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The power law falloff of the nuclear form factor F{q) and single particle momentum distribution n(q) for
large q are discussed. For F(q) we show that it is q/A that must be large for the asymptotic form to be

valid. In a one-dimensional model with 5 function forces the form factor is shown to fall exponentially with q
if q is large but q/A is not. Similar behavior is suggested for n{q).

NUCLEAR STRUCTURE Large momentum behavior of nuclear form factor and

single particle momentum distribution in general and ina one-dimensional model.

I. INTRODUCTION

"Fermi motion" —the motion of nucleons in the
nucleus —is caused by nucleon confinement, in-
teractions, and the Pauli principle. Although
it is of great importance in understanding many
medium energy nuclear processes, particularly
those involving large momentum transfers, sur-
prisingly little is known about the general fea-
tures of the momentum distribution, particularly
for large momenta. In this paper we study the
nuclear form factor E(q) and the one particle
momentum distribution n(q) in general and in a
simple model to determine the large q behavior,
the scale that determines whether q is "large, "
and the behavior for intermediate q. '

The single particle momentum distribution
n(q) is the probability density for finding a pa.r-
ticle of momentum q (with respect to the center
of mass momentum) in the nucleus. It is there-
fore just the square of the center of mass moment-
um space bound state wave function integrated
over all but one momentum. The form factor
E(q) is the Fourier transform of the one pa, rticle
position density. F and n are not the same be-
cause the densities involve the square of the wave
function. E(q) can also be thought of as the am-
plitude for giving a particle in the nucleus an
additional momentum q and returning it to the
nucleus so that the entire nucleus recoils with
momentum q. This is shown schematically in
Fig. 1.

In determining how F and n behave for large
q, and deciding what scale characterizes the
onset of this asymptotic behavior, we use the
Schrodinger equation satisfied by the bound state
wave function g:

P = —(B+K) 'Vg = —G, Vg,

E(q) - [(I/q')v (q)]" ', (2)

where we have not included complications that
can arise from the Pauli principle' or from angu-
lar factors that introduce logarithmic terms. It
is clear from the discussion that it is not q large
compared with typical momenta of the problem
that is needed for (2) to be valid, but q/A large.
For A large there is therefore an interesting and

important region of q large compared with typical
momenta but q/A not large. In this regime we
need not expect the polynomial falloff as impl. ied
by (2),' but we still expect E(q) to fall rapidly as
the momentum q branches out and distributes
itself among the A —1 other particles. We show
that, for a simple soluble one-dimensional model
of particles interacting with 6-function forces,
E(q) decreases like e "' in this regime even
though F is strictly a function of q . This is dis-
cussed in Sec. II while the use of Feynman graph
methods to obtain the one-dimensional results
is discussed in Appendix A.

For the single particle momentum distribution
n(q), the large q behavior has not been previously
discussed. ' It is clear that in order to produce

where J3 is the binding energy, K the kinetic ener-
gy, and V the sum of pair potentials (assumed
local) v„ .

Consider first the form factor. The "struck"
particle in Fig. 1 must share its additional mo-
mentum q with the A —1 other nucleons. Finally
each nucleon must acquire an additional momentum
of q/A, so that the entire nucleus has momentum

q. This sharing requires at leastA —1 iterations
of the Schrodinger equation. If q is sufficiently
large G, -l/q' and V-v(q) where v is the Fourier
transform of the pair-potential v. Hence we get
the well known result' that for very large q
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&(e)= ( It(* *„** )I'"'*'e
~ f»r Q»r.

a=1 i=1

PIG. l. Schematic Iepresentation of the form factor
&(e)

a particl. e of momentum q in the center' of mass
wave function, onl. y one other nucleon need have
momentum -q, and hence only one iteration of
(1) is needed. Since n(q) involves the square of
the wave function, we have n(q) - [ I/q'G(q)]' for
large q. This result is obtained in more detail
in Sec. III. Unfortunately we have no simple argu-
ment to determine the domain of q for which this
limiting form is valid, although in a simple Har-
tree model we find exponential falloff for n(q) as
for E(q). As we discuss in Appendix B, we cannot
obtain a closed form for n(q) in our simple one-
dimensional model, and hence investigate these
questions directly. In Sec. IV we px'esent a brief
summary.

