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A study is carried out of some of the singularities that occur in the second Born amplitude for elastic n-d
scattering as described by the Amado model. It is shown that for real energies this amplitude is analytic in the
momentum transfer plane except for a right hand cut, and that the discontinuity across the leading edge of
the cut depends only on the on-shell, two-nucleon t matrix. This right hand cut leads to a left hand cut in the
energy plane for the partial wave amplitudes. A simple formula which involves only the on-shell ¢ matrix is
derived for the discontinuity across the leading edge of the s-wave left hand cut. The possible implications of
these results for the model dependence of three-nucleon calculations are discussed.

NUCLEAR REACTIONS Cuts in second Born amplitudes for elastic n-d scatter-
ing; relation between discontinuities and on-shell, two-nucleon amplitudes.

I. INTRODUCTION

One of the questions that continually arises in
connection with the three-nucleon system, is the
importance of the off-shell behavior of the two-
nucleon # matrix in determining the various three-
nucleon observables. As is well known, the work
of Faddeev! focused attention on this question,
since in his formalism, and others developed in
the same spirit,? the off-shell, two-particle { ma-
trix appears explicitly. In spite of the explicit ap-
pearance of the ¢ matrix in these three-particle
formalisms, it is difficult to determine the im-
portance of off-shell effects by directly examining
the equations. For this reason, many authors,®®
have carried out exploratory numerical calcula-
tions to determine the sensitivity of three-nucleon
observables to the two-nucleon input. In Ref. 3
various separable interactions have been fitted to
the same low energy two-nucleon parameters; in
Refs. 4 and 5 phase-equivalent interactions have
been employed.

It is, of course, not necessary to use Faddeev-
like formalisms to study off-shell effects. In par-
ticular, Brayshaw® has used his three-particle
boundary condition model to carry out three-nu-
cleon calculations with fixed two-nucleon phase
shifts. Brayshaw® has come to the strong conclu-
sion that no off-shell information can be obtained
from n-d elastic scattering and deuteron breakup,
which is not already implicit in the value of the
n-d doublet scattering length.

The importance of the doublet scattering length
in determining the low energy n-d scattering pa-
rameters was first shown by Barton and I*hillips’
in a dispersion theory approach to n-d scattering.
In their analysis only the one-nucleon exchange
contribution to the left hand cut (LHC) of the s-

wave elastic scattering amplitude was included
explicitly, and inelasticity effects were neglected.
A phenomenological parameter was introduced to
account for the omitted portion of the LHC. By
adjusting this parameter to the doublet scattering
length, they were able to obtain a good description
of the low energy variation of the effective range
quantity % cotd, where 0 is the s-wave doublet phase
shift. Using a similar approach, as well as sep-
arable potential calculations, it has recently® been
shown that the low energy pole in %k cotd and its
residue are closely correlated with the doublet
scattering length. It is important to note that in
the dispersion theory calculations of Refs. 7 and 8,
the only two-nucleon input is the binding energy of
the deuteron and the asymptotic normalization of
its wave function. In a sense this is on-shell in-
formation, since it can be obtained by analytic
continuation of the on-shell, nucleon-nucleon am-
plitude to negative energies; a continuation which
is readily carried out by means of effective range
theory.

The treatment of the LHC in Refs. 7 and 8 is not
complete enough to account for the correlation that
is known to exist between the doublet scattering
length and the triton binding energy.® This is not
surprising, since the triton energy falls very close
to the junction of the one- and two-nucleon exchange
cuts.

The two-nucleon exchange cut, as well as, in-
elasticity effects have been included in the N/D
calculation of Avishai, Ebenhoh, and Rinat.'®
Their input for the two-nucleon exchange cut can
be obtained from the Amado'! model for n-d scat-
tering, and as such contains off-shell information.
By employing a phenomenological pole to account
for the neglected portion of the LHC, they were
able to obtain a reasonable relationship between
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the triton binding energy and the doublet scat-
tering length.

