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Using 8 nonrclatlvistic flield theoretic fofInalism, 8 soluble model of scattering involving four identical spinlcss
particles is developed and solved numerically. In addition to the elementary "nucleon" (the n), two composite
particles meant to approximate the deuteron and triton are introduced with the couplings d+-+ n+ n and
I++a + n, By consistently excluding all particle-exchange contributions to the three-body sector, four-body
Integral cquatlons arc obtalncd foI thc two-to-two proccsscs: nf ~ nt, nf ~ dd as well as for dd ~ dd and
dd ~ nt. Numerical solutions of the equations are found to satisfy unitarity constraints above the two-, three-,
and four-body thresholds. The positions of the four-body bound states are obtained and a complete phase shift
calculation is performed. The sum of the total three- and four-body breakup cross sections predicted by the
model are displayed as a function of energy and the angular distributions for all 2~2 reactions are compared
with the four-nucleon data.

NUCLEAR REACTIONS Four-body pxoblem. Spinless model of the four-
nucleon System.

I. INTRODUCTION

Over the past several years, the general fea-
tures of the bound state and scattering properties
of the three-nucleon system have been success-
fully described by surprisingly simple potenti31
models of the two-nucleon interaction. ' This
success may be attributed to the long-range nature
of the underlying nucleon-exchange xnechanism
that lessens the need for a sophisticated two-
pax'ticle interaction. %hile it is reassuring that
the theoretical description of the three-nucleon
system 18 be1ng cax'x'1ed out, correctly, a disadvan-
tage of this lack of sensitivity is that two-nucleon
information is difficult to obtain from the three-
nucleon observables, If we shift our consideration
to the four-nucleon system, a more complicated
set, of exchange mechanisms should prevail, in-
volving both one-nucleon exchange and also corre-
lated as well as uncorrelated two-nucleon exchange.
It would be expected that in the four-nucleon sys-
tem these processes lead to an interaction of
shorter range and thus that the observables would
depend more sensitively on the two-particle force.
As evidence for this one could point to the large
binding energy of the n particle. In this paper we
introduce a soluble model of the four-nucleon sys-
texn in an attempt to study this question as well
as others.

Although formally correct integral equations
exist for the four-body problem, 3 theix complexity
is so great that no scattering solutions exist for a
realistic nucleon-nucleon interaction. Most of the
calculations that have Ween performed involve
bound states or threshold scattering' results and
the use of a separable two-nucleon interaction.

Bound state results fox' a Yukawa potential are
also available as well as scattering calculations
involving propagator approximations in the four-
body Equations.

In a recent paper' we introduced an exactly solu-
ble four-body model involving two paix's of identi-
cal particles and we now adapt this model to a
spinless version of the four-nucleon system. In
our previous work, restrictions on the interactions
allowed between the particles led to one-dimen-
sional four-body integral equations that are read-
ily solved numerically. This simplicity was
largely due to the lack of particle-exchange con-
tributions to the three-body sector of the model.
In our present px'oblem with four identical parti-
cles, all pairs are coupled by the same two-body
force and pax'ticle- exchange contributions are
present at the three-body level since the dynami-
cal equation is that of the Amado model, .' For the
four-nucleon system we find it necessary to insert
an approximation for the three-body amplitude by
introducing a quasiparticle with the coupling

d+ g and retain only direct-channel contributions
to nd elastic scattering. The resulting three-body
amplitude is separaMe and nd scattering proceeds
exclusively thx'ough the splnless f'. With this ap-
proximation we obtain four-body integral equations
fOX' the prOCeSSeS nt-nt and nt-dd 3S Well 3S fOr
dd- dd and dd- nt. After partial wave decomposi-
tion they reduce to single variable equations that
can be readily solved numerically. Although our
approximation involves the neglect of certain
classes of graphs, detailed numerical calcula-
tions have shown that the total cross sections ob-
tained from unitarity for 2-3 processes in the
three-body sector and for 2-3 and 2-4 processes
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in the four-body sector are non-negative and thus
we find that our three-body approximation leads to
no gross violation of unitarity.