II. FORM FACTOR

%e now turn to a discussion of the form factor
of the bound state of A particles moving in one
dimension and interacting with ~ function fox ces.
The Hamiltonian is

(g =2m =1). The center of mass solution for the
bound state' is (there is only one bound state)

r)(»„», . . .»„)=»re»p(-g g I», —;I/], (4)
!&i

where N is the normalization. The binding energy
lS

In terms of g„ the form factor can be written

2«(P —q —P') &(q)

g 8 1exp g p -p — x! dxi,
A i=1

If we integrate with respect to p' —P, we get

E can also be expressed in terms of the momentum
space solution Q. As

&(e)= f ('( e„,e. . . e)(r(e, e, e, . . .e„)

.e(pe) {'I "'

which is related to the diagrammatic discussion
of E given in the Introduction. Equation (I) shows
that F is the Fouriex transform of the one particle
x-space density defined by

ColRgex'o Rnd Degasperls hRve given R closed
form expression for the density

p{x)= g a„exp(- gnA ~ x( /2)

with the coefficients N„known. Therefore we
have

a„n&(e)=((& Q * (~pe).
The coefficients a„are complicated and further
direct manipulation of (ll) is difficult. However,
it is well. known that for very large q, for any
regular potential, and in any number of dimen-
sions, F has the asymptotic behavior of E(I. (2).
For the case of 5 forces 8(q) is a constant and
hence {2) requires that F-q '(" ') for large q.
With (11}this can only be achieved if the s„'s
are such that

»(e)=)r( g (e'ee'»') ',

where M is a normalization constant and we have
written qA/2 =l(.. Since the system does not
saturate [see (5)], it is (qA/2) ' that is the size
of the system. In the Appendix we show how a
Feynman diagram method can be used to obtain
(12) directly without recourse to the p of Colagero
and Degasperis. Equation {12}can also be written

&(e)= Q (( e'r'e*»*) ',

where we have used the normalization F(O) = 1
to fix M. As we have emphasized elsewhere and
discussed in the Introduction, this result makes
explicit the fact that the asymptotic domain of
F, where (2) holds is not q'» A.', but (q /A)'» X'.
This follows in general from the fact that in order
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to communicate its momentum "kick" q to the
other nucleons and add q to the momentum of the
entire nucleus, the struck nucleon gives each
of the A —1 others a momentum q /A on the aver-
age. For large A there is an important regime
where q'» X2» (q/A)'. In that case the upper
limit of the product in (13) can be extended to

to give'
ao

m

F(q) —= II (1+q /n'x2) ' = —sinh — . (14)
A. A,

Hence, F(q) in this model can be written in closed
form for (q/A —1)2«12. If q'» X', F has a re-
gime of exponential decrease in q, that is F
-qe ', not in q' in spite of the fact that F is
a function of q'.

Colagero and Degasperis' also obtain the Har-
tree solution for the one-dimensional. D problem.
The Hartree form for p(x) is an essential part
of that solution and from it we can easily calcu-
late the Hartree F. It is exactly the sinh ' form
in (14). This is not surprising since the terms
neglected in obtaining (14) are just those associ-
ated with nuclear recoil, but in the Hartree ap-
proximation the nucleus cannot recoil.

How will features of the "real world" affect the
answer (13) or the approximate form (14)'? If
the potential is not of zero range, its form will
enter and this will greatly complicate the results
in a way dependent on the dynamics, but will also

lead to a faster rate of falloff for F. The Pauli
principle will also increase the rate of falloff
as has been shown in explicit cases' and as is
clear from general. arguments. The large q be-
havior of F depends on the small distance be-
havior of the wave function and the effect of the
Pauli principle is to make the wave function van-
ish more rapidly at small interparticle separa-
tions, which in turn means faster q decrease.
These two effects together make the details of
F more difficult to study, but they make F de-
crease more rapidly with q and may therefore
extend the range of validity of the approximation
(14). Of course for small q, (13) is not generally
valid since the small q behavior depends entirely
on the dynamical details. Finally the fact that
the "real" form factor is calculated in three di-
mensions rather than one dimension wil. l not af-
fect the power law behavior but can introduce
logarithmic factors that come from the angular
integrals.

