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Two-quasiparticle-plus-rotor bandmixing calculations have been performed to ascertain whether they can
reproduce the phenomena of backbending and anomalous negative parity bands which have been observed in
several even-even nuclei. The consequences of this model are discussed in detail for "Er and some results for
' 'Pd are presented. The calculations reproduce the observed spectra and electromagnetic decay properties
demonstrating the importance of the Stephens and Simon decoupling model. A new coupling scheme clearly
emerges, for high-spin two-quasiparticle states at intermediate deformation, where both the magnitude of the
intrinsic spin of the particles and its projection on the axis of rotation are approximately good quantum
numbers. The residual two-quasiparticle interaction has been shown to have little influence on the high-spin
behavior.

NUCLEAR STRUCTURE 5 Er and Pd; caLcuLated E„, wave functions, and
electromagnetic properties of two-quasiparticle bands; demonstrated the ap-

plicability of the Coriolis decoupling model. .

I. INTRODUCTION

One intriguing result of recent studies of high-
spin states in nuclei has been the discovery' of the
anomalous behavior of the nuclear moment of
inertia at high spin, commonly called "backbend-
ing. '" ' This dramatic deviation from simple rota-
tional behavior stimulated an intensive theoretical
investigation of this phenomenon. ' ' Experimental
evidence strongly suggests that backbending is a
manifestation of the intersection of the ground
state band with another rotational band which pos-
sesses a larger moment of inertia. Coriolis anti-
pairing' and Coriolis decoupling' have emerged
as the two mechanisms most likely to produce the
band intersecting the ground state band.

The moment of inertia in nuclei is about half the
rigid rotor value due to the presence of the pairing
interaction. Mottelson and Valatin' proposed that
the Coriolis force could cause a sudden phase
transition at sufficiently high angular momentum,
resulting in a sudden increase in the moment of inertia,
that is, the Coriolis antipairing mechanism. This
is analogous to the superconducting to normal
phase transition which occurs for a superconductor
in a magnetic field, i.e. , the Meissner effect.
However, it is not clear that an exact analogy with
a superconductor can be made. Electrons in a
superconductor move in a highly degenerate con-
duction band, and supereonducting properties de-
pend strongly on this degeneracy. In a nucleus,
however, the nucleons are bound in single-par-
ticle orbits separated from each other by energies
eornparable to the pairing energies, making the
possibility of a sudden coherent pairing breakdown
less likely. It is equally probable that only one

or two pairs are broken at a time.
Stephens and Simon' attributed the observed

backbending to the intersection of the ground state
rotational band with a Coriolis decoupled rotation-
al band based on states for which only one pair of
nucleons is broken, i.e. , the so-called two-quasi-
particle (2qp) states. The Coriolis force favors
alignment of the angular momentum of the unpaired
nucleons along the axis of rotation. Coriolis de-
coupling is a well known phenomenon in odd-A-
nuclei and the decoupling is particularly large for
particles in high j, low 0 orbitals where the
Coriolis matrix elements are largest. The strength
of the Coriolis force increases with Mcreasing
spin and may be sufficient to depress the high-
spin members of the decoupled two-quasiparticle
rota. tional bend below the zero-quasiparticle
ground state rotational band. The moment of in-
ertia of the yrast states (lowest energy state for
each spin and parity) will then indicate an anomaly
at the spin value where the decoupled two-quasi-
particle band intersects the zero-quasiparticle
ground state band. Recent evidence"" supports
this Coriolis decoupling picture.

The original paper of Stephens and Simon' on
backbending in rare earth nuclei attributed the ob-
served backbending to decoupled two-quasineutron
configurations in the low 0 i»» orbitals. It is
natural to expect similar behavior for particles in
other high-j orbitals. In addition, negative-parity
decoupled two-quasiparticle bands are expected
to occur at similar energies to the positive-parity
two-quasiparticle bands. In fact, negative-parity
decoupled bands and extreme backbending have
been observed' in ""Ba even though the i/3/g
orbital is not active for these nuclei. This ob-
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servation prompted us to make a quantitative com-
paxison of the barium data with the predictions
of the Coriolis decoupling model and remarkably
good agreement was obtained. ""This model ex-
plained both the positive- and negative-parity bands
in addition to known i.someric states. " Similar
positive and negative decoupled band behavior ap-
pears to occur"' in '0 Pd and "Er, suggesting
that Coxiolis decoupling may be an important phen-
omenon in many nuclei. The purpose of the pres-
ent paper is to show that the two-quaisparticle
plus-rotor model can quantitatively reproduce the
observed decoupled band behavior in '"Er and
'"Pd without resort to detailed parameter search-
ing, and to study the consequences of this
model.

Although both the Stephens and Simon' (SS) and
the present calculations a,re based on the same
model, the two calculations differ in the following
respects. (l) The present calculations consider
both positive- Rnd negative-parity bands bRsed on
both protons Rnd neutrons in several shells in
contrast to SS, who concentrate on positive-parity
bands due to neutrons in the i»» orbit. (2) Con-
figurations based on the most important five to
eight Nilsson orbitals closest to the Fermi level
were included in the present calculation. In con-
trast, SS restricted their calculations to all seven
Nilsson orbitals based on the i»» neutron orbit.
The present truncation scheme is most appropriate
when Coriolis decoupling is incomplete, i.e. , for
states with I~20. These are the conditions ap-
plicable to the present discussion. The SS trunca-
tion scheme works best for extremely high spins
when the Coriolis decoupling is almost complete.
(3) The interaction between the two-quasiparticle
(2qp), Oqp, and 4qp states is very weak„ therefore
only 2qp configurations were considered explicit-
ly in the present calculations. The Oqp, 2qp, and
4qp states were explicitly included by SS (4) A
variable moment of inertia taken from the ground
state band was used in the present calculations to
compensate for Coriolis antipairing effects. A
fixed moment of inertia was used by SS. (5) The
influence of the residual 2qp interaction and spur-
ious state effects were considered in the present
work and were omitted by SS.

Section II describes the theory behind the Corio
lis decoupling model. The consequences of this
model Rx'e described in detail ln Sec. IG for the
nucleus "Er because this nucleus exhibits the
essential features of decoupling and appreciable
experimental data on its yrast bands are avail-
able." The predictions of this model are similar
for different regions of the periodic table, and thus
Sec. IV gives a brief summary of the consequences
when the model is applied to the nucleus ' ~Pd.

The general conclusions derived from this woxk
are given in Sec. V.