In spite of the simplicity of the model and the
absence of spin, we were tempted to compare our
results with the four-nucleon data. The angular
distributions resulting from the exact solution of
our equations are capable of reproducing the data
within the same order of magnitude, particularly
at higher energies where the absence of spin is
less important. In nf, elastic scattering the cross
section presents a backward peak charaeteristie
of an exchange mechanism and the forward peak
is reasonably well reproduced. The position and
number of the four-body bound states have also
been obtained. For the maximum value of the
coupling constants two s-wave bound states are
found. By decreasing the coupling, the higher
bound state disappears and with a small variation
of the parameters of the model the n-particle
binding energy can be fitted.

In Sec. II we introduce the two- and three-body
amplitudes of the model. The four-body equations
for elastic and rearrangement processes are ob-
tained in Sec. III. In Sec. IV we present the re-
sults of the numerical calculations and in Sec. V
some discussion and conclusions are given.

II. TWO- AND THREE-BODY SCATTERING

In the two-body sector of the model, our inter-
action is the same as that in the Amado model.
We allow only the s-wave coupling d n+n as
depicted in Fig. 1. Elastic nn scattering proceeds
through the d and this process can be described in
terms of a non- relativistic unrenormalized Hamil-
tonian (8 =2m„=1)

Jf, = g k JV'(k)lV(k)+ g (-e,'"+ -.'k )D'(k)D(k)
k

(u)
+ ~ g f~(q)D'(Q)N(-, Q- q)N(2Q+ q)+ H. c.

4Q

d
( VPf'PAIPiPAJ'PiÃX )

+FJDr~)J88JJViii + + () () + ee

for bosons, q and Q are the relative and total mo-
menta of the two interacting particles, and &~" is
the bare binding energy of the d. The two-body
scattering amplitude resulting from (1) has been
graphically represented in Fig. 2(a) and has a
separable form in momentum space

(k'
~
T„„(E)

~
k) = A@4'fg(k) T~(E+ Eg)fg(k'),

where 7.„ is the d-particle propagator shown in
Fig. 2(b). The interaction is characterized by a
coupling constant y, and a vertex function f~(q) as
well as a wave function renormalization constant
Z~ that is allowed to take on the range of values
0&Z~&1. If Z~=1, the d is an elementary parti-
cle uncoupled to n+n, while if Z~= 0, a separable
potential model is obtained in which the d is a
bound state of two n's. The specific form of the
d-particle propagator and conversion to conven-
tional units are discussed in Appendix A.

If we move to the three-body sector with the in-
teraction generated by (1), nd scattering proceeds
by successive n exchanges and the scattering am-
plitude satisfies the integral equation shown pic-
torially in Fig. 3. In each partial wave E, the
equation reads

T,(k', k;E) =B,(k', k;E)

FIG. 2. (a) Graphical representation of the nn scatter-
ing amplitude. (b) First few terms in an expansion of the
d-particle propagator.

where N and D are annihilation operators suitable +, n'dn B,(k', n;E)2' 0

x r~(E+ c~- ,' n')T, (n, k;E—),

where B, is the single n-exchange Born term and

( V/XZ/CZAR!

d

FIG. l. Basic vertex for d e +g.

FIG. 3. Graphical representation of the integral equa-
tion for the nd nd amplitude (square) as described by
the Amado model.
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~~ is the d propagator. The predictions of this
three-body model involving the numerical solution
of (3) have been extensively discussed by Aaron,
Amado, and Yam. '

To proceed to the four-body problem with no
further approximation would lead to the numerical
difficulties inherent in multivariable integral
equations, so that we insert our three-body ap-
proximation at this point. We assume that the
three-body problem of interest contains one bound
state and that the nd scattering amplitude is dom-
inated by the s-wave pole. We therefore introduce
an extra spinless particle t with the s-wave cou-
pling t d+nas shown in Fig. 4. In analogy to the
previous case, we can generate this process with
the following interaction Hamiltonian:

H&~-—yI"~ P f,(q)T'(Q)D(Q-,'—q)N(Q —,+q)+ H. c. . (4)
4Q

If we were to allow both interactions d n+n and
t-d+n to all orders in each coupling, we could
still obtain an amplitude for nd -nd in closed
form" which consists of two parts. The first
being nd scattering not involving the t which is
just the process shown in Fig. 3 and the second
part involves all graphs that proceed through an
intermediate t. Our aim is not to study this more
general amplitude, but to formulate a simplified
three-body amplitude for use in the four-body
sector of the model. We construct our approxi-
mate amplitude by considering the subclass of
graphs shown in Fig. 5(a) that involve intermediate
t's as well as nd bubbles in intermediate states.
The nd scattering now proceeds exclusively in s
wave through the t and the three-body amplitude
has a separable form in momentum space

+ + Q'}(~)[Q t ~ ~ ~

(b)
FIG. 5. (a) Graphical representation of the approxi-

mate amplitude for nd —nd. (b) First few terms in an
expansion of the approximate t-particle propagator.

)80—

I I I I i I I I I ) I I I I

nd ~ n4

2 =0

Z, . Since three-body intermediate states have
been included in the propagator, our amplitude
allows the process nd-nnn and therefore con-
tains inelastic effects. We could also disallow
this possibility by taking Z, = 1 (elementary d). If
in addition we take Z, = 0, we would then have a
model involving an effective separable potential
between n and d with no breakup possible. Typical
results obtained by the numerical evaluation of
Eq. (5) are displayed in Fig. 6 where we show the

(k'
~
T„,(E) ~k) =y, 'f, (k')&, (E+ e,)f,(k), (5)

where 7, is the t-particle propagator depicted in
Fig. 5(b) whose construction will be left for Ap-
pendix B. The amplitude T„~ is characterized by
a coupling constant y„a vertex function f,(k), as
well as a wave function renormalization constant

I.Q
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FIG. 4. Basic vertex for t d+n.
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FIG, 6. 5 and q versus E„resulting from the solution
of Eq. (5) for nd nd with Z& ——Z& ——0 and P„=3.04.
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elastic s-wave nd phase shift 5 and the inelastic
pax'ameter q as functions of energy. As suggested
by Levinson's theorem we find that the-real part
of the s-w3ve phase shift 5 decays monotonieally
from n to zero for Z~=Z, =O. The inelastic pa-
rameter q has the value unity below the three-body
threshold and remains between zero and one above
the breakup threshold. For sufficiently high ener-
gy, g returns to unity.

It may appear surprising that no unitarity viola-
tion was observed in our three-body amplitude
even though certain classes of graphs mere ne-
glected. In Fig. 7 we indicate some of the omitted
contributions and these include n-particle ex-
change leading to t d+n vertex corrections, as
mell as n-particle exchange inside the n-d bubble.
Also omitted were all processes in which nd scat-
tering proceeds by multiple n. exchange not in-
volving the t as shown in Fig. 3. The complete
mixing of the three n's implied by their identity is
dynamically carried out by these n-particle-ex-
change contributions and me are thereby breaking
the complete Bose symmetry of the system by
neglecting these gxaphs. In our approximate am-
plitude, as graphically depicted in Fig. 5(a), the
intermediate states are such that the two n's in
the d bubbles are effectively uncoupled from the
remaining n and thus the final n emerging from
nd-nd is precisely the same n that entered ini-
ti.ally and no replacement by the n's in the d is
possible. The initial or final n particle is there-
fore not being treated on an equal footing with the
n's in the d and instead could be considered as a
distinguishable particle (the n') We fi.nd that the
total 2-3 cross section obtained from the optical
theorem, is in fact identical to that predicted by
a model in which we study n'd- n'd and n'd- n'nn

in the presence of the interactions d —n+n and

+ ~ ~ 0

n

+ ~ ~ + ~ e ~

n
d

(b)
FIG. 7. (a} First fear terms contributing to the nd ver-

tex correction. Only the first terxn of the series was re-
tained in our approximation. g} Particle-exchange dia-
grams contributing to the t-particle propagator that have
been omitted from consideration.

d+n'. ' This is an exact model since none of
the omitted processes noted above is allowed. If
we choose identical dynamic and kinematic param-
eters for both models, then the amplitude for
n'd-n'd is functionally equal to the amplitude
given in Eq. (5) for nd-nd. Thus we see that our
approximate three-body model does not violate
unitarity because it is isomorphic to an exact and
thexefore unitary model.

