k.' —k'+ i~)

A O', =A (63) (66)
a'

We have dropped the (1) from the subscripts a and
& but its presence, which has the effect of exclud-
ing physically indistinguishable partitions, will be
understood. Using Eq. (63) in place of Eq. (5)
leads to a set of coupled integral equations for the
elastic and inelastic transition amplitudes. Thus
in place of Eq. (16}we find

A 4,= Q A~ Q Q~P~, .
8 b

Substituting this into Eq. (7) leads to

(66}

Next we consider the multichannel case where
rearrangement scattering is permitted as well as
inelastic and elastic scattering. The cluster model
approximation to the RGM wave function is taken to
be
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C c

in place of Eq. (11). In Eq. (6V)

x,.(&)=(2,) J d ~e

~„(k,k') ={y,e'" "8~ IV„~ y,e'"'"),

(67}

X„(lk,k') = {y,e" 't ~E —H„~ y,e'" '«).
Thus in the multipartition generalization the RGM picks up the nonorthogonality interaction (E- II„) in

addition to the ROM interaction W„. Finally, in place of Eq. (16) we find

1 „, r„(k', p)2m„[~„(p,k) - (I - 6„.)IV,.(p, k)j
C

(VO)

where

p„(k', k) = {y,e'"""s
~
v, a.

~
y, e'"'~)

To derive the multipartition form of the CM-ABKCEF we start with the multipartition generalization of
Eq. (18) given in Ref. (4):

where W is a numerical matrix called the channel coupling array. The transition amplitude is related to
the transition operator T~ by

v;,{k',k}= g&,e'"""s~r~
~
y,e'"'~). (7

Substituting the channel state expansion for G„, Eq. (65), into Eq. (72), and using Eq. {74) gives

1
~ (k k)=~ ~ (k k)IV- +~IV- IV iV- — d'*

ba l 8 ba & a h'(lr ' p'+ '
)y C C

(75)

v,.(k, k}={@,e"'~[~.v. [ @."' -). (V6}

{77)

For the multipartition form of the CM-AKLCEF one starts with the multipartition generalization of Eq.
(22) found in Ref. (3),

I' =IV / VP +IV~ IG[IV ~+G ~ +T ]

Combining this with Eqs. (65) and (74) gives

3

(k k)=I N ''~,'Iv+ '~' Q (
— d', ', ' ', ' [x (pf)+r, (pk)j,

7' c C

(79)
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Equations (Vl), {V5), and (78) are our multiparti
tion forms of the RGM, CM-ABKCEF, and CM-
AKI CEF. The ACEF equations axe seen to be
simpler than the RGM equation in that only direct
and exchange matrix elements of the xesidual in-
teractions V, V~, .. . are required whereas the
ROM requires the matrix elements of E-H,
E -Hz, . . . as well. The approximation on which
these treatments are based results fro~.x the re-
striction of the range of the channel indices
a, 5, c, . . . to a finite number of values. If the
sums over channels |." included all possible channel
states, then Eqs. (Vl), (75), and (78) would be
exact.

Although extending the range of the channel sums
causes Eq. (Vl) to become exact in the sense that
it is based on a formal solution of the exact Schro-
dinger equation, it creates a situation in which
Eq. {Vl) becomes invalid as an integral equation
because the kernel ceases to be connected. The
ACEF equations, Eqs. (75) and (V8), do not suffer
from this shortcoming.

The multipartition reaction formalisrns presented
above represent a generalization of the coupled
channels reaction formalism to include exchange
effects. These formalisms provide a basis for a
complete description of dixect interaction process-
es in nuclear xeactions. To include compound nu-
cleus effects it would be necessary to extend the
range of the channel states sums by a large amount
beyond those channels which are open. A more at-
tractive alternative for attempting to include com-
pound nucleus effects is to regard the truncation of
the channel state sums in the representations of
the Green's function operators G, G~, .. . as the
action of a Feshbach projection operator. Then
the results of the solution of the resulting finite
set of coupled integral equations could be used as
input to a Feshbach formalism" for compound nu-
cleus effects. We will sketch below how this may
be done. Our method will be somewhat different
from that published earlier" in that we apply the
formalism to the K matrix rather than directly to
the T matrix.

Let us transcribe our coupled integral equations
into symbolic form

7'= U+ &ge (RGM),

v'=~+ &g~ {CM-ABKCEF),

9"='JJg{X+7) (CM-AKLCEF) .

(81)

(82)

(83)

All quantities in the above equations are to be re-
garded as matrices in channel space and operatox's
in momentum space. The associated E matrices
are defined by

x=e+eg"'x (RGM),

X ='u)+ 'Ng(0) X (CM-ABKCEF),

X = 'JJ+ '((g( 'X (CM-AKLCE F) .

(85)

(86)

The Heltler equations give us the T matrix once
the K matrix is known. Since all the E-matrix
equations have the same structure, we continue the
discussion using the ROM equation. We rewrite
Eq. (84) to read

x = 6+ eg'(0)~x (91)

P is a projection operator which explicitly indicates
that the channel state sums in g"' have been trun-
cated. The circumflex over g indicates that it is
the clustex model approximation to the exact X
which is the solution to Eq. (84).

The relationship between X and 3,'is given by

x = (1+xg"'P)(e+ eg"'x) —xeg"'Px

= x+xg"'(1 —P)x
=x+xg"'qx.