II. THEORY

A. The Hamiltonian

The Hamiltonian describing the system of total
angular momentum I which consists of two part-
icles in orbits j, and j, coupled to an axially sym-
metric core rotating with angular momentum R
can be written as"

H =H, + (5'/M)R',

8=I- J,
J=3y+ 32 ~

a, =a, , (l)+ff, , {2)+a„„

(la)

(lb)

(lc)

(ld)

I axis

5 axis

FIG. 1. Pictorial representation of the different spina,
axes, and projections discussed in text.

whexe I, 8, J, j„and j, are vector operators.
H, is the single particle Hamiltonian and H„, is
the residual two-body Hamiltonian. The angular
momentum coupling and the projections of the
angular momenta on the different axes are defined
in Fig. 1.
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B. Basis states

Strong coupling wave functions" were chosen as
the basis states for the system, since the different
parts of the Hamiltonian H have a simple form in
this space; i.e. ,

1/2

motion. The second term in the bracket accounts
for the axial symmetry where the operator R,
corresponds to a 180' rotation about an axis in the
1-2 plane (see Fig. 1). The product wave function
in the intrinsic frame (X"~X"&)„is taken to be anti-
symmetric with respect to exchange of the two
particles, i.e.,

+It,(D„',)It (X" X+)„],
Qg

1 —Pgg Ay Qp(X~'Xs'~A [2(1+6 6 )]1/2 Xn'XP
o.'P "0(&g

(3)

(2)

with the constraint that K=A, +0, and K 0. The
D„E are the usual rotation matrices, "and the
y" are the solutions of H, ~ with the projection of

j on the symmetry axis (j,) =0 being a constant of

where P» is the exchange operator.
If the single-particle wave function in the de-

formed well y" is expanded in terms of solutions
for a spherical potential, i.e., yj", then the wave
function becomes

1/2
~mKn fl &=

$6& ~ . ja jq ~I(. jy ja
gA1 goz[DI (Xolxn&) + ( )l+f&+J&+2K Dl (X n'X W) ])If-E jg jg A

jija
(4)

C. H, )

The rotational part of the Hamiltonian can be written in the intrinsic frame of reference as

= —Arot 28

2
= —Gi(i+1)-K ] —[I,J +I JJ+[(j,' —fl, ')+(j,'- fl.')+(j„j.+j,j.)]], (5)

I, I x,"& = [(j+&)(j+&+1)]'"
l x,""),

I, lD„r& = [(I+K)(i+K+1)]'~ )D„x„&.

(6a)

(6b)

D. H„

The Nilsson model was chosen to describe H, ~ .
The single-particle eigenvalues and eigenfunctions
for the model were taken from the calculations
of Chi." The oscillator constant was taken to be
Re =41/A'~' MeV and the spin-orbit parameter
K=0.05. The parameter p, for the 1 l term was
taken equal to 0.625 and 0.630 for the N =4 and 5

proton oscillator shells, respectively, and 0.450,

where the operators are I,=I, ziI, and J—;=—J„+iJ„.
The quantity in the first bracket of Eq. (5) is easily
recognized as the diagonal term giving rise to the
normal I(I+ 1) spacing for rota, tional bands ba, sed
on two particles coupled with the projection of J
on the symmetry axis (3 axis) equal to K. The
second term is the particle-rotation coupling, or
Coriolis term, while the last square bracket con-
tains the two-particle analog of the so called
"recoil" term, usually ignored in one-particle cal-
culations. The evaluation of the matrix elements
of H, is straightforward in this space by recalling
that

0.450, and 0.448 for the N=4, 5, and 6 neutron
oscillator shells, respectively.

E. Quasiparticle transformation

The residual nucleon-nucleon interaction mani-
fests itself not only in the interaction between the
two valence nucleons H„„which is included ex-
plicitly in the Hamiltonian [Eq. (1)], but also in the
interaction between the valence nucleons and the
nucleons in the core. This latter effect was taken
into account by assuming the pairing interaction
and using the simplest elements of the BCS approx-
imation, "i.e., by making the usual transformation
to quasiparticles.

This transformation is straightforward for one-
body operators. The matrix elements of j,' and

j,', however, have nonzero two-body parts after
the quasiparticle transformation. Fortunately,
these operators only occur in the recoil term of
the Hamiltonian, which is significantly smaller
than the rotation particle coupling term for high-
spin states. Therefore, the matrix elements of

j,' and j,' were evaluated assuming they were one-
body operators. It can be shown that this approxi-
mation introduces less than a 20% uncertainty in
these matrix elements.
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F. Residual two-quasiparticle interaction H. t

The residual interaction between the two quasi-
particles is the most complex part of the Hamil-
tonian to evaluate. Fortunately, the Coriolis ma-
trix elements can be an order of magnitude larger
than the matrix elements of the residual. two-quasi-
particle interactio~ H„, for the high-spin states
of interest in the present work. Therefore calcula-
tions were performed using two schematic forms
fox' 8) t.

The fil 8't approximation Rppl oxlmRtlon A Rs-
sunled that the residual two-quRslpRrtlcle interac-
tion H„, was diagonal, with matrix elements equal
to 200 keg and with the signs given by the GRBag-
her rule. '8 This was the most extreme and simp-

lest approximation which schematically included
the most significant part of the residual interac-
tion, that is, the splitting of the K= ~0, aQ,

~

doub-
lets. Most of the calculations were performed
using this simple approximation.

The second approximation, approximation 8,
assumed the residual two-quasiparticle interaction
to be a surface 5 interaction" (SDl) of the form

II„,=-4' b(n„) b(~, —R) b(r, —R) .

This more realistic interaction was used to inves-
tigate the role of the two-body interaction in de-
termining the observed rotational band behavior.
The matrix elements of the residual mteraction
Rx'e g1ven by'

qMKaPl ~R„, IIMKybl&

6= ——p f[(U.U„+ V.V„)(II,V, + V,V,)+(-)' "(V,II„+V,V„)(II,II„+V.V, )]I (a p JK)Z(yb JK)

-(U.V, —V.II,)(II„V, —V„U,)G(a p JK)G(yb JK) I,

I'(uP JK') = QC.'C-', (aabP j JK')(a ,'b ——.
'

~

JO-) (-)'a""",(2a+ l)(2b + l)
05

2a+ l) 2b + l)
G(nP JK') =- P C,"C~(a&bP

~

JK')(a ,b,
~

Jl)-
ab a5 a-8—

and where the quantum numbers a and n designate
j and Q, respectively. The U and V are the usual
occupation probabilities. The pairing factors in
the second term of Eq. (8) are generally small and
thus this term is negligible. Therefore the calcula-
tions were Rll performed neglecting this second
term. Note that the pairing factor in the first
term is also small if @+8is odd. Since we are
dealing with identical nucleons in the present, work,
any spin exchange term in the residual interaction
can be absorbed into the strength of the interaction
G.

The difference in the results of calculations using
approximations A and 8 is discussed in Sec. III.

G. Spurious state problem

The evaluation and diagonalization of the Hamil-
tonian in the chosen basis is relatively straight-

forward for the negative-parity states. However,
the calculation for the positive-parity states is un-
reliable due to the admixture of the spurious sen-
iority zero state for K= 0' two-quasiparticle
bands. " Diagonalization of the pairing force show-
ed that due to the presence of this spurious state
about 30/0 of the Corioulis strength was redistribu-
ted among the states of interest. Therefore RQ
matrix elements involving the mixing between K=O
and other states were attenuated by 30'Po to sche-
matically account for this effect.

