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Bounds on the rate of 'H(p, e+v) H in impulse approximation
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Working in impulse approximation, we derive simple bounds on the experimentally inaccessible rate of the

proton-proton reaction 'H(p, e v)'H, using only a few common and physically plausible assumptions. We
evaluate these bounds at the kilovolt energies of interest for hydrogen burning in stars and find that they

permit at most a few percent enhancement over currently accepted impulse-approximation rates. Within the
framework of the usual nonrelativistic Schrodinger-equation description of the two-nucleon interaction, this

result is obtained independent of the specific features of the two-nucleon interaction at distances less than 3

fm, provided that the energy dependence of the interaction may be neglected at the low energies in question.

NUCLEAR REACTIONS H(P, e+v); bounds on rate in impulse approximation, keV
energies, arbitrary energy-independent short-range two-nucleon interaction.

As the process which ignites thermonuclear
hydrogen burning, the proton-proton reaction
'H(p, e+ v)'H plays a crucial role in the conven-
tional picture of stars of the age and mass of our
sun. ' In the absence of direct laboratory mea-
surements, it is necessary to rely on theoretical
calculations of the rate of this reaction —the "p-p
rate, " as we shall call it hereafter. Thus far,
there has been no systematic study of the sensi-
tivity of calculated p-p rates to uncertainties in
the short-range behavior of the two-nucleon radial
functions used in the computation. Careful scrutiny
of the p-p rate calculation is now in order for two
reasons: (1) The counting rate predicted by stand-
ard solar models for the ongoing Brookhaven solar
neutrino experiment (BSNE) is fairly sensitive to
the p-p rate. For example, according to Newman
and Fowler, ' if the true p-p rate should happen to
be twice the value presently used, the theoretical
BSNE counting rate would drop from the current
4.6 or so solar neutrino units (snu) to the 1.5 snu
which represents the latest reported experimental
upper limit. ' Even a 10% increase in the p-p rate
would be significant in this context, lowering the
expected counting rate to about 3.8 snu. ' (2) Re-
cent experience with parametrizations of the un-
known short-range nonlocality in the two-nucleon
interaction by means of phase-shif t-preserving
unitary transforms' has shown that, even when
the available empirical and phenomenological con-
straints on the interaction are employed, calcu-
lated cross sections and rates for a variety of
processes involving inelastic collisions of two
nucleons are not nearly as well determined as
older computations with local potentials had sug-
gested. The radial functions produced by unitary

transforms often differ drastically from those
generated by local potentials of the sort used thus
far in calculations of the p-p rate. Hence, quali-
tative arguments which suggest that the p-p rate
should be insensitive to short-distance behavior
of the two-nucleon radial functions' lose force.

In this paper, we examine the uncertainties
associated with unknown strong short-range non-
locality of the two-nucleon interaction. In partic-
ular, we inquire whether such nonlocality can give
rise to a substantial enhancement of the p-p rate
in impulse approximation (and, thereby, to a cor-
respondingly large decrease in the predicted BSNE
counting rate). We show that this possibility can
be ruled out quite generally on the basis of a few
common and plausible assumptions.

Since there are inexhaustible supplies of phase-
shift-preserving unitary transforms of even the
simplest type, any attempt to draw general con-
clusions from a finite number of explicit calcula-
tions of p-p rates with transformed radial func-
tions is futile. Instead, we establish bounds which
circumscribe the range of variation of the p-p rate
for any transforms (i.e. , any type of nonlocality) of
a given range. To do this, we invoke the following
assumptions: (1) At low energies, the two-nucleon
interaction is represented sufficiently well by an
Hermitian potential whose energy dependence may
be neglected. (2) A reliable parametrization of the
Sp p p phase shif t at a few keV is provided by the

usual Coulomb-modified effective-range formula'
using the scattering length and effective range ex-
tracted from experimental cross sections at MeV
energies. (3) The 'S, deuteron radial function is
well determined for internucleon separations
greater than some lengthR of the order of a pion
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Compton wavelength. (4) The two-nucleon poten-
tial of assumption (1) reduces to a local potential
for distances larger than R.