III. FOUR-BODY SCATTERING

Having intx'odueed an explicit field coupled to
n+d that led to a thx ee-body amplitude in a sepa-
rable form, we now proceed to the four-body sec-
tor and consider all two-particle-to-two-particle
amplitudes. The possible reactions are nest —nt
and nt-dd as well as dd-dd and dd-nt. The
simplifying assumption adopted in the three-body
sector of the model is carried through in the four-
body sector; that is, virtual nd scattering can
occur only thx"ough the intermediate t. The four-
body equations that we obtain here are therefore
similar to the ones developed in a previous paper, '
although some changes are necessary due to the
identity of the four particles.

We want our four-body equations for the re-
quired processes to be of the Lipmann-Sehwinger
type where we have the product of well identified
terms, that is, Born terms, intermediate propa-
gators, and T matr'ices. As me have previously
noted, ' the presence of quasiparticle- quasiparticle
states as off-shell external lines makes it diffi-
cult to separate the Born terms from the inter-
mediate propagators. We will therefore construct
our four-body equations in such a may that the
quasipartiele-quasiparticle state dd never appears
as an off-shell external line. Concentrating first
on the reactions initiated by the nt state, a gr3phi-
cal representation of the integral equation for the
nt-nt amplitude is illustrated in Fig. 8(a). The
d-particle-exchange Horn term and three box am-
plitudes are the inhomogeneous terms in the equa-
tion. Letting T, represent the full nt-nt ampli-
tude, the specific form of the integral equation is

&k'
I T.(E) Ik& = &k'IE(E) lk&

6Pn
+ ",&k'IE(E) ln)

x r, (E+ e, ——,'n')&nl T,(E) Ik), (8)

&k'IE(E& lk& = &k'IB.(E& Ik&+ &k'I&.«& Ik&

+&k Io,(E) Ik&.

B,(E) corresponds to the d-particle-exchange
Born term, C3, (E) to the box amplitude depicted
first in Fig. 8(b), and Cl, (E) to the sum of the last
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FIG. 9. Graphical representation of the integral rela-
tion expressing the nt dd amplitude (hexagon) in terms
of the half-on-shell nt nt amplitude (circle).
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FIG. 8. Graphical representation of the integral equa-
tion for the nt nt amplitude (circle).

two box amplitudes. The presence of two types
of box amplitudes as inhomogeneous terms in the
equation is due to the identity of the particles in
the intermediate quasiparticle-quasiparticle state.
Both Q, (E) and Cl, (E) correspond to two-step
processes in which an n particle is exchanged
twice, the difference depending on whether the
second exchange originates from the lower or
from the upper d particle. In the latter case two
situations can arise depending on whether the
lower d is formed before or after the breakup of
the upper d. While the Born term B,(E) describes
the exchange of two correlated and fully inter-
acting particles, the box amplitudes involve the
exchange of two uncorrelated particles in a two-
step process. The importance of these two-step
processes to nt elastic scattering will be discussed
later in Sec. IV. The solution of Eq. (6) also pro-
vides a means of obtaining the rearrangement am-
plitude for nt -dd. Graphically this amplitude is
represented in Fig. 9 where we see that it may be
written in terms of an integral over the half-off-
shell elastic amplitude T, (E). Letting T, be the
amplitude for nt-dd, the precise form of this re-

where B,(E) is the single-particle-exchange Born
term connecting nt to dd.

Having written the equations for the required
2-2 amplitudes initiated by the nt state, we must
now calculate the Born terms B,(E) and B,(E) as
well as the box amplitudes, (E) and O, (E). B,(E)
is the simplest and we only quote the result:

y fq(k —k3)f/(k —2k )(k'I'(E)Ik&=~' E -'k" (k k)
f,(k'+ P)f/(k+ gk')

E+ e/- 2k" —(k+k')' —k

(6)

where k and k' are the initial and final center of
mass momenta, respectively. The presence of a
direct and an exchange term in B,(E) is due to the
identity of the particles in the dd state. The calcu-
lation of the d-particle-exchange Born term
B,(E) is also straightforward and the result is

(k' IB,(E)
I
k& =

y& f&(k'+ 3k)7/(U)f, (k+ ~k'),

U = E+ c,—k —
& (k+ k')' —k",

where k and k' are the center of mass momenta of
the initial and final state. v, is the full d-particle
propagator and thus B,(E) contains both the d
particle-exchange pole as well as the n-n contin-
uum contribution.