H. Transformation to the IINRj,j&J}

An understanding of the decoupling mechanism
is much facilitated by transforming the wave func-
tion ~IM) into a basis where R and J are good
quantum numbers using the relation

gMRj j~J~IM) = —Q A ™ Cq"' Cq~ (-) (IKJ-K~RO)(j, Q, j2&,
~
JK)[l+(-)"],

E&0
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where A " are the expansion coefficients in the~a, a,
~IMKQ, A,) basis, that is,

Note that for axial, symmetry only even values of
R occur. The R distributions now can be obtained
by summation of the squares of the overlap [Etj.
(9)] over all possible jg,J, and similarly, the J
distributions were obtained by summation over
jg~ and R. The results of this procedure are dis-
cussed in Sec. 3.

I. Coriolis antipairing

The increase in the moment of inertia and re-
duction in the pairing gap with increasing spin
are two major consequences of Coriolis antipairing.
The former effect was schematically included in
the present calculations by assuming that the mom-
ent of inex'tia was a function of the xotation of the
core (R) and by expressing the eigenfunctions in
the ~IMRj j,J) basis, i.e., where R is a good
quantum number. The excitation energies Ex(I)
for the zero-quasiparticle band, i.e. , the ground
state band below the backbend, directly determines
this variable moment of inertia since R =I for this
bandy 1.e

28(R) I(I+ 1)
h ' Zx(I)

For simplicity the variation of 28(R)/h' was
chosen to be linear in R since no attempt was
made to fit exactly the experimental energies in
the present work. This linear assumption is only
approximately true for the ground state band, and
it introduces some discrepancies in the calculated
energies of the zero-quasiparticle states and pre-
sumably comparable discrepancies in the calculat-
ed two-e, uasiparticle energies.

It is important to note that the moment of inertia
given by Eq. (11) is not the same as the instan-
taneous value defined in conventional backbending
diagrams but is the average of the instantaneous
values up to spin I.

J. Measure of decouphng

A measure of the amount of decoupling is requIr-
ed in order to make a quantitative interpretation
of the eigenvectors. Analogy with the classical
situation would suggest that the average projection
of the intrinsic spin J onto the rotation axis H,
i.e., J„defined as

is an appropriate measure. This is certainly true
for A»J. However, for small 8 the direction and
magnitude of R varies widely and thus O'R is not
too useful a definition. Also, all (Je) must be
negative for I & ((J')+ (R'))'~' and become positive
for maximum alignment as I-~. Inspection of
the Hamiltonian shows that the alignment of J with
I is a more appropriate measure. That is, the
projection of J onto I given by

I(I+ 1)
(1&)

Of course, JI=J~ for I-~. The difficulty with
this definition is that even in the strong coupling
limit, where the rotation-particle coupling term
(I,J +I J,) is zer'o, 1 J=K', which can be large
for large K. The contribution of K to the alignment
JI can be eliminated by calculating the expectation
value of the pxojection of J onto the component of
I perpendicular to the symmetry axis, i.e., J,
given by

I'J-K
J~=

The projection Z, (illustrated in Fig. 1) is just the
renormalized rotation-particle coupling term of
Eq. (5), and is zero in the strong coupling limit for
X2 bands. Equation (5) can be rewritten in terms
of cJI as

for I»K.
It is now possible to compare this to the classical
picture of a rotor with angular momentum R and
a decoupled particle with angular momentum C
which is aligned with 8, i.e., I=R+ C. The spec-
trum is then given by

(II„„„„.Q
= (h'/28)R(R+1)

= (I'/28}[I(I+ 1)—2CI+ C(C —1)].

One can immediately recognize the similarity
between Eats. (15) and (16) with J,[I(I+1)/I']' '=C,
providing that the last term in Eg. (15) is small
or nearly constant. This is satisfied best for
large I. Thus, J, is an excellent measure of de-
coupling since the degxee to which it is constant
measures the degree of decoupling and its value

gives, for large I, the effective aligned spin of the
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uncoupled particle s.
The degree of decoupling of the individual quasi-

particles can be also determined separately by

defining

This is only relevant for negative-parity states,
where the two particles are distinguishable.

The interpretation of the value of J, for the
coupled two-quasiparticle states and the values of
ji' and ji ' for the individual quasiparticles are
discussed in Sec. III.

K. Mixing of the zero- and two-quasiparticle bands

The interaction between the Oqp ground band
and the 2qp bands wa, s not included in the present
calculation because experimental and theoretical
evidence suggests that the interband interaction
matrix elements are very small.

Experimentally the intersecting bands have been
observed both above and below the intersection in

o nuclei 2i, 22 is~Gd and i5 Dy. The observed y
branching implies ratios of the interband to intra-
band B(E2)'s of 10 ' for states away from the
intersection. Assuming a two-band mixing model
and similar intrinsic quadrupole moments in both
bands and using the observed y branching and
level energies leads to interaction matrix elements
between the bands of about ~25 keV at spin 16'.
Forking seen' ' in ' Ba and ' Pt implies similar
small matrix elements at the band intersection.
These interband interaction matrix elements are
considerably smaller than the level spacings and
thus will perturb the bands only near the inter-
section.

Interaction matrix elements of about 25 keV
between the 16' states of the interacting bands are
about two orders of magnitude smaller than typical
Coriolis matrix elements. This behavior can be
understood by considering many identical particles
in a multiconfiguration space under the influence
of a Hamiltonian with pairing, rotational, and de-
formed single-particle parts. The pairing and
rotational Hamiltonians are quasispin scalars
since a multipole expansion of these Hamiltonians
has only odd-rank terms. Since these quasispin
scalars conserve seniority, only the quadrupole
deformed field remains to mix states of different
seniority. The present two-quasiparticle-plus-
rotor model calculations show the yrast decoupled
two i»» quasineutron eigenfunctions become in-
creasingly localized aroung J=12 and R =I- 12
with increasing spin I. On the other hand, the
zero-quasiparticle ground band has I =R for a fully
paired state. The quadrupole (X=2) deformed

field can mix these bands, which have very dif-
ferent rotational frequencies, only by a high-order
process, hence the interaction will be weak. An
equivalent statement is that the Coriolis force
does not couple states with d;ffering R and thus
the two bands interact only via the overlap with
weak components of the wave functions. This over-
lap becomes progressively smaller with increas-
ing spin I due to the increased localization in R
space of the decoupled states. The present cal-
culations suggest an interband interaction strength
of ~100 keV at the intersection. However, this
calculated interaction strength may be rather
sensitive to the approximations made.

We can therefore conclude that, within this
model, mixing between zero- and the aligned two-
quasiparticle bands can be ignored.

L. Parameters of the calculation

It is important to consider the influence of the
adjustable parameters on the results of the cal-
culation.

The moment of inertia, parameter 5'/28 essenti-
ally scales the excitation energies without changing
the qualitative appearance of the spectrum or
wave functions. A doubling of 5'/28 changed the
wave functions by ~2%. The other adjustable
parameter in the calculation is the pairing gap 4.
Since H~ is much larger than variations in H,
then the primary influence of a change in 6 is to
shift the whole two-quasiparticle spectrum by
twice this change in energy provided 6 remains
larger than typical single-particle energy separa-
tions. Small changes in the deformation parameter
P produce only minor effects through changes in
single-particle energies and an energy scaling
through changes in Coriolis matrix elements. It
is concluded that reasonable variations in the
parameters produces small differences in the
qualitative appearance of the 2qp spectrum and the
calculated wave functions. This suggests that a
qualitative reproduction of the observed phenomena
will reflect more the consequences of the physics
contained inthe model rather than a fortuitious
choice of parameters.