III. MOMENTUM DISTRIBUTION

The single particle momentum distribution n(q)
is the probability of finding a particle of moment-
um q in a given quantum mechanical state. In
terms of the center of mass bound state moment-
um space wave function of that state (now in three
dimensions) it can be written

(15)

or in terms of the r-space center of mass wave function

A

n(q) = e' ' ' (j)*(r,+ —,r', r„r2. . .r„)(j)(r, ——,
' r', r„r,. . . r„)5 — r, d'r' II d'r,

i=1 i=1

To study n(q) for large q we change variables in (15) to obtain

, A 3

n(q)= I e(q, p„-q, p„p, p~)l 5 p; g (3,)',

(18)

(j) satisfies the homogeneous Schrddinger equation (1). If we concentrate on the v» term in that equation,
taking all particles to have the same mass and putting h =2m =1, we obtain

-1
4(q, p„-q, p2, p, .p~)= &+q'+(p. -q)'+ P,'

c=S

3d k'.2 ~( p2 x p2 p2. . ~ p~) —~0 Q v;& (j)
(2 7T) i &i

(&j. ,2)
(18)

subject to Q, —2p, =0. For very large q the first
term on the right goes to I/q2v»(q)I, where I
is a finite function of the p, 's and where v (q) is
the Fourier transform of the two-body potential

v» assumed to be local. Hence, we obtain

n(q) —1/q '[ v (q)]'

for large q. Thus it is the pair correlations that



ultimately determine the large q behavior of n.
Unfortunately except for noting that this result
depends on selecting one from the —,'A(A —1) terms
in (18), we have no simple way of setting the q
scale in n, that is of determining whether it is
q or q /A that must be large, and therefore of
deciding when the asymptotic regime is reached.

%e turn now to the one-dimensional. model. of
See. II to see what insight we can gain there. %e
see immediately from (16) that n(q) is not the
Fourier transform of p(&), but involves a con-
volution. This hRppens, of course, becRuse the
densities are quadratic in the wave functions. Un-
fortunately we are not able to obtain a simple
closed form expression for the momentum dis-
tribution n(q) in the one-dimensional model. In
Appendix 8 we discuss the technical problems
in more detail and demonstrate expl. ieitly that n
satisfies (19) for this case (recall that for 5 forces
8 is constant) using Feynman graph methods. It
is simple to get n(q) for the Hartree solution of
the one-dimensional, problem as given by Colagero
and Degasperis. %e find

n(q) =N cosh-7q t'20)

A.

where N is a normalization and ~ the same mo-
menta range that enters in (12). Hence, we see
again that neglecting the constraint of center of
mass motion gives a. simple form that for l.arge
q falls exponential, ly in q even though & is a func-
tion of q'. Unfortunately we do not know over
what range of q (20) is valid.

that it is q/A that must be large for (2) to apply
and in a simpl. e one-dimensional model with 5
function forces we show that q /A is not large
compared with the momenta seal. e of the problem,
but q is E(q)- qe ', (14). The ultimate impor-
tance of the polynomial falloff when q /A ia large
18 RssoclRted with nucleRr recoH. Rnd dlsRppeRrs
in a Hartree model. that neglects that recoil. For
n(q) we are not able to set the scale of "large"
for q or to obtain its form in the one-dimensional
model, but again the Hartree result gives ex-
ponential falloff. In the Appendixes we show how
Feynman graph methods can be used to obtain
I' and discuss n in the one-dimensional. Case.

These results have application in indicating
appropriate parametrizations for "Fermi motion"
in a wide class of large momentum transfer me-
dium energy nucl. ear physics exampl. es.'

I would like to thank J. Negele for bringing Ref.
6 to my a.ttention and R. M. %'oloshyn for em-
phasizing the importance of the Hartree results
in thRt work.

APPENDIX A: FORM FACTOR BY FEYNMAN
GRAPH METHOD3

In this Appendix we obtain (13) for (7) with (4)
by interpreting (7) as a Feynman graph. We note
that the correlation factors in the wave function
exp(- X( x, —xI ( ) are one-di. nens ional Green's
functions, which is not surprising since they come
from solving a problem with 6 function interac-
tions. Using the identity

By using the homogeneous SehrMinger equation
(1) satisfied by a many-body bound state, we dis-
cuss the large momentum form of the bound state
form factor E(q) (2) and the single particle mo-
mentum dIstrlbutlon n(q) (19). FOI' E we sllow

(Al)

we see that each e ~"~ factor corresponds to a.

propagator of "mass" I'X If we u.se (4) and (Al)
in (6) and do the x integrals we obtain

2II5(p —q —p')E(q) =g "i" "~'N' dk.

