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Effects of nonlocal potentials in heavy-ion reactions*
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A nonlocal optical model program has been written in order to investigate the effects of
Gaussian nonlocal potentials on heavy-ion scattering and reactions. We have tested the two
principal approximations which have been used to handle nonlocal effects in light-ion reac-
tions, the Percy-Buck nonlocal-to-local potential transformation and the local-energy ap-
proximation. We find that both of these approximations work very well for the heavy-ion
reactions studied up to nonlocal ranges of about P =0.4 fm, but fail for larger ranges. Using
the local-energy approximation we have tested the sensitivity of distorted-wave Born-
approximation calculations to the nonlocal range P. For strongly absorbing potentials,
values of P ~ 0.4 fm cause negligible effects while weakly absorbing potentials with P =0.4 fm
allow strong modifications to the predicted cross sections.

NUCLEAR REACTIONS Effects of nonlocal optical potential. s in heavy-ion scattering
and reactions, exact nonlocal optical model. calculations, tested approximations to

nonlocal effects, nonlocal DWBA calculations.

INTRODUCTION

It is now fairly well established that the optical
potential which describes the interaction between
a proton or neutron and a target nucleus is non-
local. ' This nonlocality is responsible for the
negative energy dependence of the effective local
potential observed in the analysis on nucleon elas-
tic scattering. ' lt is also responsible for the re-
duction of the wave function in the nuclear inte

rior' which had prompted the use of radial cutoffs
in distorted-wave Born-approximation (DWBA)
calculations which did not include nonlocal cor-
rections.

Nonlocal potentials are functions of two radial
variables rather than one. The usual potential
term in the Schrodinger equation which has the
form V(r)@(r) is replaced by an integral of the
form fV(r, r')4(r')dr'. Thus, since the wave
function 4(r) usually changes rapidly compared
to the potential, this integral has the effect of
averaging away some fraction of the potential
term, thereby reducing the effective potential.
If the averaging interval (or nonlocal "range") be-
comes comparable to the wavelength of the wave
function, this reduction can be sizable and the ef-
fective potential may be reduced by orders of mag-
nitude.

Since the wavelengths characteristic of heavy-
ion reactions are usually much smaller than in
light-ion reactions (due to the larger masses and
higher energies involved), nonlocal effects for a

given nonlocal range would be expected to be more
important for heavy than light ions. Whether such
effects are, in fact, important remains an open
question which can best be answered by experi-
ment. One must, however, understand which ex-
perimentally observable effects would be pro-
duced by nonlocal heavy-ion potentials. It is the
purpose of this paper to investigate this question
and to test the approximations which have been
developed for calculating such effects in light-ion
reactions.

I. NONLOCAL OPTICAL MODEL PROGRAM

To begin this investigation it was necessary to
write an optical model program which could solve
the integrodifferential nonlocal Schrodinger equa-
tion in the heavy-ion domain. The work of Percy
and Buck, ' based on the assumption of a separable
Gaussian form for the nonlocal potential, was
taken as a starting point. It was soon found that
the methods presented in that work for computing
an approximate local potential and for calculating
the nonlocal kernel function were divergent in
some region of the heavy-ion domain and alter-
native methods had to be devised. Further, it
was found that their method of numerically solving
the inhomogeneous Schrodinger equation was highly
unstable for short wavelengths, and a new numer-
ical procedure for solving this equation was nec-
essary.

We have therefore written OINK!, an exact non-
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local optical model program suitable for the case
of heavy-ion scattering. The program will handle
120 partial waves and up to 400 radial integration
steps. It initializes for a given partial wave by
taking the nonlocal potential, generating a Perey-
Buck equivalent local potential, "and performing
an optical model calculation to generate the wave
function. The latter is then modified in the interi-
or region using the local- energy approximation. "
The result is taken as the starting value of the
nonlocal wave function.

The program then folds the wave function with
the nonlocal potential to generate the so-called
trivially equivalent local potential, ' which is then
used to solve the Schrodinger equation for a better
approximation to the wave function. This proce-
dure is iterated until the S matrix has converged
to better than 0.1%. This usually requires only
two or three iterations, for the method is very
stable.

In the present work we have considered only the
Gaussian form of nonlocality suggested by Percy
and Buck. ' In that formulation they assumed that
the nonlocal potential could be represented as the
product of a function of the variable s = (r —r')/J3
and a function of the variable P = ~ I r+ r'

I . Fur-
ther, they approximated the latter by P
= —,'(I rl+ Ir'I), which has the effect of ignoring pos-
sible angular nonlocality effects. It has been
pointed out' that the Percy effect, i.e. , the damp-
ing of the wave function in the nuclear interior
discussed in Sec. III below, is a consequence of the
form of the nonlocal potential which Percy and
Buck employed and that other plausible forms of
nonlocality may give other results. Further,
Fuller has recently pointed out that angular non-
locality, which is not properly treated by Percy
and Buck, may be very important in heavy-ion re-
actions. ' Thus, the implications of the present
work should be viewed as strictly applying only to
Gaussian nonlocality, and it should be borne in
mind that other forms are likely to lead to other
results.