One of the main purposes of the present work, is
to study the model dependence of the two-nucleon
exchange cut as obtained from the Amado model.!!
Throughout the present work two-nucleon exchange
will refer to the second Born term obtained by
iterating the Amado'' equations. This two-nucleon
exchange amplitude also includes in a phenomeno-
logical way, through the vertex functions, some of
the effects of pion exchange. It has already been
shown'? that the amplitudes obtained from the
Amado model have the usual analytic properties
for satisfying dispersion relations. In particular,
the singularities in the complex energy plane lie
along the real axis, and consist of right hand cuts
(RHC’s) associated with unitarity, and LHC’s as-
sociated with exchange processes. Here we shall
see that the discontinuity across the portion of the
two-nucleon exchange cut adjacent to the one-nu-
cleon exchange cut is model independent, in the
sense that it depends only on the analytic continua-
tion of the on-shell, two-nucleon { matrix to nega-
tive energies. The extent of the model-independent
part of the cut depends on the inverse range of the
vertex functions used to describe the deuteron and
the singlet virtual bound state. This combined with
what is known about the one-nucleon exchange cut’®
shows that in the Amado model a substantial por-
tion of the LHC in the partial wave elastic scat-
tering amplitudes depends only on on-shell, two-
nucleon information. This model independence is
probably crucial in explaining the correlation be-
tween the triton energy and the doublet scattering
length,® although this remains to be proven.

The earliest separable potential calculations
of n-d elastic scattering showed that the low en-
ergy angular distributions could be calculated quite
accurately with simple models for the two-nucleon
interaction. Part of the explanation for this cer-
tainly has to do with the fact that one-nucleon ex-
change accounts for most of the scattering in the
partial waves other than s waves.'* As pointed out
above one-nucleon exchange is essentially a model-
independent process. Here we shall isolate within
the framework of the Amado!! model, the part of
the two-nucleon exchange contribution to the angu-
lar distribution, which depends only on the on-
shell, two-nucleon ¢ matrix. We shall do this by
examining the analytic structure of the elastic
scattering amplitude in the complex ¢ plane, where
t is the negative of the square of the momentum
transfer. We shall find that the second Born ampli-

11,13
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tude is analytic in the complex ¢ plane for all physi-
cal energies, except for a RHC beginning at 16a?,

o being the deuteron wave number. Moreover, it
turns out that the discontinuity across the small ¢
end of the cut depends only on the on-shell two-
nucleon ¢ matrix.

The outline of the paper is as follows. In Sec. II
the analytic structure of the two-nucleon exchange
amplitude in the complex ¢ plane is determined,
and a model-independent expression for the dis-
continuity across the small ¢ end of the RHC is
derived. A partial wave analysis of the results of
Sec. II is shown in Sec. III to lead to a LHC for the
partial wave amplitude in the complex energy plane.
A simple model-independent expression for the dis-
continuity of the s-wave amplitude across the low
energy end of the LHC is derived. Section IV gives
a discussion of the results.

II. CUT IN THE ¢t PLANE

For the two-nucleon transition operator, we shall
use a spin-dependent s-wave separable interaction
of the form

t(s) = |lg)a(s)g,l,

where n=1 and 2 refer to the triplet and singlet
states, respectively. Here s is a complex energy
parameter, and

8,748)= =N, g, [ (Hy - 9) g, - (2.2)

n=1,2, (2.1)

The strength of the interaction is determined by
A,; H, is the kinetic energy operator. The triplet
form factor Igl) can be expressed in terms of the
deuteron wave function ‘B) by means of the rela-
tion

|g1)=(—012—H0)|B), (2.3)

where o? is the deuteron binding energy. We are
working in units in which %2 divided by the nucleon
mass is one. The parameter A, is adjusted so that

A,Y(-a?) =0, (2.4)

which implies that

A THS)TTEs+al. (2.5)

