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The theory of the reaction n + p—d + 7y + v is reviewed with emphasis on the dominant, or (E1, E1), mode.
The differences between the length and the gradient electric dipole operators are studied in detail and the two-
photon cross section (o) is calculated using both operators. The length operator yields a very reliable value of
0y, = 0.118 ub (£ 1%). The result obtained with the gradient operator is ~20% smaller and has large
uncertainties. Results for other two-photon modes are also presented.

[ NUCLEAR REACTIONS 'H(z, vy), thermal =, calculated oy, . ]

I. INTRODUCTION

The doubly radiative np capture reaction p(n,yy)d
has received considerable attention since Dress
etal.! reported a very large capture cross section
of 6,, ~350 ub or a branching ratio 0,,/0,, of 107
Subsequent measurements by Earle efal.? and by
Wiist et al.® did not support the early result. Mean-
while Alburger? suggested that the result of Dress
etal.! could be instrumental. This was later sub-
stantiated by Monte Carlo calculations by Lee and
Earle.’ The most recent measurements by Earle,
McDonald, and Lone® resulted in a value of o,,
= -3+ 8 ub for photon energies in the range 600
keV <w<1620 keV. We refer to Ref. 6 for a more
detailed review of the experimental aspect of the
subject.

Adler,” allowing the possibility of nonorthogonal-
ity® between the wave functions of the triplet con-
tinuum and the deuteron ground state, obtained a
value of 42 ub for o,,. (This was the motivation
for the measurements by Dress efal.!) In normal
quantum theory orthogonality between states with
different energies is related to the Hermiticity of
the Hamiltonian or the realness of the energy spec-
trum. In such theories apparent complex energy
(e.g., that of a resonance) and non-Hermiticity of
the Hamiltonian (e.g., its explicit energy depen-
dence®) can arise only as a result of not treating
explicitly all states involved in a reaction.'® Ex-
perimentally there is very strong evidence against
the existence of any significant amount of non-
orthogonality in general. In fact, strong hindrance
of some transition processes requires orthogonality
between the wave functions at different energies.
For example the strong hindrance of the radiative
capture of neutrons by deuterons is a direct con-
sequence of the orthogonality between the wave
functions of the nd continuum and the triton.!!
Certainly there is no experimental evidence that
requires nonorthogonality.'® In this paper we shall
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accept the normal quantum theory and require the
wave functions of the triplet continuum and the
deuteron to be orthogonal.

The formalism for two-photon processes in nu-
clei has been examined in detail by Grechukhin.'3
Since then measurements have been made for two-
photon branching ratios in several 0* - 0* transi-
tions.!¥"1¢ Typically these branching ratios are of
the order of 2-5x 10", However, calculation of
two-photon decay rates in such transitions is com-
plicated by uncertainties in nuclear structure.'”

In contrast, a reliable prediction of the ratio o0,,/
0,, in np capture is feasible because of the sim-
plicity of the two-nucleon system.

Several calculations of 0,, have been re-
ported.”®23 Grechukhin'® pointed out that the
(E1, E1) mode dominates the two-photon capture
reaction. There is general agreement among the
various calculations that 0,, ~0.1 ub. However,
the two dipole operators [the length operator
e[H,T+¢€] and the gradient operator (ie/M)V €]
used in these calculations are not equivalent; in
our earlier paper® we pointed out that the length
operator is the one that ought to be used. These
two operators are equivalent for interacting par-
ticles only when the interaction is local or mo-
mentum independent. It was also pointed out that
even if the two operators were equivalent, only
the length operator would give an accurate value®
for o0,,, because only it is insensitive to details
of the wave function at short distances about which
our information is incomplete. In this paper we
elaborate these points and present the calculations
in more detail. As well, we review the whole
theoretical aspect of two-photon process relating
to np capture.

In Secs. II and III the basic theory relating to the
two-photon matrix element and the capture cross
section is reviewed. In Sec. IV, o0,, is calculated
using the length operator. We show that the cross
section is completely determined by the low ener-
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gy data of the triplet np system. In Sec. V we
calculate 0,, using the gradient operator and show
that the result is very sensitive to refinements in
the wave function. In Sec. VI results of two-photon
capture modes other than the (E1, E1) mode are
presented. Finally in Sec. VII the present position
is summarized.