,.„,(2II) (k;,'+-,'g')

x2g5 q —Q+ k„. 2m'5 Q- k~+ (A2)

where we have defined p-p' AQ. Equation (A2) represents a Feynman graph in which there areA points
or vertices. At point 1 a momentum q —Q [ = (A —l)Q] enters whiie a momentum Q flows out at each of
the other A —1 points 2, 3, . . .A. Each pair of points is connected by a propagator (II„.'+-,'g') '. The 5
functions insure momentum conservation at each vertex. There are A —1 conditions among the k;& im-
posed by the 5 functions (the remaining 6 is over all momentum conservation q AQ), and they can be used
to ehminate A —1 k, , For example if we use the 6 functions to eliminate the A —1 k» we get (canceling
the overall conserving & but now remembering that q AQ):

dk . A 2 -1
E(q) =g"i" '~~2M' '", II, Q+ }'I,„— II„, + —,'q'

2II (II„'+-,'q') „, 1
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FIG. 2. Feynman graph for the four-body form factor
corresponding to Eq. (A3).

The I'emRinlng 4' lntegx'Rls cRQ now be done by
contour integration (since 0 runs from —~ to ~).
The integrand has only simple poles in the k's
and the result of the successive 0 integrations
thexefox'e l.eads to a meromorphic function of Q
(that is a ratio of polynomials). In particular no

squRre x'oot ox' logRrlthmlc functions cRQ develop.
In fact it must be a ratio of polynomials in Q'
since E ls R function of Q . Fox' vex'y lRrge Q,
F-Q 'i" 'I as can be seen from (A3). Some cau-
tion is required here. The initial impulse is to
say that for Q large, the last product factor in.

(A3) becomes 'Q Rlld since the I'elllRllllllg

integral factor converges, that proves the result.
The difficulty is that even for Q large some k„
in the bracket can also be of order Q so that the
factor Q+g,":,III;„-Q,"„„)t„,is of order 1, in
which case that k va, ll make one of the A,. + &q2

terms of order Q'. Since all contributions enter
with a positive sign, they cannot cancel and hence
'tile leRdillg IR1'ge 'Q llellRvlor of (A3) ls Rs ex-
pected and is given by (2) [recall v(q) = constant
for 5 forces]. However, the complication dis-
cussed above makes it very difficult to extract
the coefficient of Q

'~" '~.

Although the integral (A3) can be done, it is
very complicated. However, it is straightforward
to find all its singulax'ities by the methods of
Landau. ' Since we know E(0) = 1, and that E is
meromorphic with asymptotic behavior Q

2~" '~,
if we can show that it has only' —1 simple poles
in Q2 and locate them, we have found E. It then
has the form

In fact these are precisel. y the conditions given
by (ll) with Q„' = —,'(gn)', n =I, . . .A —1, but we
can al.so obtain this result directly by Landau
analysis of (A3). Rather than introduce the Feyn-
man parametrimation of the denominators in (A3)
and proceed with a complicated algebraic analysis,
let us take a simple example, the four-body case,
and discuss the problem graphically. The four-
body form factor graph corresponding to (A3) is
shown in Fig. 2, where each internal line cor-
responds to a propagator of "mass" m =iq/(2)~'
The leading singulaxities of this graph cox respond
to the reduced diagrams obtained by bringing
vertices together. This corresponds to setting
the Feynman parameter associated with the l.ine
to zero or in the electrical analog to short cir-
cuiting the line. The inequivalent reduced graphs
obtained from Fig. 2 are shown in Figs. 3(a)-3(c).
They all. corx espond to threshold singularities, and
these come at

(3Q')'=(3m'), Q'=m', for Fig. 3(a)

(2Q')' =(4m)', Q' =4m', for Fig. 3(b)

Q' =(3m)', Q' =9m~, for Fig. 3(c).

For the A particle gx'aph the generalization is
now clear. There are A —1 x'educed graphs cox'-
responding to bringing 0, 1, 2, . . .A. —2 of the Q
legs up to the (A —1) Q vertex and contracting
the remaining Q legs at the bottom. Thus there
are exactly A- 1 reduced graphs. If n legs are left
at the bottom in a particular reduced graph, there
are n(+A- 1 —n)n intermediate lines. Hence, the
singularity comes at Q' = (A —n)'m', n = 1, 2, . . .A
—1. That there are no other singularities follows
from a detailed analysis of the Landau equations,
wlllch ls vex'y technlcRl ln general and ls Qot
strictly required here given (11). That the singu-
larities are all poles fol. lows from the fact that
the function is mexomorphic; that they are all
simple poles follows from the fact that al. l. thresh-
old singularities in one dimension are simpl. e

where -Q„' is the location of the nth pole of E. FIG. 3. Contractions of the gxaph of Fig, 2.
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poles. To see this consider the phase space in
one dimension for producing n equal mass par-
ticles of total momentum P,:

((~')= ll )'(( '- ')4 5 (. (—), (&())
(=1 =1

=Po

The threshold behavior can be obtained from the
dispersion rel.ation

1 p(s')ds' (2m) "2(nm)
v .' s' —s (nm)' —s

Hence, we have established (13).