The remaining task is to construct the box am-
plitudes C3, (E) and Cl, (E), and this is done by a
convolution procedure that has been discussed
elsewhere. ' We therefore will present here just
the final results:

d'k" y,y, f,(k" + k—,)f„(k+—,k") y/y, f,(k" + k"—,)f/(k' s —,k")
(2m)' E+ e —-k"' —(k+ k")' —k' ' ' ' ' E+ e, —2k"' —(k'+ k")' —k" ' (10)

where the plus sign corresponds to U, (E) and the minus sign to Cl, (E). The G, and G, propagators are de-
fined as
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G, (k, k, k'; E) = r (Y)— dx Im[r, (x+ e,)] r, (Y e„—x)
(Y- U- e~- x) (Y —U' —e~ —x) '

G, (k, k", k', E) = „r~(Y)+ „r~(U")r~(Y —U )
Y —U" (Y —U)(Y —U )

dx
(Y —U)(Y —U") " 1m[re(x+ eq)]rq(Y —eq —x)v, (x+e„- U')(Y U- e, —x) ' (12)

where

V = E+ e„+e~- &k"' —&k"',

Y —U= E+ e~ —2k" —(k" + k)' —k',
Y- U' =E+ e~ —~k"' —(k" + k')' —k",
Y- U~ =E+ e~- ~2k —(k" —k') —k" .

(13)

Both propagators have a very complicated analytic structure since they contain two-, three-, and four-
body effects resulting from the propagation of two quasiparticles.

At this point we have completed the construction of the dynamical equations for the 2-2 reactions ini-
tiated by the nt state. We now present the equations for an incoming dd state. Since the dd state is a
quasiparticle-quasiparticle state we cannot establish an integral equation for the elastic scattering ampli-
tude dd-dd as we did for nt-nt, because this would require dealing with the quasiparticle-quasiparticle
state as an off-shell external line. We first obtain an integral equation for dd-nt and the elastic amplitude
is then calculated by performing an integration over the half-off-shell amplitude for dd-nt. Naming T, the
amplitude for dd-nt, the specific form of the integral equation is

3

(k'
~

T (E) (k) =(k' ~B (E) ~k) y (k'(B(E) ~n)rg(E+ fg ——n )(n) T (E) ~k), (14)

where B,(E) is given by Eq. (8) and B(E) is the sum of B,(E), Q, (E), and, (E) given by Eqs. (9) and (10).
Finally, letting T, be the amplitude for dd-dd, the precise form of the integral relation between T, and

T4 1S

3
(k'

(
T (E)

~
k) =

3
(k'

( B,(E)
~

n ) r, (E+ e, ——,
' n') (n ( T, (E)

~
k) . (15)

This terminates the description of our four-body
equations for four identical spinless particles.

IV. RESULTS

As was previously pointed out it is our aim to
solve on a computer the equations proposed in
Sec. III for elastic and rearrangement scattering,
to study the results as a function of the param-
eters of the model, and ultimately to apply it to
the four-nucleon system. Our integral equations
contain one vector variable in intermediate states
and reduce to single variable equations following
partial wave analyses. The singularity structure
of the Born terms and box diagrams, though more
complicated, is similar to that encountered in the
three-body problem and the usual contour rotation
method, " together with matrix inversion, has been
used. The numerical calculations are straight-
forward but lengthy mainly due to the complicated
analytic structure of the box amplitudes. This
time restriction severely limited the study of the
model as a function of the parameters, particu-

I

larly in the scattering region. Using a 16 point
integral equation mesh, the IBM 370/158 compu-
ter takes approximately 17 min to solve the equa-
tions for the three independent amplitudes in six
partial waves.

The parametrization of the model is discussed
in greater detail in Appendixes. The n-n inter-
action proceeds through the d and is characterized
by three independent parameters: the binding en-
ergy of the d particle &~, the wave function renor-
malization constant Z„, and P~ the range param-
eter of the vertex function f~(q). The n dinter--
action proceeds exclusively through the t and is
also characterized by another set of three param-
eters: &„Z„and P, . We have fixed &„and &„
respectively, at the deuteron and triton binding
energies and in our units this corresponds to
&„=0.5 and &, = 1.9047.