II. BASIC THEORY

A. Electromagnetic transition operators

For convenience we choose a coordinate frame
such that the z axis is along the direction of the
photon momentum & (we use units such that Z=c¢
=1). The vector potential in the Lorentz gauge,
normalized to a field intensity of one photon per
second per unit area, is'?

ZARAIITEN
A (@)= <w> e,

1/2 = - -
(1)

where €,, are the unit polar vectors perpendicular
to . The electric and magnetic fields are, re-
spectively, given by

& w)= W Y x Ly (w), (2)
3Tlxu(w)=m,—a_ﬁ b rulw), ®)

where ¢>,w(w) [4m(2x+ 1)]/23%), (w?)Yy ,(7) and
T=Fx p. For photons with wavelength which is
long compared to the size of the nucleus, only
terms which are lowest order in w need be kept.
In this case

B (22 S0 0. @

The matrix element for the electric transition from
the state 17) to the state |f) is

<8x (w) )f{ = - (N(Z); 1

i Ia+1 1/2 - - (5)
=i<; > fin'Vq’xads’”

w

1/2
) 3,8 (w)dr

where 3,‘ is the current density between the states
|) and |f). Integrating by parts, and using the
equation of motion

e'-j:—ie[H,p],

where p is the density operator, Eq. (5) be-

comes?® % (Siegert’s theorem)
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(Bafwl)yg= e =2 (102D

) (rgDsi- (6)
The advantage of (6) as compared to (5) is that no
explicit knowledge of the current 3,‘. is needed to
compute the electric transition matrix element for
long wavelength photons; only the wave functions
of |i) and | f) are needed. The direction of the
photon is implicitly expressed only in the coordi-
nates we have chosen. The computation of the
two-photon matrix element will be made easier
with the following relation:

-E; 1/2
Grolp=(-ipe EzEe (R D)

X [d9,7,,(8) (€', (1)

When both i) and |f) are bound states (& *T)y,
<« 1, (7) may be expanded in powers of wr» and we
get the familiar form

(8”((.0»;1 ~e L (2(:) w(Eq "I">ﬂ . (8)

The magnetic transition__matrix element depends
explicitly on the current J:

. —igV + LU X )4 Jexen 9)

537 ¢
where g,=1, ¢,=0; and u,=2.79 and p,= -1.91
are, respectively, the magnetic moments of the
proton and the neutron in nuclear magnetons. The
meson exchange current J exeh makes a correction
of about 5%°"2% to J. Not including the effects of
Je*h the magnetic transition matrix element is

1/2
(fqu w))fi ('ZY-IG @ <7t4+w1> q

x [a9,[7,.,@)x &,

../ 1
fWeT -
X <e (g it ;w>>ﬁ . (10)

In the long wavelength approximation, the dipole
matrix element reduces to the familiar form

1/2 -
<m lq(w»fl:e IT.(;-<§T-TQ_J> qzq°(%g1+ N-E)n- (11)

B. Two-photon transition matrix element

In general, a two-photon transition matrix ele-
ment has the form [the only exception is that of
the contact or (e?/2M)A +A term]
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<0(w1) = O(w;)+ (12 2>

= Z(e(wl»ﬂ. o (O(w s+ (1= 2),

12)

where the second term is similar to the first term
except that the two photons with respective ener-
gies w, and w, are interchanged. The summation
is over a complete set of intermediate states sub-
scribed by n. The symbol © stands for I, , or

J

<s () g Blun)+ (12 2)> <8(w )

é’u. A very interesting point arises when at least
one electric transition is involved. In this case,
from (6), factors of either (E; -E,) or (E, -E;) or
both will appear in the numerator in (12). This
would indicate a slow convergence in the summa-
tion over n. It was pointed out by Grechukhin'®
that this undesirable feature is removed when the
two terms in (12) are explicitly combined. If we
use the notation (8, ,(w)),; for the right hand side
of (6) excluding the factor (E; —E ;)/w, and for the
moment suppress the indices Ag, then it can be
shown that