A quantitative fit to the experimental energies
requires the choice of a proper scale, by appro-
priate choice of the moment of inertia, while
the absolute energies are obtained by appropriate
choice of A. Table I shows the sets of parameters
used in the calculations. The column marked P
gives the nuclear deformation derived from the
known B(E2;0'- 2') values. The linear variation
coefficients a and b of the dependence of 28/h' on

(R) are given in the following four columns. These
are obtained by fitting to the known ground band
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energies in '"Er. However, for '"Pd it was as-
sumed that the 2qp band had a more rigid rotation-
al structure, i.e. , smaller slope and larger in-
tercept, than the Oqp band to reflect the fact that
'~Pd appears soft to deformation in its ground
band. The presence of two quasiparticles could
introduce more rigidity to the nuclear deformation.
The column marked "type" indicates whether the
calculation is for two quasiprotons (2qm) or two
quasineutrons (2qv). The following column gives
the Fermi level X in units of h&. The next column
gives the values of the pairing gap 4 „taken
from systematics. '4 These are the values used to
calculate eigenvalues and eigenfunctions. The
calculated spectrum was then shifted for better
absolute agreement, resulting in effective pairing
gap A,«shown in the following column. This
procedure was not iterated because it introduced
negligible errors in eigenfunctions and «50 keV
uncertainties in the calculated energies of the
high- spin states. The orbitals and associated
quasiparticle energies used in the calculation are
given in the last part of Table I.

It must be emphasized that the above sets of
parameters are not unique but they are typical of
parameters used in other types of calculation for
similar mass nuclei. They serve to demonstrate
that quantitative fits indeed are not only possible
but are not very difficult to obtain within this
model.

III. APPLICATION TO Er

A. Eigenvalues for ' Er

The energy level spectrum of the two quasi-
neutron yrast states in '"Er, calculated using the
variable moment of inertia given in Table I, is
compared in Fig. 2 with the experimental data of
Sunyar et al." The eigenvalues and properties of
the eigenvectors of the two-quasineutron states
listed in Tables II and III were evaluated for a
constant moment of inertia parameter 8'/28 =43.5
keV, which corresponds approximately to the
ground state moment of inertia for "Er. This
constant moment of inertia produces eigenvalues
twice as large as the variable moment of inertia
for states with I= 24 and a change of less than 2%

in the eigenvectors.
The calculations show that the positive-parity

two-quasineutron band crosses below the zero-
quasiparticle ground state band between the 10'
and 12' states. The agreement between experiment
and theory for the even-spin positive-parity states
is remarkably good. The experimental odd-spin
negative-parity states from 11 to 23 are also
well reproduced by the theory. The calculated
energies of the 9 and 7 states are appreciably
higher than experiment. This disagreement is not
surprising since the collective octupole correla-
tions have been omitted and these should be im-
portant for the low-spin states where the residual

l56
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FIG. 2. Comparison of the calculated yrast two-quasineutron spectrum of Er with experiment.
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TABLE II. Properties of the two-quasineutron yrast states in 6Er. Positive parity.

«) l&~'I»'&I' l&~" 124'&I'

0'
2'
4+
3+
6+
5+
8+

1
7+

10+
9+

12+
ll+
14+
13+
16
15+
17+
18
19
20
21+
22+

23
24

2.769
2.911
3.098
3.134
3.321
3.438
3.524
3.658
3.715
3.730
3.957
4.153
4.328
4.SS9
4.988
5.962
5.979
7.313
7.378
8.993
9.139

11.020
11.248
13.395
13.703

1.91
2.33
2.76
3.42
2.96
3.94
3.08
4.42
4.24
2.98
4.40
3.44
4.82
4.85
5.93
6.58
7.42
9.12
8.42

10.91
10.32
12.78
12.25
14.65
14.18

1.91
2.94
4.37
3.89
6.17
5.34
8.37
4.43
7.26
9.78
9.12

10.25
9.88

10.42
10.16
10.52
10.28
10.36
10.58
10.41
10.62
10.45
10.65
10.46
10.65

2 %23

2 ~ 17
-2.06

2+72
-2.14
—2.90
-2.93
-4.66
-3.29
-1.66
-3.43

3.49
-0.65

6.51
2.27
7.69
4.09
5.21
8.30
5.94
8.67
6.46
8.91
6.82
9.08

~ ~ ~ 0
1.43 0.77
3.02 1.29
1.53 1.85
4.91 1.74
3.37 2.21
7.15 2.16
0 1.00
5.49 2.71
8.57 2.34
7.51 3.00
9.01 2.37
8.28 3.05
9.17 2.36
8.54 3.03
9.24 2.35
8.65 3.01
8.71 2.98
9.29 2.38
8.74 2.96
9.31 2.32
8.76 2.96
9.33 2.31
8.78 2.96
9.34 2.29

0.00
0.00
0.01
0.00
0.11
0.04
0.51
0.00
0.33
0.80
0.77
0.88
0.93
0.89
0.97
0.89
0.99
1.0
0.89
1.0
0.88
1.0
0.88

=1
0.88

0.00
0.00
0.00
0.00
0.10
0.03
0 ~ 51
0.00
0.25
0.85
0.63
0.95
0.78
0.98
0.84
0.99
0.86
0.87
0.99
0.88
1.0
0.88
1.0
0.88

=1

TABLE III. Properties of the two-quasineutron yrast states in ~ Er. Negative parity.

&'8) (J ) «) I&&'I» &I' l&1'124 )I'

6
5

7
2
3
9
8
1
0

11
10
13
12
15
14
17
16
19
18
20
21
22
23
24

3.272
3.347
3.354
3.358
3.393
3.400
3.442
3.501
3.675
3.715
3,824
3.925
4.534
4.614
5.582
5.634
6.974
7.007
8.711
8.719

10.779
10.794
13.185
13.224
15.938

3.47 6.98
3.70 6.31
3.73 6.57
3.71 8.43
2.90 4.03
3.13 4.90
3.15 8.85
3.78 7.37
3.81 4.20
3.76 3.76
3.68 9.01
4.05 8.20
5.13 9.10
5.29 8.30
6.85 9.12
6.94 8.32
8.69 9.14
8.76 8.34

10.59 9.17
10.66 S.36
12.56 8.36
12.51 9.18
14.49 8.37
14.46 9.19
16.45 8.37

—3.65
-3.83
-5.32
-5.71
-3.40
-3.76
—2.30
—1.30
-4.37
-3.76

2.84
1.05
5.52
3.86
6.59
5.27
7.16
5.96
7.52
6.38
6.64
7.75
6.83
7.92
6.97

5.91 5.27 1.58
4.99 5.44 1.66
4.92 5.42 1.71
7.49 5.40 l.88
2.86 5.24 0.74
3.74 4.99 1.36
8.10 5.46 1.65
6.31 5.40 1.64
1.76 1.S7 0.88

~ ~ ~ 0 ~ ~ 0.0
8.31 5.49 l.53
7.38 5.58 1.57
8.40 5.51 1.46
7.54 5.60 1.45
8.45 5.52 1.41
7.59 5.61 1.40
8.4S 5.53 1.38
7.62 5.61 l.36
8.50 5.53 1.35
7.64 5.62 1.34
7.65 5.62 1.31
8.52 5.54 1.33
7.66 5.63 1.30
8.53 5.54 1.32
7.67 5.63 1.28

0.01
0.07
0.00
0,84
0.03
0.03
0.94
0.03
0.00
0.06
0.97
0.09
0.99
0.08
l.00
0.08
1.00
0.07
1.00
0.07
0.07
1.00
0.07

=1
0.06

0.06
0.03
0.04
0.15
0.03
0.03
0.12
0.30
0.02
0.01
0.10
0.93
0.09
0.96
0.08
0.97
0.07
0.98
0.07
0.98
0.98
0.06
0.99
0.06

—1
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two-quasiparticle interaction is comparable in
strength to the Coriolis interaction. The calcu-
lated 5, 3, and 1 states, not shown in Fig. 2, are
almost degenerate with or lie above the calculated
7 state and have a small wave function overlap
with the higher odd-spin negative-parity states.