S=~a

The three-particle equations that arise from the
interaction (2.1) are most easily obtained from the
Alt, Grassberger, and Sandhas? version of the
Faddeev equations. The resulting equations, which
were first obtained by Amado'! using other meth-
ods, are given by

2 -
Xom( 4, Kk;8)=2,,(4,Kk; 8) + Z; fZ,,,(ﬁ,ﬁ’; $)dq’a(s - 1¢')X, (T, k; s), (2.6)
r=
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where

Z,(4,q5s)= 2” (2.7

‘,

wm 8120+ 1) g (%ﬁ 4l
s-¢-q'q'-q"

The quantities J,,, are spin-isospin recoupling
coefficients, and are given by
Jip=Jp=—4 (doublet),

J,,=-% (quartet). (2.8)

The form factors or vertex functions are normal-
ized according to the relation

(Bley=g(p)/(4m)*/2, (2.9)

where it has been assumed that the momentum
states have the normalization

The on-shell momentum % is given by
s=E+ie=-a’+ 3k +ie (0<e<1) (2.11)

with E being the total three body energy. The
partial wave amplitudes are defined by the equation

1 -~
Xy amkaq,ky8)=2m f dxP;(x)X,(q,k;s), x= q-k
-1

(2.12)
and have the on-shell normalization
3 et P®gins (B
XLu(kak',S)=—ﬂ—-————m £(%) (2.13)

k ’

where 8, is the phase shift for the Lth partial wave.
Here we shall consider the on-shell second Born

(BIpY=8(b-p"). (2.10) term obtained by iterating (2.6); i.e.,
- 2 T - - 3 - T T e
Xk 9= 3 2,478 9dG8 (s - 192,08, K 0),  [R]=[E]=r. (2.14)

We shall assume that the form factors g,(p) are real analytic functions of p* with a left hand cut beginning

at p>= —y2. This allows us to write

~ dBoB)

gAdp) = W

(2.15)

Most of the phenomenological form factors are of this type, and in particular, the well known Yamaguchi'®
form factor is obtained if the weight function o,(B) is taken to be a 6 function. If the transition operator
(2.1) is interpreted as the unitary pole approximation'® to the transition operator which arises from a
superposition of Yukawa potentials, then the form factors will have the analytic structure indicated by
(2.15).' Thus (2.15) is quite general. If the representation (2.15) is inserted into (2.14), angular integra-

tions of the type shown below are encountered

fdﬂ 2+ a?+ Qe k')(q FAR B G R (B R+ 2GR

X (g% + 3k + @® +ﬁ'l-z)(q2 + %k2+ﬁ”2+§'ﬁ)(%q2 + k24 pM"? +'(’1§)] L, (2.16)

In order to handle this integral we make two partial fraction expansions, one in q- E’, and one in ﬁ-ﬁ. When
these expansions are multiplied together, put into (2.14), and the symmetry in k’ and k is exploited, we

obtain

aqT(s - iq?)

Xg) kl k S) Z lrgl (za) j

Here 7, is the on-shell two-particle ¢ matrix given
by

Tp?) =g,%p)a (p% +ie€) , (2.18)

and g,%(i@) is related to the deuteron wave number
o and effective range p by®

‘ia +q-k’)(q +1k2 + a? +§-k

5+ five other terms. (2.17)

4o

T —ap) (2.19)

glz(i Ol) =

Thus the term written explicitly in (2.17) is model
independent in the sense that it depends only on the
on-shell, two-nucleon { matrix, and its analytic



continuation to negative energies.