= 8w+ (1= 2)>

+ ZT% ([8(w,) s [H, 8w )]s - % ([8(w,), 8] - (13)

The last term on the right hand side in (13) vanishes, since the commutator is zero. The second term can
be estimated by assuming that the momentum -dependent part of H is given by p2/2M*, where M*~0.5M is
the effective mass of the nucleon. It then follows that

([8wy) [(p2/2M%), E(w)]] )i = - “’*

(5(w D) 8(w,))ps (14)

Noting that the leading term in the last matrix element vanishes we conclude that the second term in (13) is

of order w/M*(wR)? compared to the first term, and can be justly ignored.

Similarly it can be shown that

<8(w1 1 m(w2)+§m(w ) 5(w2)+ (1= 2)>

= - <8(w1)

E)ll(wz) +IM(w, )

H g(wz) +(1= 2)>ﬁ +0O(wR). (15)

III. GENERAL EXPRESSION FOR THE DOUBLY RADIATIVE CAPTURE CROSS SECTION

The total doubly radiative cross section is

1 2J‘+1

Oz = fﬂ# dz:ig 211{5 (2m)'6(E; - E; - w, — w,)5° (p( pf “’1 "*’2)2 IM?"I (16)

where the factor 3 normalizes the two-photon final
state; J,; is the spin of the initial state; the factor
1(2J,+1) is the spin-statistical weight factor; v,
=1.37x% 105¢™! is the inverse velocity for thermal
neutrons; 2. sums over the polarization of the
photons and magnetic substates of the final state
and averages over those of the angular momentum -
coupled initial state; and M,, is the two-photon
matrix element discussed in the last section. The
differential cross section is
20- ’
T B 3 e e -,

an

r

where 6 is the angle between the two photons and
w=E;-E/=w,+w,.

In thermal np capture the initial np system can
be in the spin-singlet continuum 'S, or the triplet
continuum 3S/. The final np system, or the deu-
teron, is predominantly (>93%) in the triplet S
state 35,. Thus we have the following leading 2y
transitions:

(a) 'S, ~y(M1)+°S,
y(M1)+3S,;
(b) 1S, ~v(M1)+3S
v(E1 bremsstrahlung) +3S
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(c) 3S]~v(M1) +1S,
l—’ y(M1)+3S;
(@) %! = y(E1) + 3P

L->'y(El)+3S

It has been pointed out'®!® that the cross section
for mode (d) or the (E1, E1) mode is by far the
largest among these reaction modes. Several
authors'®*1%28 have used the E1 operator (e/M)p *,
which will ke called the “gradient operator,” as
opposed to the “length operator” given in (7) for
this mode. Earlier we have shown that Siegert’s
theorem, leading to the length operator (7), holds
as long as the wavelength of the emitted photon is
large compared to nuclear sizes. No assumption
was made about the nuclear current other than
that it satisfies the equation of continuity. Using
the gradient operator, on the other hand, assumes
explicitly that the nuclear current (for electric
transitions) is the convection current (e/M)?p.
This is true when the nuclear interaction is mo-
mentum independent, since in this case we have

fd)f ‘“”zbd?’?’

= - 5o J Vs @S sy
or

e BB (piaty, i £ (F 2o, (18)

whereby (e/M)p can be identified as the nuclear
current. However, even then the equality in (18)
will hold only if E; and E; and ¢, and ¢, are eigen-
values and eigenfunctions of the same Hamiltonian.
This self-consistent condition is, of course, not
always met in actual computations; it more often
happens that experimental energies and approxi-
mate wave functions are used. In the next two
sections consequences of using these two dipole
operators are examined in detail. Results for the
capture modes (a), (b), and (c) are presented in

a later section.