A. Bound states

Here we examine the position and number of
bound states by obtaining the zeros of the
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E l asti c Threshol d ~'
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'

l

Fredholm determinant D, (E) of Eq. (6) or (14). A

zero of D, (E) below any scattering threshold is
taken to imply a, four-body bound state at '.hat en-

ergy. %'e find such zeros only for l = 0 and in Fig.
10 we display D,(E) versus E for various choices
of Z„with Z, =O and P„=P,=4.0. For Z„=O we
also present the results for D, (E) and D, (E). Any

variation of Z„away from zero weakens the two-

body n-n interaction and this results in a lower
four-body binding energy. In the limit of Z~= I,
that is, no n-n interaction, we still obtain a bound
state as a consequence of the fieM theoretic nature
of the model where an elementary d can still in-
teract with an n even in the absence of any n-e
coupling. If we increase Z, away from zero, the
n-d intera, ction also becomes weaker and a lower
binding energy for the four-body system is also
obta, ined. In the limit of both Z„and Z, equal. to
zero, we encountex' two s-wave four-body bound
states. The effect of varying both Z~ and Z, on the
s-wave bound states is shown in Fig. 1j. for fixed
P~= 9,=4.0. The upper bound state quickly dis-
appears either by vaxying Z~ or Z, away from
zero. For the maxixnuxn value of the couplings
(Zd= Z, =O) the ground state binding energy is 580
MeV and the excited state is bound by i3.6 MeV.
The value we find for the binding energy of the
four-body ground state is extremely unrealistic
not only compared to the e-particle binding ener-
gy but also with respect to the values that have
been obtained in previous calculations. ' Such an
effect in our model results from the kernel of the

II I I I I I I I
I

II~ Elastic Threshold
I

I I I I I I II[ I

FIG. 11. Four-body binding energy versus Z t for P&

=P& =4.0 and several values of Z~. The energy units are
the saxne as in Fig. 10.

integral equations becoming independent of energy
in the limit of large E for Z~ = Z, = 0. When Z„=0,
the d-exchange Born term loses its energy depen-
dence at la.rge E and sixnilarly if Z, = 0, v; re-
duces to a constant for large E. This behavior
x'esults in a very slow convergence of the Fred-
holm determinant to unity as E-- ~ leading to an
anomalously large ground state binding energy.
%e should note, however, that if the t -nd vertex
corrections were included properly, the dressed
vertex function would be energy dependent and
presumably cure these difficulties. If Z~ or Z, are
changed away from zero, the a-particle binding
energy can be fitted with a small adjustment of
parameters. In fact, with Zg = Zg = 0.2, p~ = 2.12~
and P, = 5.0 the four-body ground state becomes
28.4 MeV and no excited state is present.

The possible reactions and their energy thres-
holds are listed in TaMe I for the nt initial state.
The numerical solution of the equations (6) and

(7) for nf -nt and nt -dd yields the real and imag
inary parts of the T matrix from which phase
shifts and associated quantities can be constructed.

I l I I I I l

-200 - f 00 -50 -20
E

g =0, Zd=o.
ll I I I I I

-I 0 -5

TABI E I. List of all possible reactions and their en-
ergy threshold for an nt initial state. The energy units
axe such that the binding energy of the deuteron is &~ = 0.5
and h2 = 2m„= 1 (see Appendix A).

FIG. 10. Four-body Fxedholm determinant Do(E) (solid
line) versus E for P& ——P&

——4.0, Z&
——0, and several values

of Z„. The dashed line and the dash-dotted line represent
D2(E) and D&(E), respectively, for the same set of param-
etexs and Zz —-0. The energy units are such that the bind-
ing energy of the deutex'on is &&=0.5 Knd K = 2M„= 1 (see
Appendix A).

Reaction Threshold

E = —1.9047
E =-1.0
E=-0.5
E=0
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FIG. 14. Total cross sections versus E„ for processes
initiated by nt with Zd ——Z] ——0 and Pz

——P] ——4.0.

tions, but it is reassuring that we can reproduce
such data. within the same order of magnitude.