The formal solution to Eq. (92) is

x=(1-xg"'Q) 'x

=x+x(l —g 'Qx) 'g' 'Qx (93)

By making substitutions of Eq. (91) into Eq. (93) the
following expression may be found:

X X+ {Xg&0&P+1)e[l g&0&qe g(0&qeg&0&pe

g(o&qeg&0)PX (o)pe]-&

x g"'qe[1+g&')Px]. (94)

In these expressions the quantity

(1 g&0)qx)-&g(0)q [1 g(0)qe g&0&qeg(0)pe

g(0)qeg(0&PX (0)pe]-& (0&q

is to be evaluated in the basis of those states pro-
jected onto by @=1—P. This set of states is then
to be approximated by some basis that is deemed
to provide a good representation of the states of the
compound nucleus that are important for the nu-
clear reaction being treated. We will refex to

g=g —&m&.(0)

Then following the procedure that was used in Eq.
(38) we get the following generalized Heitler equa-
tions:

7 = V(1+g(0)X) (vr-~X (RGM), (88)

7='u(l+ g(0)X) —(',&(&&X (CM-ABKCEF), (89)

7 = (1+Xg&'&)ygX- &vX~V' (CM-AKLCEF) .
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these states as compound nucleus states. The
states projected onto by I' are the channel states.

Equation (91) for X is solved in the channel state
basis. The advantage of using Eq. (94) instead of
Eq. (93) to calculate X from X is that in Eq. {94)
only matrix elements of 3'. with respect to channel
states are required, and these are just what is
provided by solvlllg Eq. (91). In addition to these
matrix elements one must calculate the matrix
elements of 8 in the compound nucleus basis and
the matrix elements of 8 connecting compound nu-
cleus and channel states.

VIII. SUMMARY AND CONCLUSIONS

When the cluster model approximation is made
for the partition Green's function operator C in
the antisymmetrized coupled equations formalism
{ACEF), a many-body scattering formalism results
which appears to have the same physical content
as the resonating group method (RGM). The re-
sulting cluster model-antisymmetr ized coupled
equations formalism {CM-ACEF) yields an integral
equation for the transition amplitude in which the
driving term and the interaction factor in the kex-
nel are nonsymmetric, energy independent func-
tions which differ from each other.

We compared the RGM and the CM-ACEF by ap-
plying them to a one-channel analysis of 'n-'g scat-
tering. The RGM and the CM-ACEF were found to
give quite similar results for the total elastic
cross section. We noted that the RGM wave func-
tion has rather poor quality since the transition
amplitude that one gets by calculating the particle
flux from the asymptotic part of the wave function
differs considerably from the transition amplitude
&ne gets by using the wave function to calculate

the matrix element of the 'n-'n interaction with re-
spect to the final state.

The Born approximation to the RGM and the
CM-ACEF was compared with the exact solutions
of the RGM and CM-ACEF equations. The Born
approximation worked better for the CM-ACEF
than for the RGM. When the Born approximation
was made for the X matrix instead of for the T
matrix, the results were especially good.

Our numerical results showed that the relation

when G~= (E —H~+ie) ' and G~ '4, =is@„which has
been commonly used in many-body reaction theory,
is not valid.

Finally, we showed how the CM-ACEF may be
extended so as to treat multipartition and compound
nucleus formation effects.

We conclude that the CM-ACEF is an attractive
alternative to the RGM. The physical approxima-
tion basis is the same for the two formalisms,
while the CM-ACEF equations are somewhat sim-
pler than those of the RGM.¹teadded in Proof: Our numerical results for
'n-'n scattering are quite different from those of
Giraud eI, al. ' although our parameters are the
same as theirs. Dr. Giraud has suggested that the
difference stems from the fact that in our calcula-
tion the 'n binding energy was chosen to be the ex-
pectation value of the two-nucleon Hamil. tonian
with respect to the approximate internal motion
wave function P(r} of Eq. (29b). Giraud et al. used
a different value for the 'n binding energy.

The authors are grateful to E. F. Redish for
much help and advice and to K. I . Kowalski for
helpful discussions

U,(y, y) = +{[1 0.5n, ]f!(P',u} [0.5+0.5n, ]J,'(k', k) —[0.5- n,.]E,'(k', k)), (Al)

~f u (P+ 2l ', ) ' (n'+ u")(5'+ 2i )2
(A2)

(A3)

64+~'p. ',.b39~ 0'b' k"b2 2 p.', + b

(2 '+35')' ""'"p 4 4 2 '+35'

v, (u', f)=U, (u, u ),
iaaf, (u', u) = v,(n', u)+ iv!,(a', e),

(A5}

(A r}
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~,(k, k) = 6 2(2v)'"b& [k'- k" - k'+ 3b- ]2 ex
2m

64&& 'p b S [0.5 —n ] k b' k"b' 2p&+b
(2p2 + 3b2)~&2 4 4 2p~+ 3b2

j=l j

+
32» ~'p'b'$ [0.5 —n ] . b'(k" + k')j

(2&2+ 2b2)3g2 P 4
j=l j

(A8)

(A10)

Z (k&' k&)
= U, (k', k)+ + dPP'U&(k'&P)2m (A9)

a

Note that the interaction U„U„and Z, vanish for odd values l. Thus the CM-ACEF predicts only even-l
scattering. The same consequence follows from the presence of the Dirac 5 function term in M, shown in

Eq. (A7). Substituting Eqs. (A6) and (A7) into Eq. (32) gives

[1+(-1)']9 (k' k)=U (k' k)+ d
@2(k2 p2+ &e)

Thus for the even-l' partial waves the RGM partial wave transition amplitude is given by

1' (k' k)=0.5U (k' k)
1

d 2 ~&(k &P)m[U&(p&k)+ M&(P&k)]
k ~+& (A11)

The odd-l partial wave amplitudes are undetermined by these equations but we know from symmetry con-
siderations that they must be set equal to zero.
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