The p-p rate is proportional to the magnitude
squared of a dimensionless radial matrix element
usually denoted as A(E). lt is this quantity which
we seek to bound, since it contains all the uncer-
tainties in the calculated rate once the Gamom-
Teller coupling constant and the positron Fermi
function are specified. In impulse approximation,
the conventional definition of A(E) is

A(E) =exp(f6) [kC.(q)] '(!y')'I'

dr u, (r) w pp(k, r) . (6)

Wu~& m&&k, r ~ I;„, + I,„,

( I;„,('= dr u, (r)wpp(k, r)

and the interior contribution, as yet undetermined,
ls

X ~gq X gy~ k, X dr gv pp (k,r )

where 5 is the 'So p-p phase shift at relative mo-
mentum' k =E'I'

g =(57.62k) ' is the usual Cou-
lomb strength parameter, C,'(q) =2vg [exp(2vq)
—lj ', y = 0.2316 fm ' is the inverse "deuteron
radius, " up(r) is the '8, deuteron radial function,
and happ(k, r) is the 'S, p-p scattering radial func-
tion. The normalizations used here are Ig = cA Qg

0
(6)

we have the formal upper bound

A'«) -=IA(E)l' [kC-o(n)] '(ly') (li.l pp
I"+II"~l&',

(7)

dru~'(r) =1-PD,

with P~ the deuteron D-state probability, and

ggpp(k, r) ~ v(k, r) =cos5EO(71, kr) +sin6G, (q, kr),

I~p = dv soap kyx

Equation (2) immediately gives us I~ Ill terms of
known quantities:

in which 5'o and Go are the standard regular and
irregular spherical Coulomb functions of order
zero." Having made assumption (2) of the pre-
ceding paragraph, we regard ( u)frorr&R as
known. If we know the local potential which acts
in the '8, partial wave for r & It, call it U(r), as-
sumptions (3) and (4) suffice to give us urpp(k, r)
for x&R as well. Let us suppose, for the time
being, that U(r) is known. Later, if need be, we
can study the sensitivity of our results to vari-
ations in U(r) We may the. n isolate the uncertain-
ties buried in the short-range radial functions by

mr ltHlg

dr u, (r)wpp(k, r) =I;„+I,„,,

where the known exterior contribution is

(10)

An analogous relation for I&& is obtained from the
standard Coulomb-modified effective-range iden-
tity7

= -{sin'5/[2kC, '(ri)]] „k [C,'(q) k cot6+2qkk (q)],

{where k(q) =q'P", [pn(m'+q')] ' —
luau

—0.57722j,
which is valid for any energy-independent potential,
local or nonlocal. [This is the point at which we
need assumption (1). For energy-dependent po-
tentials, the right-hand side of Eq. (11) is modi-
fied by a term in which the unknown !iort-range
potential appears explicitly. ] Now rearrangement
of Eq. (11) gives I» in terms of those quantities
w'e have assumed to be known;

Ipp= dry kr
~ o

«[u»'(k, r) —r'(k, r)] -{sin'5/[2kC, '(q)]1 — [C,'(q) k cot6+2gkk (q)] .
dk



At the energies of interest, assumption (2) allows
us to simplify Eq. (12) to

Ipp W v ~p+ 4 $Upp kpf gP kp J

-$sina6/[2C, a(t))]) rica „ (13)

%6 have evaluated these bounds using the '8,
deuteron radial function of McGee" (for which

Pn = 0.06) to represent I, (»") for»' & R and the 'So
Beid soft-core potential" as U(r ), with the range
of nonlocality R running fx'om l to 5 fm. Two sets
of effective-rRDge parameters %'Bx'6 used: those
xecommended by Noyes" as the best empirical
values, and the xathex different ones calculated

where f'pp 18 the CouloIQb-DMdif led p p effective
range and 6 is obtained from' C,'i't cot6+2tikh(ti)
=(-1/abaca)+-,'rac~i'ta, in which aac~ is the Coulomb-
modified p-p scattexing length.

Equations (7), (10), and (13) provide a simple
recipe for evaluating an upper bound on A'(E) in

impulse appx" Oximation. The input x'equlx'Bd 18

miniIDal: the p -p effective-x'ange pR1 Rmeters~ the
'S, deuteron radial function M»(r) for r & R, and the
local potential U(r) which, for» &R, represents
the nuclear 'Sc proton-proton interaction. [U(r}
does not appear explicitly on the right-hand side
of Eq. (13},but it is needed to generate tv»(k, r)
for r&R from its asymptotic form v(k, r). The
latter function is fixed by the choice of 6.] As a
byproduct, , whenever f,„,&(f»f»~'?' —in practice,
this mean8 fox'R less thRn 5 fm Gl so—%'6 Rlso
have a lower bound