In spite of the absence of spin and isospin we
will also compare our results for the differential
cross sections with the four-nucleon data. Both
&~ and &, have already been fixed at the deuteron
and triton binding energies. The range parameter
P, of the two-body vertex function was fixed at
3.04 which with Z~= 0 makes the two-body results
arising from the solution of Eq. l2) fit the triplet
scattering length for nucleon-nucleon scattering.
With Z, =O and P, =7.0, the nd phase shift calcula-
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FIG. 16. Angular distribution for nt- nt at E„=13.6
MeV with Z„=Z, = 0, P„=3.04, and P, = 7.0. The solid
line results from the exact solution of Eq. (6) and the
dash-dotted line the result one obtains when only d-par-
ticle exchange is included. The crosses are experimen-
tal points from Ref. 14.
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FIG. 17. Angular distribution for nt —dd at E„=13.6
MeV with Zd=Z, =O, P„=3.04, and two valises of P, . The
crosses are experimental points from Ref. 14.
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tion resulting from the solution of Eq. (5) gives a
reasonably good fit to the J= &, l =0 neutron-
deuteron phase shift analyses. " In Figs. 16-18
we display a few results for the elastic and re-
arrangement differential cross sections for ener-
gies above the four-body threshold. In Fig. 16,
we show two results. The solid line represents
the elastic differential cross section for nt-nt
resulting from the full scattering amplitude as
described by Eq. (16) and the dashed line is the
cross section one would obtain if only d-particle
exchange was present. The difference between the
two results gives a clear indication of the impor-
tance of two-step processes. Our calculation for
nt-nt and nt -dd seems to fit the data much better
than for dd elastic scattering. Only by introducing
spin and isospin corrections to our model can we
know if the discrepancies obtained are due to the
approximate nature of our three-body amplitude
or to the absence of Pauli exclusion effects. The
results seem nevertheless encouraging enough to
stimulate more exact calculations where both spin
and isospin would be included.

V. DISCUSSION

In the previous sections a model four-body
problem was introduced and its numerical predic-

c.m. Angle ( deg }
FIG. 18. Angular distribution for dd dd at E&—- 12.1

MeV with Zd=Z, =O, p~=3.04, and p, =7.0. The crosses
are experimental points from Ref. 15.

tions were examined for a system simulating four
nucleons. The four-body equations described in
Sec. III were exactly solved but not all possible
graphs consistent with both d —n+ n and t d+ n in-
teractions were included. A few of the simplest
omitted diagrams are shown in Fig. 19. In dd
scattering we expect that the graphs depicted in

Fig. 19(b) may be important since the deuteron is
so loosely bound. The absence of these contribu-
tions may account for the poor results obtained
above for dd-dd but spin effects may also be im-
portant in this reaction.

With the omission of so many graphs in the
model, the lack of unitarity violation in our nu-
merical results may be considered surprising. In
Sec. II we outlined an argument for understanding
the lack of unitarity violation in the three-body
sector, and the argument may be suitably gener-
alized to the four-body case. We consider a more
general four-body model containing a sufficient
number of nonidentical particles so that the ne-
glected graphs noted above do not appear. A suit-
able model involves two pairs of identical parti-
cles n and n' and the couplings n+n-d and
n'+n' —d' as well as n'+d —t and n+d' —t'. The
2-2 reactions initiated by nt' are then nt'-nt',
nt'-n't, and nt'-dd'. Since there are no particle
exchanges present in the three-body sector, no
vertex corrections or other such complications
arise and the model is exact and analogous to
those discussed in our previous work. ' In this
primed model, the Bose symmetry is included
only in pairs and is absent in three- or four-
particle states. If we now consider the limit of
this model as n'-n, d'- d, and t'- t, the model
solved in the previous sections is recovered. We
expect that the 2-3 and 2-4 cross sections ob-
tained in Sec. IV to be in fact identical to the pre-
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dictions of a primed model so chosen that the
dynamic and kinematic parameters of the primed
and unprimed particles are the same. This argu-
ment is analogous to that given in the three-body
sector and again points out the lack of complete
Bose symmetry introduced by our approximation.