IV. RESULTS WITH THE LENGTH OPERATOR

A. Using asymptotic wave functions

The length operator is insensitive to the details
of the wave function at short distances. Therefore
we can expect a good first order estimate of the
cross section by using asymptotic wave functions,
which are completely determined by low energy
scattering data. Improvements to the wave func-
tions will be treated later. For the initial triplet
radial wave function we have

sin(kr + 5,)
e —— )

ui(r)= kv

(19)
where 5, is the triplet (S-wave) phase shift; for
.uw energy cotb,= -1/a,k, where a,=5.41 fm is the
triplet scattering length. For the deuteron

N e
Uy = Janr v ° (20)

where k= (Mw,)'/?, w,=2.23 MeV is the deuteron
binding energy, and N is the normalization con-
stant. Experimentally N2 is determined to within'!
1% to be

N2=2k/(1 —v,,k)=3.3Tk, (21)

where 7,,=1.75 fm is the triplet effective range.
This is to be compared with N2=2k when u, given
in (20) is normalized to unity. For the intermedi-
ate state, as a first order approximation, we use
a complete set of plane waves.

From (7) and (13), the two-photon matrix ele-
ment is

My, = wwz)‘/ = Z_[dsz Y1 (@)

X [d9,1,R)5,,,'R)

xsz(wu wz)+ 1= 2),

(22)
G0 5)= G [ pras WDLB, (@)
where
1,(D)= (s, |e'%#/2|5)
N Va7

CF S @4
1,(B)= (B |e'r/2ps))

= (2m)°6(P - @,/2) - 41r————.-!-7—272, (25)

and w; and g; are, respectively, the energy and
polarization of the two photons; R is the rotation
bringing the direction of the second photon to that
of the first photon; D(R) is the rotation matrix;
and |p) is the plane wave intermediate state. The
rotation R is necessary because in (7) we have de-
fined the z axis to be along the direction of the
first photon. Because of the projection operator
in (22) we will only pick out the term proportional
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to @, * @, in (23). Writing

H. C. LEE AND F. C. KHANNA 14

M,, =2ra(w,w,)"’? [fzr< >+ fz"( a)]

21(‘-0 19 wz) = eee fz?’ (Z )wl o w2+ coe (26) X €ql(w1) . €q2(w2) . 27)
a We point out that the same result is obtained if we
use the approximation (8) instead of (7). Evaluating
and substituting into (22) we have (23) and using (26) and (17), we have
J
_ 2+ Vx 2+ (1 —x)t/2 3 2

2 =3 3 3 2

d%c,,=% OZY[J(1+J}‘)2_+ Q- 721+ -7 ~ 0 —x)x} x3(1 —=x)3(1 + cos?8) dxd cosb, (28)

where n=ax, x=w,/w, and G,, = (N 2/9)a’v, a,?
X (wy/M)*/%=0.219 ub, with N2=3.3Tk. The total
cross section is

0,,=0, (191+7r 321n2— 3 3

10 = 2TI> 0.118 ub.

(29)

J

do? 2+2(1 —x)/2+ (1-x)/3

r

In an earlier paper?? an expression identical to
(28) was obtained, but the zeroth order normaliza-
tion N2=2k was used, giving a result of 0.069 ub
for o,,.

The D -state component in the deuteron contri-
butes incoherently to the two-photon capture re-
action. The differential cross section is

D 455 [2+2 Vx +x/3

16 A+vo)vx

where!! £=0.027 is the asymptotic D to S ratio in
the deuteron wave function. This gives a cross
section of 0.5 =5.3x 10" yub which is a 0.44% cor-
rection to the result of (29).

In the most recent measurement by Earle etal.,®
the photon energy was restricted to be within the
range 600 keV = w, = 1630 keV. From (28), the
integrated cross section over this range is 0.073
ub.

B. Effects of the hard core

The asymptotic wave functions used in Sec. IV. A
are not regular at »=0. One way of examining the
effects of changes in the wave functions at small
distances on the cross section is to introduce a
cutoff in the wave functions (19) and (20) for »=r,.
The changes in the integrals I ,(p) and I,(D) are

ot ()= - 0T (e _beos (3 (54 5,/20 /7]
+0(89)} (31a)
o1,(B)= - 2 {dne -0 - L (5 -5, /200
Lo}, (31b)

where ¢ =k7,. This results in a change in the ma-

[1 + (1 _x)l/Z]z(l _x)l/z -

n(l Ex)x} (L - xF[ 3 (1+ cos?6) + 3sin’e] dxd cos
(30)
-
trix element
?‘14‘421_ _l_gq_-z X107 (32)