The location of the unnatural-parity states is a
stringent test of this model. The even-spin nega-
tive parity states are predicted to have a char-
acteristic decoupled band structure. That is, the

I,«and I,« —1 states are almost degenerate. The
same situation occurs for the positive-parity states
where the I,„,and I,„,- 1 states are close in
energy.

The results of the proton calculation indicate
that the two-quasiproton states lie considerably
higher in excitation energy than the neutron states.
The energy differences for the even-spin positive-
parity states vary from over 500 keV for the 6'
to over 2.1 MeV for the 24' states. For the odd-
spin negative-parity states, the differences vary

from 320 keV for the 7 to over 2 MeV for the
23 states, while for the even-spin negative-parity
states they vary from 180 keV for the 8 to over
1.6 MeV for the 24 states. Except in the case of
the states in the vicinity of the onset of decoupling,
these differences are considerably larger than the
typical matrix elements of the residual two-body
interaction, demonstrating that mixing between
the proton and neutron states is unlikely. Since
we find that the yrast states are neutron states,
the following discussion will be confined only to the
neutron states.

B. Eigenvectors for ' Er

The eigenvectors have been transformed into the

~IMRj j,J) basis with the aid of Eq. (9) in order to
investigate their decoupled structure. The J and
R distributions were calculated for the yrast states
and these are plotted in Figs. 3 and 4, respectively.
The R distribution is plotted as the difference R-I

I
It~

I5

O

CL
O
CL

T I

I—

CL

T I2'
I I I

I I

0+
I

—
I r I I T . I

-r-
0 5 iO IS 0

I

IO I5 0
I I I

IO 15 0
I I I

5 I 0 I5

FIG. 3. Relative populations of the J substates for the two-quasineutron yrast states in ' Er. The thin vertical lines
indicate mean values (J).
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19'
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15

9

T

6+
I T

I T

I

0 lO -IO
I

0
f

IO l0
I

0
I I I

IO -l 0 0

FIG. 4. Relative populations of the R substates for the two-quasineutron yrast states in ~5~Er. The thin vertical lines
indicate mean values g&.

in order to facilitate visual observation of the
changes in the distributions for different values of
I. The eigenvectors were also used to evaluate
the expectation values of the magnitudes of
J, 8, J„, J„K,j,", and j,' ' for the two-quasi-
neutron states. The operators Zs, J„j,"(and

jJ ) are defined by Eq. 12, 14, and 17, respec-
tively. The values of (R), (J), Zz, J~, and (K) are
listed in Table II for the positive-parity yrast two-
quasineutxon states and in Table IG for the nega-
tive-parity yrast two-quasineutron states. In addi-
tion, the values of j~" are given for the negative-
parity states in Table III. The last two columns
in Tables II and III give the squares of the overlaps
of the intrinsic wave function of each yrast two-
quasineutron state with those of the same parity
I=23 and I= 24 yrast states, respectively.

Inspection of the J and 8-I distributions shown

in Figs. 3 and 4 reveals that forI ~12 the yrast
spectrum separates into four distinct bands; the
even-spin positive-parity, odd-spin positive-
parity, even-spin negative-parity, and odd-spin
negative-parity, each with its own characteristic
J and R —I distribution.

It is easy to understand the remarkable odd-even
J staggering in the J' distributions shown in Fig.
3. Gne must keep in mind that, according to the
decoupling picture, the yrast states are those that
have the maximum J I, and where this J is maxi-
mally aligned with H. But for such full alignment,
one has

Since A is always even, for axial symmetry, only
odd J can contribute to odd I and even J to even I,
for fully aligned states. This has somewhat
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different consequences for the positive- and nega-
tive-parity states.

The wave functions of the positive-parity states
are obviously dominated by the (i»/, )' configura-
tions. The spins of two neutrons in the same
orbital can couple only to even J (due to the Pauli
exclusion princ'pie). Therefore, mostly even- J
values contribute to both even- and odd-I states
of positive parity. This is in conflict with the
previous argument where only odd J are allowed
for full alignment for odd-I positive-parity states.
Thus one can say that the calculated odd-spin
positive-parity states are not fully aligned. This,
in turn, means thai these states need relatively
more rotation, i.e. , excitation energy, for a
particular total spin, than their even I counter-
parts, causing the odd-even splitting in the spec-
trum of the positive-parity yrast states ~

The situation for the negative-parity states is a
little more subtle. Since the two nucleons are dis-
tinguishable here (they have opposite parities), the
Pauli exclusion principle allows both odd- and
even- J states and thus full alignment of J with
the rotation can occur for both odd- and even-I
states. However, in the space of the Nilsson or-
bits considered in this calculation, the maximum
allowable intrinsic spin, with appreciable prob-
ability, is (h, /, i»/, ) coupled to J=11 . Since this
J value is odd, it can contribute only to the odd-I
states for full alignment. The maximum J value
allowed for the fully aligned even-I states is 10 .
Supposing the negative-parity yrast states con-
tain mostly their maximum J values, then the odd-
spin states of spin I will have the same R (and
thus the same excitation energy), as the even-spin
states of spin I —1 [see Eq. (18)], if they are both
fully aligned. This degeneracy is clearly borne out
out in the spectrum in Fig. 2.

It must be pointed out, however, that these cal-
culations were restricted to only a few single-
particle orbitals due to limited computer size.
Although the truncation was selected to mini-
mize the errors for the states of interest, this
calculation is inadequate for very high-spin
states, where complete N= 5 or N =6 major shells
should be included. The increasing significance
of the (h»»i»»)/=" configuration in such case
would eventually cause a reversal in the odd-even
splitting of the negative parity yrast states.

Further insight into the alignment behavior is
gained by studying the expectation values (R),
(Zj, and J, plotted for the yrast, yrast+1, and
yrast+2 bands, shown in Figs. 5, 6, and 7,
respectively. The rotational energy equals
(fi'/28)R(R+1) and thus the plot of (R) (Fig. 5)
illustrates all the features shown by the energy
level spectrum. Both the energy spectrum and
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FIG. 5. Plot of (R), the average rotation of the core,
versus I for some of the lowest two-quasineutron bands
in ~56Er.