We shall now examine the analytic structure of
the second Born term in the momentum transfer
variable defined by

t=- |k'-k|?
=2k%*(cosf -1). (2.20)
In particular we shall show that each of the six
terms in (2.17) gives rise to a right hand cut in ¢,
and most importantly, the branch point arising
from the model-independent term lies closest to

the origin of the ¢ plane. Each of the six terms in
(2.17) gives rise to an angular integral of the form

dog

I(Z,x cosG):f = =, 2.21)
(s 2, A, +g RN+ k) (
where
1 2 k2 2
x; =(qk) <aiq +‘—1;; +0‘> . (2.22)
Minimizing A; with respect to g leads to
4 2\1/2
x> (1+—“—};§’-*-> >1, (2.23)

thus for real, positive %%, the integral in (2.21) is
well defined. Following Goldberger and Watson’s'®
analysis of the second Born term for the Yukawa
potential, it is straightforward to show that

(" ar
I =8k fT T =TT

with
= 2k2{)tl)tz i [(7‘12 _ 1)()\22 _ 1)]1/2}.

—77 (2.24)

(2.25)

If we minimize 7* with respect to ¢ we find that
the minima occur at
2 k2 0102

=t
4a° a ’

a=a,=a,

2_ 0,+80, B2

1
+20,0,, a,=1,
" 40, + 20,

a,=1,

and that the minima are

Tti.=4a(o,+0,)°, a,=a,=a,
(2.26)

Thin= 2B +(20,+0))%, a,=1, a,=1.

Upon examining the various pairs of denominators
that occur in (2.17), we find that the model-in-
dependent term has a right hand cut in ¢ beginning
at 16%; the model-dependent cut with the smallest

branch point arises from the third and sixth de-

J

X b B 2 p-ap?
Ianéfi(k, By s)= Dlié_l}_(__s) 17!_ f dtP (
2i k® g2
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nominators in (2.16), and the branch point occurs
at 4y2. If we use (2.24) for each of the six terms
in (2.17), and interchange the order of integration
in each term, we find that

XK, k;s) = f t,‘ ; p(k2 ), (2.27)

where
2. J 2g Z(ia)
2 - 1r 51
p(k ’ t) = ; Znﬂ_
dg*7 (s - iq?)

a,2(12,t)
X
ng(k%n (@, -¢))(g* —a ) ]1/2’

16a2<t< 4®, (2.28)

with

a2(k?, 1) = 51+ 5k% — 02 £ 5[(¢+ 4R2)(t - 16a2)]1/2

(2.29)

Thus the second Born term is analytic in the ¢

plane except for a right hand cut beginning at 162,

and the discontinuity across the leading edge of

the cut is model independent. It is important to

check that the argument of the on-shell ¢t matrix

in (2.28) never reaches the left hand singularities

described by (2.15). A little calculation shows that
E-i¢= -

+1(y? -40?), 16a’<it<4y?,

B:> _4a2, (2.30)

thus only well defined on shell { matrix elements
enter into (2.28). Throughout we assume that »?
>40%. We shall use the results of this section in
the next section to derive the model-independent
part of the discontinuity across the LHC of the s-
wave projection of (2.27).

IIl. LEFT HAND CUT DISCONTINUITY

From (2.12) and (2.27), it follows that

2 * t
X200 159)=2 [ 10, (1+qm ), 0, (3.1
l6a

where @, is the well known Legendre function of
the second kind. The logarithmic singularity in
Q. leads to a LHC in the k? plane beginning at
—40?; the discontinuity across the cut is given by

)p(kz ), k< -—4a?, (3.2)
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where the discontinuity is taken to be the function above the cut minus the function below the cut. Since p is
model independent for ¢< 4y?, it follows that the discontinuity across the left hand cut is model independent

for k2= —y2.
tinuity in the L = 0 amplitude.

We shall now manipulate (2.28) and (3.2) in order to obtain a simple formula for the discon-

From (2.1), (2.2), (2.5), (2.15), and (2.18) it follows that the on-shell { matrix is analytic in the complex
energy plane except for the right hand unitarity cut, a LHC, and a possible bound state pole. This allows

us to write

"}' ’ ’
T (E)= lf dE’ ImT (E’+i€)

E'-FE nEra® 7w

g,%(ia) l * dE’ ImT (E’+i€) 3.3
5 fo eI (3.3)

Putting this relation into (2.28), and doing the ¢® integrations by contour integration leads to the result

g12(ia)