APPENDIX B: MOMENTUM DISTRIBUTION BY
FEYNMAN GRAPH METHODS

In this Appendix we discuss application of the
Feynman graph methods of Appendix A to the
calculation of the momentum distribution for the
one-dimensional. problem with 6 function forces
described in Sec. II. We have in terms of (16)
and (4)

A, A

n(q)=&'
J

e""'~ — «g «' II«g exp-4g Q (l«i+a«'-«&I+I«i-2«'-«(I)+2 Q I«(-«, l . (81)
C=1 i=2 i&9

If we introduce the momentum representation for the 6 function

x] = ' exp t x] (82)

and the momentum representation for the correlation functions (Al), we obtain for (81), after doing the
x integrals:

~A-»&»-4~ - du ~ dk. 1 " dk dk' 1

x2vt) 2q+ (k,',. —(I,„.) 2v6 —+ (k'„+k„)
5=2

(83)

This complicated expression represents a Feyn-
man graph with A —1 vertices 2, 3, . . .A. and two
vertices 1 and 1'. Each pair of vertices of the
set 2, 3, . . .A is connected by a propagator (k,&'
+-, g') '. From each point 1 (or 1') to each point
2, 3, . . .A there is a propagator {k„'+—,', g') '
[or (k,", + —,', g') ']. Momentum q enters at point
1 and leaves at 1'. The various 6 functions insure
momenta conservation at the vertices. The extra
k' integral removes the overall momentum con-
serving & function one normally associates with
a Feynman graph. Graphs for the three- and
four-particle cases are shown in Fig. 4. For the
three-particle case, explicit calculation gives

¹(q'+13g')
(q'+ -'g')'(q'+ g') ' (84)

where ¹ is a constant. From {84)we see that
there is a double pole at q'= —4g2, a single pole
at q' = -g', but a zero at q' = —13g2 so that the
entire result is -I/q» for large q. This large
q behavior is expected from (19) recalling that
v(q) is a constant for 5 function forces. The double
pole corresponds to the reduced graph obtained

(b)
I'IG. 4. Feynman graph for the momentum distribu-

tion n(q) corresponding to Eq. (B3) for the (a) three-
body and (b) four-body cases. The double lines corres-
pond to propagators of "mass squared" —4g, the
single lines to -~g .1



R. D. AMADO

FIG. 5. Contractions of the graphs for n(q). (a) and

(b) are the contractions of the three-body graph Fig.
4(a). (c) is the leading contraction of the general
A-body graph.

by joining points 2 and 5 in Fig. 4(a) while the
other pole comes from collapsing the lines 1-2
and 1'-3. These reduced graphs are shown in

Figs. 5(a) and 5(b). It is clear that in general
n(q) will have a double pole at q' = —[(A —l)4g')'
from collapsing theA —2 central points together
as shown in Fig. 5(c). This is always its first

singularity. There are then further poles (n is mero-
morphic for the same reason as F) that come
from the many ways of collapsing the k„and k,',
lines. It is a simple matter to locate all these
poles. They come for q' more negative than the
double pole, but since n(q)- I/q for very large
q there are just as many zeros and we have not
found a way to locate them. Ne cannot determine
if, as in the three-body case, the zeros all come
for q2 more negative than the last pole. If they
did that would show that the 1/q' region is only
important for (q/A)' large. However, we have
no general form for n(q)

To show that indeed (BS) goes like q
' for large

q we note that the momentum q entering at 1 need
only be carried to the center by one propagator,
for instance 0„. If it is then carried out by 0,',-,
none of the 0,& (j&f&1) are involved. Hence, only
two propagators are of order 1/q' and n -q '. As
we discussed in Appendix A, care is needed in
this argument and in particular it cannot be used
simply to extract the coefficient of q ', but be-
cause all propagators are positive there is no
possibility of cancellation and the 1/q' behavior
is established.
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