(R) exhibit an odd-even splitting, and for I ~ 12
the gradient n. R/ 6I approache s unity, i.e. ,
hR =2 for each band.

The rigidity in the Jdistribution for I& 12 is
illustrated by the plot of (g given in Fig. 6. This
same feature occurs for the (yrast+1) and
(yrast+2) bands. The expected odd-even I stag-
gering in the (j) plot is also borne out.

The clearest understanding of the alignment be-
havior comes from studying the values of J„ the
projection of J onto the component of I perpen-
dicular to the symmetry axis, shown in Fig. 7,
and J~, the average projection of J onto R. The
magnitudes of J, achieve a limiting value for
I~10. These limiting values of J, appear to be
"quantized" and the whole calculated two-quasi-
particle spectrum can be divided into definite
bands with each band having a distinct value of
J,. In addition, the magnitudes of J, correlate
with the excitation energies, with the yrast bands
having the largest positive values of J„and the
antialigned bands with the highest excitation en-
ergy, having the most negative values of J„equal
in magnitude to those of the yrast bands. The ex-
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FIG. 6. Plot of (J}, the average intrinsic spin, versus
I for some of the lowest two-quasineutron bands in 1~6Er.

FIG. 7. Plot of Jj, the average projection of the in-
trinsic spin J, on the component of I perpendicular to
the symmetry axis for some of the lowest two-quasi-
neutron bands in Er.

pectation value (J„)also exhibits characteristic
behavior for each band but the values are more
dependent on I, since they reach their limiting
values much more slowly as discussed in Sec. IIJ.
Flgul'es 5 Rlld I llhlstl'R'te that (J) Rlld Jc becollle
constants of motion for each band.

It is possible to estimate the spectrum of values
of 8, and hence the location in energy of the dif-
ferent bands by considering the limit of complete
decoupling. Then the rotational part of the Ham-
iltonian can be approximated by Ell. (15). For
large I the values of (J) and J, are constants of
motion fox' the two dominant terms in the Hamil-
tonian, i.e., (5'/M)$I(I+1) —2[I(I+1)]'i'Jj, and the
band with lowest energy has the most positive
value of Z,. The last two terms in the Hamiltonian
[EIl. (15)j split the degeneracy for each J', tbe band
with lowest (J) lying lowest in energy. For small
(If) this splitting is pl'opol'tiollal 'to (cI ). Tlllls,
for each value of J', the most aligned state, i.e. ,
J,=J, is lowest in energy, the O'=J~+1 band is
next lowest, ete. The calculations show this to be
generally eox rect, although each state is a mix-

ture of several
~
JJQ configurations.

The two-quasineutrons a.re distinguishable for
the negative-parity states and thus the decoupling
of the postive-parity and negative-parity quasi-
particle can be investigated separately. The px o-
jection for each particle of j on the component of
I ln the 1 —2 planets 1.6.~ j~» ls plotted ln Flg. 8.
For I~ 4 the positive-parity quasiparticle ap-
proaches a limiting value of j,' ' = 5.6, which

corres-

pondss to almost complete alignment since (j")
=6.0. This positive-parity quasiparticle is pre-
dominantly i»&„ for which the rotation-partiele-
coupling matrix elements are very large. The
negative- parity quasineutron rea.ches a limiting
value of jg fox' I& j.0y and the allgnIDent ls alnlost
complete for odd I, i.e., j,' ' = 3.0, and only partial
for even I, i.e. , j~( '=2.0. Thus, the two quasi-
neutrons of the negative-parity yrast states for odd

spin are aligned to give a maximum (J) which is
also aligned with I to maximum ej+y whereas the
even-spin negative-parity yrast states have the

j values coupled to (J) = J —1 and with J again
aligned with I.
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0 . i+i

4 ~ e 4 ~~ e 4 ~ o e e h ~ e ~ jj
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p

l2 l6
I

FIG. 8. Plot of jl,+l andj( i, the projections of the
individual intrinsic spins j on the component of I per-
pendicular to the symmetry axis for the yrast two-
quasineutr on bands in Er.

where (X, le) is the overlap of the intrinsic parts
of the wave function of the initial and final states
and ((R,020' R&0)') is an approximation to the ex-
pectation value of the square of the Glebsch-Gor-
dan coefficient. The results of this procedure for
the negative-parity yrast states are given in Fig.
9. The positions of the levels are shown sche-
maticaQy, and the BE2's are given in multiples of
a(z2; 2;- 0;).

Three important conclusions can be derived
from the above estimates. The first is that the
odd-even splitting in the negative-parity yrast
band is apparent not only in excitation energies,
but also in the BE2 strengths. The rates within
each subband (even or odd spin) are an order of
magnitude laxger than for the interconnecting
transitions. Secondly, it is apparent that below
the 7 state the E2 strength is dissipated among

l56-
68 =i88

C, EX transition strengths

The calculation of the electromagnetic transition
rates and moments for the calculated two-quasi-
particle states is quite stxaightformard if the wave
functions are transformed into the lIMftj j,J)
basis described in Sec. IIH. The process is quite
lengthy, however, since a typical wave function
may have up to 30000 components in this basis.
One can, nevertheless, make reasonable estimates
based on the general features of the wave functions.

The E1 operator has no collective part; there.-
fore, the transition rates are governed by ~=0
selection rule. In our case, we are interested in
estimating the rates for decay of the odd-spin
negative-parity to the even-spin positive-parity
states, with AI =1. For such transitions, the
difference between the mean R values is about 2.2
for the higher spin states. This greatly reduces
the possibility of 4R =0, resulting in a consider-
able inhibition of the rates from the single-par-
ticle estimates. This inhibition becomes stronger
with increasing spin as R becomes purer. Gnly
near the bottom of the bands mould one expect
noticeable interband E1 transitions.

The E2 rates can be estimated by neglecting the
single-particle part of the E2 operator and by
assuming a reasonably rotational behavior of the
core. In such a case, the rates can be obtained
in terms of the known BE2 from the first excited
2' state to the ground state by the formula:

a(Z2;f, -f, ) ((R,020lft&0)')
I

ff(g2. 2+ 0+) (2020 ioo)2 I Xj I Xf) I

.6I5

FIG. 9. Estimated E2 transition rates between two-
quasineutron negative paritJJ yrast states in ~56Er, in
multiples of B N2; 2~+ 0+~).
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several states, none being favored. This means
that, experimentally, the odd-spin negative-
parity band would appear to begin at the 7 state,
in agreement with the present data. The same is
true, to a lesser extent, for the 10 state in the
even-spin case. The third and most significant
observation is that, due to their excitation energies,
the even-spin states have a finite decay branch
(=10%) to the odd-spin states and not vice versa. .
This would result in a much weaker population of
the low-lying members of the even-spin negative-
parity band compared to the odd-spin states, even
if they are populated equally at high spin, ex-
plaining why the even-spin negative-parity states
have not been observed. Ml transitions would
similarily exhaust the even-spin states.

The situation is similar, but in reverse, for the
positive-parity states. Here the odd-spin states
become exhausted in favor of the even spins. In
addition, the interband rates are stronger here,
over 80% of the intraband rates (see overlaps in
Table II), resulting in a much more dramatic de-
population of the unfavored odd-spin states.