27

when 7,=0.5 fm. Obviously this effect can be com-
pletely ignored. Similarly if we regularize, e.g.,
the deuteron wave function by introducing an extra
term proportional to e¢*®”/7, the resulting change
in the matrix element is of order (k/B)*. Low en-
ergy data demand'! 3~ 6k, which leads to a cor-
rection of |6M,,/M,, | <107,

C. Effect of nucleon-nucleon interaction on
the intermediate state

In Sec. IV A the intermediate states were repre-
sented by plane waves. Here we examine the ef-
fect of interaction on the intermediate state. The
phase-shifted asymptotic P-wave radial function is

u, ()= cosd, j,(pr) —sindn,(p7), (33)

where j, and », are, respectively, the spherical
Bessel and Neumann functions. For plane waves
5,=0 and u,=j,. In order to get a rough estimate
of this effect we assume

tans, = A(p/k)? (34)
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and §, to be spin independent. The constant A can
be determined from empirical data. Equation (34)
is not realistic but it will grossly exaggerate the
effect under examination. Taking a very generous
value®® of 6,=0.25(rad) at E,,,= 100 MeV we have
[A]l=3x10"%, With (33) and (34) we find the change
in the matrix element to be

6M,,

~ -3
i A=3x10"3, (35)

2y

which is again a very small effect.
V. RESULTS WITH THE GRADIENT OPERATOR

A. Using asymptotic wave functions

With the gradient dipole operator (e/M)p - €e’“t
the two-photon matrix element becomes

211 r,. o
Mar = S0 3 & &y (0) + 1y (1 )],

(36)
where x=w,/w,; and
_ 1 = PP sq 2\ s lacr
h'zy(x)_‘ (2—1”3 A m( S;IPHP’ 51>
__ Na 1
a ik el @7
The differential cross section is
1 1 2
2, _3= -
d 0'27*2027<1+\/; +1+(1_ x)x/z) x(1-x)
X (1+ cos®6)dxd cosé, (38)

which is the result of Blomqgvist and Ericson'® ex-
cept that they used N2=2k instead of N2=3.37« in
G,,. Note that if and only if we set n=a,x=1, which
is the condition that the asymptotic u; and u, be
orthogonal, the result obtained with the length op-
erator (28) is identical to (38). Therefore we
identify n=1 to be the consistency condition, in
the present case, for the equivalence of the length
and gradient operators. This condition introduces
some ambiguity into the interpretation of (38); the
resulting total cross sections are:

0,y =0,,(20+ 7 —321n2)
0.210 pb, if N2=3.37 and a,=5.41 fm
(39a)
=) 0.125 pb, if N2=2« and a,=5.41fm (359b)

0.079 pb, if N®=2« and a,=«"'=4.31 fm.
(39¢)

If the consistency condition is taken seriously, we
have (39¢c). Blomgqvist and Ericson!® obtained (39b).

For the purpose of a direct comparison of the
length and gradient operators, we use (39a). In
the following section, we show that unlike the
length operator, the result (39a) suffers large
variations when other refinements are introduced
into the calculation.?

B. Effect of regularization

A typical soft-core realistic wave function for the
deuteron may be expressed as

N ¢~ €N N g3 (40)
ud—m;ai - ) =J. K,

with a;=1, «a,=«, and Z},-a,- =0. Similarly we ex-
press the regularized u, as

u,= ______sm(l;:;f 6‘)Z:b‘e"’i’ (41)

i=1

with b,=1, 8,=0, and 27;b,=0.
Another kind of wave function is the hard-core
type, e.g.,

-K7
udz_l_;]; ?7_ (1 _ e-a(r-rc)) ,
"= sin(kr + 6,)

t o (1 -e®rr), for rz=v,, (42)

ug=u,=0, forr<r,.