As was previously pointed out, nd scattering in
the model proceeds exclusively in s wave through
the t. This may be in fact a serious shortcoming
of the model since it is known that higher partial
waves play an important role in neutron-deuteron
scattering, even at low energies. At the present
time we have no way to estimate their importance
in the four-body sector, although at the expense
of simplicity and computer time, we could have
generalized the present model to include nd scat-
tering in higher partial waves.

It is rather difficult to compare the results of
our model with the previous work' since we have
included no spin and isospin effects. Neverthe-
less it may be appropriate to compare our method
with those used by others. The technique we have
used involves a physically based approximation to
the three-body amplitude that results in four-body
equations that are numerically solved without much
difficulty. Our bound state results are not too
realistic but in the scattering region our equations
yield results that involve no unitarity violation. In
contrast to this approach, most other work has
involved mathematical approximations in the four-
body equations that have so far given solutions at
bound state and threshold energies. The four-body
binding energies obtained by these methods seem
much more realistic than our results but whether
these methods can yield unitary answers above the
four-body threshold remains to be seen.

The outcome of the calculations we have de-
scribed in Sec. IV seems to indicate that the re-
sults can be considerably improved if both spin
and isospin are properly included. The number of
coupled equations will then increase by a factor of
3 and the box diagrams will become more compli-
cated since both the spin-triplet and spin-doublet
states of the two-nucleon system will appear in all
possible combinations. Such a task will probably
exceed the present capabilities of our computer
but if these difficulties can be overcome, the re-
sults of such a calculation will be reported in a
later publication.

APPENDIX A: T„(X)

The two-particle propagator is discussed in
detail elsewhere' so that here we just list the re-
sults:

[s,(x)]-' = z, —.'y—,'

d'n f;(n)
(2«)' (2n'+ e~)(x —e~ —2no)'

(A2)
d 'n f~'(n )

(A3)

For the vertex function we have adopted the
Hulthbn form f~(q) = (q + P~') ' where P~ is the
range parameter. The specific form of the re-
sulting propagator T~ after all integrals have been
analytically performed can be found elsewhere. '
The n-n interaction is therefore characterized by
the binding energy of the d particle &„, the range
parameter P~, and the wave function renormaliza-
tion constant Z~. Once &„, P~, and Z, are fixed the
coupling constant y~ is obtained through (A3).

The unit of energy in our choice of units is
equivalent to 4.452 MeV and the unit of length is
equal to 2.16 fm.

APPENDIX B: r, (X)

We construct the t propagator by summing the
series of self-energy bubbles. ' Graphically the
propagator is shown in Fig. 5(b) and the corre-
sponding unrenormalized amplitude is given by

(Q) 1 1 1
&o&+E &o&I(E) E & '++&] +et +&,

(B1)

We have taken the d-particle propagator to be al-
ready renormalized. Requiring that ~',"' have a
pole at the physical t energy E=-E, gives the re-
lation

3

EI = e& —[y,"'],f,'(n) v~(f g
—e& —n 3) .

(2v&)'

(B3)

Assigning to the renormalized propagator
v, = v', "'/Z, a unit residue at the pole gives

v, (X) = S,(X)/(X),

where S,(X) has the form
2

[s,(x)]-'=z,

(84)

d3x, [v~(X+ Y) —v~(Y)]f,'(n),

(B5)

We take the bare energy of the t at rest to be
I(E) represents a bubble involving an n and

a fully dressed d, and is given by

3

I(E) =[y,'"'] g, '(n)v~(E+e~ —n' —',). (B2)

s,(x)
(A1)

X=E+&, ,
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The wave function renormalization constant Z, is
given by

where S~(y') indicates the derivative of S~(1'). y,
is the renormalized coupling constant given by

2 g ( (u&)2

As a vertex function we have chosen f,(n)

= (n + P, ) in order that the asymptotic behavior
of (k'

i T„~(E) i k) given by Eq. (5) in the limit of
k-~ and k-0 be the same as that for the s-wave
component of the 7 matrix described by Eq (.3)."
The independent parameters that characterize the
n-d interaction in the model are, therefore, the
binding energy of the t quasiparticle &„ the range
parameter of the vertex function P„and the wave
function renormalization constant Z, . Once e„
P„and Z, are specified, the value of the coupling
constant y, is fixed through Eq. (B6).
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