by Beid fxom his potential. ' Table I presents
our results at center-of-mass energies 0.75 keg
Rnd 6 keg. The lattel enexgy corxesponds to the
Gamo% peak for the p-p reaction at the center of
the sun. Fol comparison, %'6 Sho%' ln Table II
the values of A'(E) at these energies calculated
using Eq. (1) with e»(k, r) obtained by numerical
solution of the x'adial equation %ith the 180 acid
soft-core potential for all r and either the Hei.d
soft core (Pn =0.065) or McGee (Pn =0.06) u»(7) '».
Our numbers agree %ith other impulse-approxi, -
mation estimates Gf x'ecent vtntage except fox" one
RppareDt discrepancy: GRX'1 Rnd HuffIQRD x'epol t
A'(E =0) =7.23 for Beid soft core»a» and t»». This
exceeds oui" Qppex' bGQnd for R = 1 fm %'1th the Heid
effective-range parameters and Rlso disagrees With
our G%D calculations vrith these same radial func-
tions, Rs 01Ry be 866D f lorn the second line of
Table H. The entx'168 Gf Table II Rx'6 all consistent
%ith the values adopted as best estimates by Bah-
call and May [Eq. (22) of theix' paper cited in Bef.
16], namely A'(Z) =(7.06+0.16)[1+2.2Z{MeV)].

As Table I shows, the uppex bound provided by
Eqs. (7), (10), and (13) is remarkably stringent. "
To %'hat degx'ee do these numbers reflect specific
features of the models we used for U(r) and u»(»)'?
For distance8 gxeater than 3 fm, all meson-the-
Gl y potentials Rnd reRllstlc phenomenologlcal
t%o-nucleon potentials are indistinguishable since
the universal one-pion-exchange tail dominates in
this x'ange. Similarly, all comlnonly used 381
deutelon radial functions Rx'6 vlrtQRHy ldentlcal
at these distances. Thus, the entries in the last
three columns of TRble I Rx'6 essentially Inodel
independeDt. They I'ef lect the coDstx'Rlnts lmpo86d
by the empixical 180 phase shift, the deuteron D-

TABLE I. UppeI" BQd lo%'el bounds on A (F) Hl iInpulse Bppx'oxiIQRtion foI" centex'-of-IQ3. ss
enelgies E =0.75 keV 8Dd E =6 keV.

1.0 2.0 3.0 4.0

7.053
6.659

7.066
6.579

7.074
4.093

7.212
0.634

7.418
0.065

Upper bound
Lo%'e x' bound

Uppex bound
Lour bound

7.159
6.664

7.306
0.636

7.526
0.065

7.514
0.064

~R is the xadius inside of which the two-nucleon potential. is left unspecified.
b Effective-range parameters from Ref. 13: ec =-7.823 fm, r»c ——2.794 fm.' Effective-range parameters from Ref. 12: a» =-7.78 fm, r»c =2.72 fm.
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TABLE H. A2(E) calculated from Eq. (1) using the
Reid soft-core ~80 P-P radial function with the Held soft-
core or MeGee S& deuteron radial function.

Center-of-mass energy E 0.75 keV 6 keV

~ Calculated with the ~8& deuteron radial function of
Ref. 11 (I a=0.06).

~ Calculated with the 38& deuteron radial function of
Ref. 12 P ~=0.065).

state probability, and the longest-ranged (and
presumably best understood) components of the
nucleon-nucleon interaction. In impulse approxi-
mation, then, there is no possibility that the p-p
rate might be enhanced by more than a few percent,
no matter how exotic a nonlocality characterizes
the "true" short-range two-nucleon interaction,
provided that the energy dependence of the inter-
action may be neglected at the extremely low en-
ergies of astrophysical interest. Qn the other
hand, even vrith the unknown nonlocality confined
within l fm, our lower bounds permit a substantial
decrease in A (E), so that it is conceivable that
the discrepancy between the predicted and (un)ob-
served BSNE counting rate is somewhat worse than
current estimates of the p-p rate have led us to
believe. %e shall not pursue this possibility here.

To understand why our upyer bounds leave little
room for increasing A'(E), it is only necessary to
recall that they are based on the Schwartz inequal-
ity WI'ltiell Rllove Eq. (7). This lllequa11ty becomes
an equality if Ill»(k, r) is some constant multiple of
u~(r) over the interval r =0 to r =R. For commonly
used local potentials, these two functions are in

fact very similar in shape at short distances.
Although our analysis clarifies the status of

impulse-approximation calculations of the p-p
rate, it leaves two major questions unanswered.
First, by how much do exchange currents alter
the impulse-approximation results~ According
to Gari and Huffman, "they increase A'(E) by
about 10% over its impulse-approximation value
%'hen Beld soft-core radial functions are used to
calculate their contributions. This figure may be
changed appreciably if unitary-transformed radial
functions are used instead. " Second, we have
relied on the usual Coulomb-modified effective-
range parametrization to extrapolate 5 from the
lowest energies at which p-p elastic-scattering
cross sections have been measured —380 keg to
several MeV —down to the experimentally inac-
cessible range of a few keV. A better extrapola-
tion is provided by the Coulomb- and vacuum-
polarization-modified effective-range expansion
of Heller. 2 Either way, the reliability of the ex-
trapolation bears some investigation.
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