In both cases u, must be properly normalized:
Juld®r=1~P,, where P,=4-T7% is the D-state
probability; u, and u, must be orthogonal: [u,u,dr
=0. In Table I the computed total cross sections
and their ratio to (39a) are given for four sets of
wave functions. The two soft-core wave functions
for deuteron are owing, respectively, to Hulthén!!
and to McGee.*® The two hard-core wave functions
have hard-core radii of 0.4 and 0.5 fm, respec-
tively. Only for the realistic McGee -type wave
functions are the parameters of «, not completely
determined by the orthogonality condition. In this
case the ratio 0,,/0,,(asym) are found to be insen-
sitive to variations of these parameters provided
that the effective range parameter 7, is close to
the experimental value of 1.75 fm. The param-

TABLE 1. Effect of regularization on 0, obtained with
the gradient operator.

Wave functions Oyy (Bb) 0y, /0y (asym) ?
(i) Soft core (Hulthén) 0.092 0.44
(ii) Soft core (McGee) 0.090 0.43
(iii) Hard core (¥.=0.4 fm) 0.078 0.37
(iv) Hard core (7,=0.5 fm) 0.076 0.36

?0y,(asym)=0.210 ub.
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eters of the wave functions are given in Table II.
Adler etal.?® also used Hulthén-type wave functions
and found the cross section to be 9.0 X 10°% yb, in
good agreement with (i) and (ii) in Table I. It is
seen that regularization drastically reduces the
predicted cross section. The reduction increases
with the hardness of the core. This is in sharp
contrast with the calculation in Sec. IV when the
length operator is used. There, regularization
gave only a correction of (6M,,/M,,)<10™%. This
difference can be understood by examining (23) and
(37), where the intermediate states are integrated
over for the two operators, respectively. In (23)
the integrand behaves as 1/p° for large p, where-
as in (37) the integrand behaves as 1/p? [this dif-
ferent behavior can be traced back to (13) where
the factor (p?/M)? is replaced by w,w,, when the
length operator is used]. As a result intermediate
states with energy, say above 50 MeV still con-

J

H. C. LEE AND F. C. KHANNA 14

tribute about 16% to the integral in (37). The con-
tribution from such high energy states is drastical -
ly reduced by the introduction of wave functions
regular at the origin. In contrast the length op-
erator is completely insensitive to the high energy
tail of the spectrum of intermediate states.

C. Effect of the P-wave phase shift

So far the intermediate states have been taken
to be plane waves. Here we examine the effect of
P-wave phase shifts. Due to the nature of the
gradient operator, we expect it to be sensitive to
the P-wave phase shifts where the latter is large,
i.e. in the region of 50-200 MeV; at the same
time we expect the regularization of the wave
function to dampen this sensitivity. Using (33)
and the Hulthén wave function given in Table II,
the differential cross section becomes

d?0,,=370,,{3(1+cos?0) [2H,2(x) + 3H (x) + TH,?(x)] + 3sin?0 [H *(x) + H,2(x)]} ¥(1 - x)dxd cos# , (43)
where x=w,/w, and
VATK®
Hy(x)= 317\”" S (=) @I+ DWALLLIL) [k (0) + by (1-%)], (44)
J=0
where W(1111;JL) is a Racah coefficient and &, is analogous to the function k,, defined in (37):
hy(x)= ——;——Nt " 2dz {cosé ( 1 - ) sind ( 1 22 )ljl
TE=F T ), @ex) N7 2~ a2+22) OO\ T 22~ 074 22/ 2
o n(B2+2%) -28,\ . 1 1By (B,2+2%) - B2 +2°
X [cosé,(;; - (2322_'_32)2 +8ind; | = - 2 172( Bgz+22)22 ] (45)

The phase shifts 6; (p=«z) are those of the three
triplet P-wave channels 3P, J=0,1,2, Note

that H,(y) = H,(y) =0 when the phase shifts are J in-
dependent. Using experimental phase shifts®® and
integrating numerically we have