II. PEREY-BUCK NONLOCAL-TO-LOCAL POTENTIAL

TRANSFORMATION

where o.'= 2 (k P)', uI -—Vz /E, , u„=V„/E, , and
e = 1 —Vc,„,/E, . Here k =p/k is the wave num-
ber, P is the nonlocal range, V~ and V„arethe
(complex) local and nonlocal optical potentials,
E, is the energy of the system in the center of
mass system, and VC,„,is the Coulomb potential.
Both of these expressions are transcendental, and
must be iterated to generate a local potential V~
from a given nonlocal potential V~. However,
given V~, the nonlocal potential V~ can be deter-
mined without iteration.

It can be seen from the exponential form of (1)
that, since V~ is normally an attractive (i.e. , neg-
ative) potential, the exponential factor will be less
than 1, so that the local potential will usually be
less than the nonlocal potential in magnitude.
Further, since E, enters into various factors
in this relation, the reduction factor will depend
on energy. Since both V~ and Vc,„,are functions
of the radius, the reduction factor will also de-
pend on radius, so that the shape of V~ will be
different from that of V„.

To test the accuracy of the transformation for
heavy ions, we have considered two types of com-
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Percy and Buck' have suggested a transforma-
tion by means of which a nonlocal potential may
be transformed into an effective local potential
which produces the same scattering. The trans-
formation including Coulomb effects which Percy
and Buck omitted, has the form:
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FIG. 1. Comparison of the local equivalent potential
(circles) obtained from Eq. (1) with the nonlocal effective
potential. Veq (r,l) (dashed curves) for various l values.
The case shown is the potential. for ~~0+ +Ca scattering
at 48 MeV.
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parisons: (a) a comparison of the elastic scatter-
ing prediction of the transformed potential with
that of an exact nonlocal elastic scattering calcu-
lation, and (b) a comparison of the transformed
potential with the "trivially equivalent" local po-
tential2 which is the exact equivalent of a non-
local potential for a given partial wave. Compari-
son of elastic scattering cross predictions (a)
shows excellent agreement in all cases tested.
Since this method of comparison is rather insen-
sitive to the details of nonlocal wave functions,
and since a full nonlocal optical model calcula-
tion is very time consuming, this method of corn-
parison is rather limited in its utility.

The basis of comparison (b) is that an exact
equivalent local potential can be defined by
V (r, l) = [J' V(r, r')4, (r')dr']/4', (r). This eciuiv-
alent potential is strongly l dependent, is not well
behaved, and may have cusps and poles when the
wave function has minima and zeroes, but it is a
local potential which contains al/ of the features
of a nonlocal potential and may be directly com-
pared with the transformed potential. Figure 1
shows a comparison between the transformed po-
tential and the exact equivalent l-dependent po-
tential for several different / values.

For this comparison and those which follow we
have used the scattering of "0 from "Ca at 48
MeV as a test case. This system was chosen be-
cause it is light enough so that relatively few par-
tial waves are needed in the calculations, because
the nonlocal effects are tested more severely with
the relatively deep potential (V= 100 MeV) used in
the elastic scattering analysis, and because signi-
ficant deviations between experimental transfer
data and D%BA calculations have been noted. ' The
potential used is V= 100 MeV, W = 40 MeV, r,
= 1.22 fm, and a=0.49 fm. For all comparisons
we have chosen / values near the grazing / value.
As can be seen, the equivalent potentials generally
average through the transformed potential. This
illustrates the level of approximation which is be-
ing used by employing the transformed local po-
tential.

III. LOCAL-ENERGY APPROXIMATION

As mentioned above, one of the effects of a non-
local potential, sometimes called the Percy ef-
fect2 4 is the reduction of the wave function in the
lnterlol of the nucleus. The use Qf an effective
local potential such as the transformed potential
described above does not reproduce this effect,
since the transformed potential only gives an ap-
proximation to the external behavior of the wave
function. Thus an additional approximation is re-
quired to simulate the reduction of the internal

wave function produced by a nonlocal potential.
Such an approximation is not required for the
analysis of elastic scattering, which depends only
on the behavior of the external wave function, but
is needed when analyzing transfer reactions where
overlaps between bound state wave functions and
distorted waves in the nuclear interior make im-
portant contributions to the cross sections. The
approximation which i.s conventionally used for
light-ion reactions is called the local-energy ap-
proximation (LEA)." Its derivation is given in
Ref. 3. It has the form:
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FIG. 2. Comparison of wave functions generated by
the local. equival. ent potential. and the nonlocal. potential
for ~ 0+ +Ca scattering at 48 MeV.