2 Jy,°8, (i) fw Im7,(s — iq®) Ar
p(k t) Z 2,” I { /3(E+72) [(q +lk2+a) k2 2 1 2[]1/2 - 3 6”

Im7 (s - i

(G ) - - L]

4E/3
+-[ dq? [(q +‘k2 2)2

kqu 1q2t]1/2

}, 16a®< < 4y2. (3.4)

The integration over ¢ in (3.2) can be done by elementary methods and gives rise to the expression

(e, by ) =3 3 0, i) [

4/ 3(E+r2) 4

4E/3 g 1p ):l
q 2 q+z 1a
+’L p ImT(s—4q)ln(——————q_%k+ia s

dq* g+3k—ia 4n i Sk—ia
q ——ImTt (S - 4q )1n<-—_2§——> ——3—671g12(7>1h<§7e—+—171—

zk +10

—y2< B2< _ 402, (3.5)

By using (3.3), it is straightforward to show that (3.5) can be simplified to give

4%
Imx{2(k, by 8) = ——

1/2k=
g (i) f
0

This is our final result for the model-independent
part of the s-wave amplitude’s discontinuity across
its LHC.

Since the route that has led to (3.6) is rather
circuitous, it is natural to ask if there is some
other way to derive the result. The author has
been able to do so by using the techniques em-
ployed by Greben and Kok.'® In their approach the
integral representation for the partial wave second
Born term is analytically continued above and be-
low the LHC. In so doing it is necessary to deform
the path of integration in one way above the LHC,
and in another way below the LHC. This ultimately
leads to the discontinuity (3.6). The advantage of
Greben and Kok’s'® approach is that it is not neces-
sary to use explicitly the decomposition (3.3) for
the on-shell { matrix. The method employed in the
present work has the advantage of showing the con-
nection between the RHC of the full amplitude in the
¢t plane, and the LHC in the partial wave amplitude.

It is interesting to note that the discontinuity

ia 3
dq Tr(E - qu) ’

—V2< kP< — 402, (3.6)

r

(3.6) vanishes at the right end of the LHC. This
might lead one to believe that this discontinuity is
small compared to the discontinuity across the
one-nucleon exchange cut,””® however simple nu-
merical calculations show that this is not the case.
It is important to check that the argument of the
on-shell ¢ matrix element in (3.6) never reaches
the left hand singularities described by (2.15). It
is straightforward to show that

-7*+31(y* -4} < E - i¢* < - 4a®,

2 2 2
-yi<s k?< — 407,

(3.7

so the integral in (3.6) is well defined.

IV. DISCUSSION

We have succeeded in isolating, within the frame-
work of the Amado equations, the model-indepen-
dent contribution to the discontinuity across the
RHC in ¢ of the full second Born amplitude, and
the model-independent contribution to the discon-
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tinuity across the LHC in energy of the partial
wave second Born amplitude. As pointed out above
we mean by a model-independent contribution one
which depends only on the on-shell two-nucleon ¢
matrix, and its analytic continuation. These re-
sults should be useful in analyzing the n-d angular
distributions that arise from elastic scattering,
and in trying to understand the correlations that
exist among the low-energy, three-nucleon ob-
servables. For example, in carrying out a phase
shift analysis of n-d elastic scattering, the high
partial wave phase shifts can be determined in a
model-independent way from the one-nucleon ex-
change amplitude.'* By combining this amplitude
with the on-shell contribution to the second Born
term [see (2.27) and (2.28)], it should be possible
to extend the model independence to lower partial
waves and higher energies. We are presently car-
rying out calculations to test this idea.