It must be added that the above discussion applies
not only to the yrast states but to the whole cal-
culated high- spin two-quasiparticle spectrum
which seems to separate into well defined bands,
each with o.I=2, a constant (Zj, and J„and with
enhanced intraband E2 transition.

D. Magnetic dipole moments

The expectation values of the g factors of the
calculated two-quasiparticle states are most
easily estimated if the wave functions are express-
ed in the IIMRj g,J) basis described in Sec. II H.
The magnetic moment p, can be expressed as

For g,. we have chosen the Schmidt limit values.
The final calculated value for g, becomes

g/= P I(IMRj, j,JI IM)I'g/(R, J,j„j,). (23)
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The overlap in Eq. (23) is given by Eq. (9).
The g factors calculated for some of the lower-

lying bands in the two-quasineutron spectrum in
'"Er are shown in Fig. 10. One can observe a
considerable deviation of the values of gl from the
collective estimate g„„.The values are strong-
ly negative at low spins and slowly approach
g«~«with increasing spin. The yrast states seem
to have the largest deviation from g„, and some
odd-even staggering is present.

The cause of this sharp lowering of g, is rela-
tively simple to understand. The single-particle
g factors g, for the i»&, neutrons are negative.
Thus, for the states that have the intrinsic spin
fully aligned with the rotation, the particle mag-
»etic moment points in the opposite direction from
the rotational magnetic moment. Near the onset
of decoupling, most of the total spin is taken up by
the particles, causing the particle magnetic mo-
ment to dominate. With increasing I, more and

p-glI =g, J+g~R. (20) -0.2-

Using Lande's theorem and expanding J in terms
of j, and j„one obtains

1 1
g/(R&~i/li/2) 2(g/'+gR) + 2I(I 1) (gz gR)

x [Z(J +1) R(R +1)], -
where

1g'(j" j') ='(g' 'g' )'u(J 1)(g' g")

x[j,(j, +1)—j,(j, +1)].
(21)
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Thus the only parameters needed to evaluate gl
are g„, g, , andy, , The value for g„can be taken
to be the collective estimate
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gs = Z//1 . (22)
FIG. 10. Plot of the gyromagnetic ratiogl versus I

for some of the lowest two-quasineutron bands in ~~6Er.
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more spin is taken up by the rotation, forcing the
magnetic moment to approach g„.

It must be pointed out that the detailed calcula-
tion overestimates the deviation from g„. Effec-
tive g,. are usually smaller in magnitude than their
Schmidt limits. Thus, the g~ need not be as nega-
tive as the values used in the calculation, reduc-
ing the deviation from g„. In addition, any mixing
of the two-quasiparticle states with the zero-quasi-
particle states would also tend to increase g„as
the latter states are expected to have rotational
magnetic moments. Nevertheless, the measure-
ment of g, in the region just above backbending
for the even-parity states appears to be a crucial
test of the model.

E. Effect of the residual interaction

It has been pointed out by Neergard, Vogel, and
Radomski" that the residual two-body interaction
may play an important role in producing the odd-
even splitting in the negative-parity bands ob-
served in the mercury nuclei. They have shown
that after inclusion of a surface 5 residual two-
body interaction, modified by attenuating the high-
er multipoles to simulate a finite range, they were
able to push the negative-spin states down in ex-
citation energy, relative to the even-spin odd-par-
ity states. They were unable to reproduce the ex-
perimental data with a pure rotational Hamilto-
nian. We therefore performed a calculation for
'"Er with the inclusion of the surface 5 interac-
action in order to see what effect it would have
on the yrast states. We used the strength Q of
0.250 MeV and with no attenuation of the higher
multipoles. The procedure is discussed in Sec.
II F.

Two things can be said about the results even
before the calculation is performed. Qne is that
only the odd-I states are affected by this interac-
tion for the negative-parity states, since m+8 in
Eq. (8) must be even, and the odd- (even-) spin
negative-parity states consist mainly of odd-
(even-) J substates. Furthermore, since Hzm is
much smaller thanH~ for I &10, it will not affect
significantly the wave functions of the states above
spin 10. Then the only effect that the SDI would
have on t e negative-parity yrast states is a con-
stant (downward for attractive force) shift of the
odd-spin members. The exact calculation bears
out the above conclusions. We found that the even-
spin negative-parity y "ast states between I = 0
and I =10 are shifted down with the amount of
shift varying from 63 keV for I =0 to 22 keV for
I =10, while all the higher even-spin yrast states
are shifted down by 13 keV. Qn the other hand,

the yrast 1 to 9- odd-spin states were pushed
down between 170 and 270 keV and the remaining
odd-spin negative-parity yrast states were pushed
down by amounts smoothly varying between 290
keV for 11 and 315 keV for 23

The effect on the positive-parity states was even
less dramatic. Here mainly the even J are af-
fected by the interaction, but since only the
even J occur for both even- and odd-spin
states, both would be affected in a similar way.
In addition, a part of the strength for the even-
spln states ls expected to be taken away by the
spurious states which should be excluded. Thus,
although we find large downward shifts for the
low-spin states, vax ying from 650 keV for the 0'
to 70 keV for 10', above that spin the shifts for
the even I decrease from about 40 keV for 12' to
less than 10 keV for 24', and from about 125 keV
for 11+ to less than 60 keV for 23', for odd I.
These shifts are quite small on the scale of the
rotational ener gies.

A previous" interpretation of the odd-spin nega-
tive-parity states assumed them to be part of the
K =0 octupole band in order to explain the ab-
sence of the even-spin members. The rank-3
component of the residual two-body interaction
will introduce octupole correlations into the nega-
tive-parity states if a sufficiently large configura-
tion space is used. Switching on the residual in-
teraction in the present calculation increased the
K =0 component in the wave function from 15'
to 3'l% for the 3 state, from 15k to 28% for the
5 state, and by only 2/0 for odd-spin states with
I «11 . The even-spin negative-parity states
showed less than a i%%uo increase in K=0 strength
when the two-body force was included. The trun-
cated configuration space used in the present cal-
culations will attenuate the octupole correlations
by about a factor of 2, which could be compensated
for by using a stronger effective interaction. This
will appreciably increase the octupole correlation
for the lowest spin states but still be unimportant
for states with I «11 . Thus, although the 3, 5,
and 7 states can be fairly well characterized as
being members of the K =0 octupole rotational
band, the higher spin states, in this calculation,
are essentially pure decoupled states, little influ-
enced by octupole correlations. This is reasonable
since the Coriolis decoupling matrix elements are
much larger than the octupole correlation ener-
gies for I «11 . Qbviously this rather sharp tran-
sition from octupole to decoupled structure will
occur at a higher spin for nuclei where the Corio-
lis matrix elements are relatively smaller.

The present calculation indicates that the in-
clusion of the surface 5 interaction does not sig-
nificantly change the decoupling behavior for '"Er
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Rnd RppxeclRbly lnflueQces only the xelat1ve ex-
cltRtlon 8Qex'gles below the bRckbendlng x'eglon.