0,, =40, Z (2L+1)f1HL2(x)x(1-x)dx

L=0,1,2

=0.096 pb (46)

which is an increase of 5% over the result [(i) in

TABLE II. Parameters for wave functions,

; (in
Type 2 a; units of «) b; Bilk)
(i) Hulthén 2 -1.0 5.73 -1.0 5.52
(ii) McGee 2 —0.64 5.73 -1.41 9.81
3 —6.62 12.84 2.66 13.89
4 15.22 17.33 66.22 15.38
5 —8.96 19.64 —-68.47 15.13
(iii) H~= C(7,=0.4 fm) 2 -1.0 6.75 -1.0 12.07
(iv) H—C(v,=0.5 fm) 2 -1.0 7.74 -1.0 15.52

2 For all cases a;=b;=1, @, =k =0.232 fm™!, ;=0.



Table I] with 6,=0. This essentially agrees with
the result of Adler etal.?® who found that the in-
clusion of phase shifts increases the cross sec-
tion by ~7%. The present result also agrees very
well with the value 0.096 ub obtained by Grechuk-
hin'® who used a potential model.

A very interesting aspect of the result of (46) is
that it is still smaller than the result of 0.118 ub
for the length operator by about 20%. Some of the
discrepancy is undoubtedly due to approximations
inherent in the wave functions. Another reason is
that nuclear current exclusive of (e/M)p may have
played an important role. For example if the
strong J dependence in §; is due to a two-body
spin-orbit force® V, (»)(F xP) - (3, +5,), then an
additional piece of current eV, ¢(¥)(¥ x &) must be
considered. However, because V, ¢ (7) is very
singular at small # the contribution of this term
to 0,, is extremely sensitive to the short range
behavior of the wave functions and the result would
therefore not be reliable. A detailed study of this
problem is outside the scope of the present investi-
gation.

VI. CROSS SECTION FROM OTHER TWO-PHOTON
PROCESSES

A. Normal two-photon modes

The cross section from all other modes is ex-
pected to be much smaller than thatof the (E1,E1)
mode. Table III lists the differential cross section
for all the normal two-photon modes of np capture.
Mode (a) describes the emission of an M1 photon
causing the transition 'S, - 35, followed by the
emission of another M1 photon due to spin re-
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orientation' in the 35, state. In mode (b) the
emission of the second photon is due to E1 brems-
strahlung of the recoiling®' deuteron. The M1
operator is given in (11) and the E1 bremsstrahlung
operator is

where P, is recoil momentum of the deuteron. The
differential cross section exhibits the character-
istic “infrared catastrophe” at x~0. Mode (c) de-
scribes the emission of two M 1 photons through
the 'S, continuum.'® The contact term (a /M)A« A
arising from minimal coupling in the nonrelativis -
tic theory gives a one-step two-photon process
distinct from the others. The integrated cross
sections for these processes are given in Table
Iv.

B. Exchange currents and exotic modes

It is known that the pion exchange currents intro-
duce a correction of ~5% to the isovector M1 ma-
trix element®® of the capture process n+p—~d+7y.
Therefore, for the present case, we expect a cor-
rection of ~5% to each M1 vertex. This implies a
correction of ~20% (~10%) to the cross section of
the modes (a) and (c) [mode (b)]. In the dominant
(E1, E1) mode, there is no correction from ex-
change currents if the length operator is used.*

A process not included in the above considera-
tion involves the emission of two photons by the
exchanged pion through the contact term (Fig. 1).
The cross section for this process is

TABLE III. Differential cross section for other normal modes.

5/2
oy, =2mav, "t (-uﬁ) (k"1—ag?~300 mb; ag=-23.7 fm;

M

By=Hp—Hn Hs=Hpthp X=w /Wy, Ng=ask, T=akK;

= 3.37

5/2
Tyy == azvn'iaf(—(;)—;) =0.219 pb.

Mode (see Sec. III)

d’0y, /1x(1 —x)dxd cos]

(a) (M1,M1)

Wy
(b) (M1, E1) e ‘7<T
(¢) (M1,M1)
f(x)~ .
3 -
Contact term 32 Tay

3211 17< )“52(3—00529)(1——2x)2

4
(1 x)2+ o X):I

o 1,< > 2(£ %) + FA1L~%) + 5(1+cos?) f () (L —x) 5

wg \ RN 2 2 2
0, 1—77 [x2+(1=x)%+2x(1 ~x)cosh]*(1 +cos?0)
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TABLE IV. Summary of results.