It is relevant here to discuss what is known in
general about the analytic structure in the complex
¢t plane of the elastic n-d scattering amplitude. The
first Born term singularities can be located easily
by evaluating (2.7) on shell (g=¢'=k, n=m=1). A
trivial analysis shows that there is a simple pole
at t=-2a®- %kz, whose residue is determined by
the deuteron’s binding energy and asymptotic nor-
malization [see (2.19)]. This pole contribution is
the one-nucleon exchange amplitude referred to
above, and lies just to the left of the physical re-
gion (-4k®< t< 0). If one assumes that the vertex
function is given by (2.15), then it is straightfor-
ward to show that there is a LHC in ¢ beginning at

=-2y? - Zk*. We are presently analyzing the
singularities in ¢ that arise from the third Born
term in the Amado model.}! Hartle and Sugar®’
have studied the analytic structure in the momen-
tum transfer plane of the three-particle scattering
amplitudes that describe collisions in which two of
the initial and final particles are in a bound state.
They consider a system of spinless, nonrelativistic
particles which interact via two-body central po-
tentials, which can be written as a superposition
of Yukawa potentials. They find that the amplitudes
are analytic inside a Lehmann ellipse in the cosine
of the scattering angles for all real energies. For
real energies below the breakup threshold, the
amplitudes are analytic in the momentum transfer
plane except for left and right hand cuts. It will
be interesting to see if these results carry over
to the Amado model'!; they probably do.

As pointed out in the Introduction, the result ob-
tained here for the two-nucleon exchange cut com-
bined with what is known about the one-nucleon
exchange cut show that a substantial portion of the
LHC discontinuity for the partial wave amplitudes
is model independent. In order to further discuss

the LHC it is useful to introduce a dimensionless
energy parameter defined by’*®

32
Z=gor - (4.1)

In terms of this parameter the one-nucleon ex-
change cut”® extends from z= -3 to z= - 3; the
model-independent part of the two-nucleon ex-
change cut extends from [see (3.6)]z=-3 to
z=-3y?/(40?). If we assume that the vertex func-
tions [see (2.15)] are constructed according to the
unitary pole approximation,'® and that the longest
range part of the two-nucleon potential is given by
one-pion exchange, then it follows from Ref. 17
that

y=p+a, (4.2)

where u is the inverse pion Compton wavelength
(0.7 fm™!). For the triplet state o is the deuteron
wave number (a=0.232 fm™); for the singlet state o
is the antideuteron wave number (a,=-0.040 fm™?).
Thus in this framework the model-independent part
of the two-nucleon exchange cut terminates at

3+ a)?
_Mpra)

i —6.09. (4.3)

2=
From the point of view of particle exchange, this
is the branch point arising from two-pion ex-
change.”

By using (2.7), (2.12), and (2.15), it is easy to
show that besides the one-nucleon exchange cut,
the on-shell, partial wave Born term has a branch
point at

2
z=_(“T+a‘;i=_5.39. (4.4)

This corresponds to the anomalous branch point of
the nucleon-deuteron vertex function with one nu-
cleon off shell.””?° Thus the part of the disconti-
nuity across the LHC which can be obtained from
the on-shell, two-nucleon ¢ matrix extends from
z=-3% to z=-5.39; beyond this point off-shell in-
formation is needed. It is interesting to note that
the unitary pole approximation just discussed,
when used in the Amado model, leads to an n-d
elastic scattering amplitude with a low energy,
LHC structure which agrees with that obtained
from the more fundamental point of view of particle
exchanges.” 202!

It is natural to inquire into the possible contri-
bution of the exchange of three or more nucleons
to the LHC discontinuity. According to Ref. 19
there are no such contributions. The third and
higher Born terms contribute through the vertex
functions, but not through the vanishing of the
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denominator in (2.7). The singularities associated
with the vanishing of this denominator have been
called rescattering singularities by Rubin, Sugar,
and Tiktopoulos.?? They show that the rescattering
singularities of order » should vanish if # is
greater than or equal to the maximum number of
classical binary contact collisions of three par-

ticles. For the equal mass case » is 3.

At the present time we are carrying out N/D
calculations of the type reported in Ref. 8 in order
to see if inclusion of the model-independent part
of the two-nucleon exchange cut will lead to a
reasonable correlation between the triton binding
energy and the doublet scattering length.
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