IV. APPLICATIONS TO OTHER NUCLEI

A. Other N = 88 nuclei

Since decoupling effects depend mainly on the
position of the Fermi level, the results discussed
in See. III can also be applied, with minor adjust-
ments of parametex's, to other % =88 nuclei, such
as "'Sm, '"Gd, '"Dy, '58Yb„ete. These nuclei
woUld be expected to have decoupled two-quasineu-
tron bands similar to those observed in '"Er.
Zolnowski and co-workers" have observed an odd-
spin negative-parity band starting at V in '"Gd,
and report having evidence of a similar band in"Tb. Similarly, Thompson, Johns, and%adding-
ton" have seen a similar band up to spin 13 in
"OSm. This evidence supports the ealeulations
px'esented 1Q Sec ~ III-

8. PGBadium nuclei

Our observation'o'9 of baekbending and anomal-
oUs negative-par1ty bRQds ln * BR prompted
us to perform the first calculation for barium nu-
clei. These calculations are described in a pre-
llmlnary form 1n Ref. 10 Rnd ln R cox'1 ected and
more detailed form in Ref. 29. The general fea-
tures of the calculated spectxa axe similar to the
'"Er results, except that the anomalous behavior
in '"Ba is produced by the proton configurations.
The observed" "'o backbending behavior fox the
positive-parity states in '" "'Ba Rnd '" "'Ce is
reproduced and is caused by the decoupling of the
two h, «, quasiproton configurations. The anomal-
ous negative-parity bands, seen in '"'"'Ba are
also well xeprodueed by configurations based on
one decoupled A&&y2 quaslpl oton Rnd R decoupled
particle in the g,&, and d,&, orbitals. The calcu-
lated two-quasineutron states lie above the two-
quasiproton states. However, the two-quasineu-

46 58

l4

j
!4+

l2+

I

to

I

I

6+

I

4+

I

I

2

Oq
t

l

6.IO

II
500 ~0

4,02& lt

l0
8+

335 6~3.I9
2.9

2,58

3,53
3.29
3,~5

5.00
5.08

9
5,22l

7:
6

5.368
5g f52
2.989
2.90l

5,29 8' XM 9-
3.07
28t 6
2+57 5
2.M

~+0-qUQsin80tI oq

EXPERIMENT C&LCUL ATIOtq

FIG ~ 11. CoHlPR1 l8oD of th8 cRtculRt88 two-qUR81PRx'tickle gx'R8t 84Rt&8 111 M vAth 6ZP8x'&II1611t.

422
5.99



14 TWO-QU A SIP ARTIC LE-P LU S-ROTOR BANDMIXING CALCULATIONS. . . 1241

tron states reproduce the observed isomeric 8
states seen in several N = 74 isotones""" and
similar states seen in the Z = 72 and 74 proton
analogs. "

The present model predicts that similar behav-
ior to that seen for the proton states jn ~ ' Ba
should also occur near the N =56 neutron analogs.
Such behavior, i.e., backbending and anomalous
odd-parity bands, has been observed" in several
Pd nuclei (N = 56-60).

Calculation of two-quasiparticle states has been
performed for the most extensively studied palla-
dium nucleus" '~~6Pd58. The parameters are given
in Table I. Palladium nuclei are soft to deforma-
tion and thus the moment of inertia of the zero-
quasiparticle and two-quasiparticle bands was
taken to be different.

The calculated spectrum is compared with the
experimental results in Fig. 11. The yrast two-
quasineutron states lie below the yrast two-quasi-
proton states, although they are fairly close in

energy for low spin. The yrast two-quasiproton
(2qv) and two-tluasineutron (2qu) states exhibit de-
coupled bands for both positive and negative parity
but the spacing between the decoupled two-quasi-
proton states is larger. This occurs because
(J)„,=6.5 and (J)„,=8.5 resulting in (R)„,
=(R)„,+2. Thus the two-quasiproton states
have more rotational energy for any given spin I.

Figure 11 illustrates that the two-quasineutron
states reproduce remarkably well the experimen-
al spectrum. In particular the odd-even splitting
of the negative-parity band is in remarkable agree-
ment with experiment. The close similarity in
the calculated and experimental behavior in the
vicinity of the Z = N = 56 analogs is strong evidence
supporting the present model.

V. CONCLUSIONS

Two-quas ipar tie le-plus -rotor bandmixing cal-
culations have been performed to ascertain
whether they can reproduce the phenomena of back-
bending and anomalous negative-parity bands which
have been observed in even-A nuclei in several
regions of the Periodic Table. The philosophy be-
hind the present paper was to study the conse-
quences of this model using reasonable parame-
ters rather than forcing the parameters to best
fit the data. In spite of this approach, these cal-
culations reproduce the absolute excitation en-
ergies and known electromagnetic properties of
the yrast bands seen in '~Pd and '"Er.

Detailed analysis of the eigenfunctions resulting
from these calculations confirms the finding of
Stephens and Simon' that a new coupling scheme
emerges for high-spin two-quasiparticle states

at intermediate deformation. In this coupling
scheme the total intrinsic spin of the two decou-
pled quasiparticles J, and its projection on the
component of the total spin perpendicular to the
symmetry axis J~, are fairly good quantum num-
bers. Well defined rotational bands are formed,
each with its particular quantum numbers J, J~;
and the bands with maximum positive J~ lie lowest
in excitation energy, while the bands with maxi-
mum negative J~ lie highest. In addition, when

[J~j is maximal, that is, when the projections of

the intrinsic spins on the symmetry axis are
small, these bands will exhibit strong odd-even
splitting. The lowest positive-parity decoupled
two-quasiparticle band intersects the zero-quasi-
particle band to form the yrast band above a criti-
cal spin, thus explaining the observed backbend
within this model. The interaction matrix ele-
ments between these two bands have been shown

to be remarkably small, i.e., ~100 keV.
This model has two major limitations. The first

is that the rotational Hamiltonian II~ may not
necessarily be the dominant part of the total Ham-
iltonian for states in which the core rotation is
small. Thus the inclusion of a realistic residual
two-body interaction and extending the configura-
tion space may have a large effect on the calcu-
lated states of low spin. The contribution of a
reasonable residual two-body interaction has been
shown to be unimportant for states with large J~
(i.e., J~ -J), at high spin. The second limitation
is that at very high spins all single-particle en-
ergies become insignificant, making it necessary
to include a very large number of orbits in the cal-
culation. Due to limitations on time and computer
size, such calculations are difficult. On the other
hand, it appears possible to perform calculations
within the framework of this new coupling scheme.
Such a calculation would be much more reliable
for high-spin states.

It is evident that in order to obtain truly reliable
representation of experimental spectra, it is
necessary to perform more complete self-con-
sistent calculations which take into account many-
particle excitations and Coriolis antipairing. Cal-
culations of the type performed by Banerjee,
Mang, and Ring' or Faessler, Lin, and Wittman'
show some hope of producing better results.
Nevertheless, it is remarkable that such a simple
model as the one described in this work can quanti-
tatively explain many experimental phenomena.

Finally, we must emphasize the need for new

and better experimental information. In particu-
lar, studies of electromagnetic properties,
especially g factors, and searches for the un-
natural-parity bands appear to be important tests
of the model.
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