Initial

Mode/Remark state * Tyy (kb)
(E1, E1), length operator 38 g:(l);g(:l%) ’
(E1, E1), gradient operator H 0.096
(M1, E1 bremsstrahlung) 15, 1.1x107*
(M1,M1) O 8.7x107°
(M1,M1) 1S, 1.7x107°

Contact term

Off nucleon & 3x1078
Off pion 381 ~107°
Off “light scalar boson” ECH <107®

. 35'1 is the np triplet continuum; 1S0 is the singlet con-
tinuum,

b The error allows for uncertainties in the thermal
neutron spectrum and in the values of low energy np pa-
rameters.

¢ Restricted to photon energies 600 keV = w; <1630 keV.

2\2 2
ol ~62,<%> <%’) %:- ~10" ub, 7
where the pion-nucleon coupling constant g,2/4m

is taken to be 0.08. It has been suggested that
instead of the pion, a scalar meson® with a small
mass (m, < m,) may be exchanged between the two
nucleons; in this case the cross section corre-
sponding to Fig. 1 would be

_ g 2\2 M 2
gl ~C (-L> <— . (48)
2y T2\ 4r my
In comparing (47) with (48), the former has an
extra factor of (m,/M)* due to the pseudoscalar-

FIG. 1. Emission of two photons by the intermediate
meson via the contact term (@/M)A- A.

coupling of the pions to the nucleons. The other
factor (w,/m,) in (47) arises from the radial inte-
grals. In (48), it is advantageous if m, is small
and g°2/41r is large. However, accurate mesonic
x-ray measurements3*3° in Pb and Ba put a severe
limitation®*" on the coupling constant: g2/4n

< 10”7; and neutron-electron scattering®’ data im-
ply a lower limit of m,>0.7 MeV. Therefore we
have 02, =10"® ub.

VII. SUMMARY AND CONCLUSION

The doubly radiative capture of thermal neutrons
by protons has been discussed in detail. The lead-
ing two-photon mode is 3S! =35, +y(E1)+y(E1) for
which the capture cross section 0,, is of the order
0.1 ub. The next leading mode is 'S, —3S, +y(M1)
+¥(E1 bremsstrahlung), for which o,, is down by
3 orders of magnitude. Cross sections for other,
including some exotic, modes are even smaller.

A summary of the results is given in Table IV.

The cross section for the (E1, E1) mode was cal-
culated in considerable detail. The calculations
were divided into two parts. In the first part the
theorems of Siegert®® and Grechukhin'® were ap -
plied to reduce the dipole operator to essentially
the usual length operator ew(€ *T). For low energy
photons this operator includes the effect of all cur-
rents. It was shown that when this operator is
used the result 0,,=0.118 ub (or ¢,,=0.073 ub
when the photon energy is restricted to 600 keV
= »,=1630 keV) is very accurately determined by
only three experimentally well known parameters,
namely the binding energy w, of the deuteron, the
triplet scattering length a,, and the effective
range 7,,. The cross section depends on the last
parameter only through the overall normalization
of the deuteron wave function. It has been shown
that details such as the short range behavior of
the np wave functions and the phase shifts of the
P-wave intermediate states affect o,, by less than
1%. In the second part (e/M)]p was explicitly as-
sumed to be the current and the gradient operator
(e/M)P + € was used in the calculation. In this case
the first order result, obtained by using asymp-
totic wave functions only, is reduced by ~60%
when the wave functions are regularized at the
origin. This last result is then increased by about
5% when P-wave phase shifts are taken into ac-
count. The final result, 0,,=0.096 ub, is about
20% less than the result obtained when the length
operator is used. Furthermore, this result is not
reliable because the effect of the exchange current
has not been included.

In the last year we have seen the upper limit of
the experimental value for o,, lowered by two
orders of magnitude. Although the most recent



value (-3 +8 ub) is still 50-100 times larger than
the predicted value of 0.118 pb, it is perhaps not
being too optimistic to hope for experiment and
theory on nuclear two-photon processes to meet
on the same ground for the first time in the near
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future.
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