=@~(r)[1—au~(r)j '~'.

Since V~(r) is in general an attractive potential
and therefore negative, the denominator will be
greater than 1 and the wave function will be re-
duced. Further, since V~(r) is complex, the ap-
proximate nonlocal wave function will not only be
reduced in magnitude but also shifted in phase by
the transformation. The LEA gives the appearance
of being energy dependent, since it explicitly in-
volves E, , the center of mass energy of the sys-
tem. However, since a ~E, ', the expression
is in fact independent of energy, except for the
implicit energy dependence of the equivalent local
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local potential obtained from the Percy-Buck
transformation given in Ec(. (1). Figure 2 shows
the result of such a comparison. In the upper part
of the figure we see the ratio of magnitudes of the
nonlocal and local wave functions, while in the
lower part the phase difference is shown. The
Percy effect is quite obvious in this figure, in
that the nonlocal wave function is reduced to be-
tween 80% and 50Vo of the value predicted by the
local potential and its phase shifted by between
5 and 15 . Figure 3 shows the accuracy to which
these effects can be predicted by the local-energy
approximation. The upper part of the figure shows
that the accuracy of the magnitude predictions of
the LEA are less than 1% until the nonlocal range
rises above a value of 0.3 fm, and even at 0.4 fm
retains an accuracy of better than 5% in the nu-
clear surface region. The lower part of the figure
shows that the accuracy in phase of the LEA is be-
tween 1' and 5' in the nuclear surface region for
the nonlocal ranges studied.
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FIG. 3. Accuracy of the local-energy approximation
(LEA) in simulating the nonlocal damping arising from
the Percy effect for ~60++Ca scattering at 48 MeV.

potential V~ (x).
We have tested the LEA by comparing wave func-

tions calculated with an exact nonlocal potential
with wave functions calculated with the effective

IV. DWBA CALCULATIONS

In the previous sections we have investigated the
range of ayplicability of the LEA approximation
and found that it works well for heavy-ion reactions
as long as P —0.4 fm. We now can use the LEA in
heavy-ion transfer DWBA calculations. We have
done this using a modified version of the finite-
range DWBA program of LOL&.' The parameters
of Ref. 7 were used for the 42Ca("0, "N)4'Sc*
(1.18 MeV & ), a reaction which is not well fitted
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FIG. 4. The effect of Percy damping on the DWBA
calculation of 2Ca{~ 0 5N)+Sc* at F =48 MeV, using a
strongly absorbing potential. The potential. used is given
in Ref. 5 p'/V =40/100) and vrave functions in the en-
trance and exit channels frere damped using Eq. (2).

FIG. 5. The effect of Percy damping on a D%BA cal-
culation for 42Ca(~~0 ~5N) 43Sc* at F =48 MeV, using a
vreakly absorbing potential. The potential used is that
given in Ref. 5, except that W/V is taken as 5/100.
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by the original DWBA calculations, perhaps partly
due to its poor momentum and angulax' momentum
matching. Figure 4 shows the predicted angular
distributions with P= 0.0 fm, 0.4 fm, and (unre-
liable) 1.0 fm values. For P values S0.4 fm the
RngulRl' distribution ls negl1glbly changed.

We can understand th18 x'esult 1n terms of the
amount of absorption in the optical potentials
used. Light-ion potentials are often rather weakly
absorbing in the interior allowing the Percy effect
fo.ll sway. For this heavy-ion reaction, however,
the interior contributions to the DWBA cross sec-
tion are strongly damped by the use of a strongly
absorbing (W/V= 40/100) optical potential. This
assertion can be verified by reducing the absorp-
tion to V/W= 5/100 as shown in Fig. 5. Now, a
P =0.4 fm is capable of strongly changing the pre-
dicted angular distx ibution. Thus, if heavy-ion
reactions are found in which weakly absorbing yo-
tentlR18 Rx'e Rypropr1Rte nonlocRllty effects might
be of concern.

At this point there remains an uncertainty about
what nonlocal range is appropriate for heavy ions.
We have only the theoretical guidelines of Jackson
and Johnson. ' They derive a simple model which

yields a nonlocal range of approximately 0.2 fm
for e particles, fitting the observed energy de-
pendence of e elastic scattering potentials rather
well. With this model they px edict heavy-ion P
values to be given by

P=P,„„„,/&„, or P =0.05 fm for "O.

These small P yarameters, of course, suggest
that the energy dependence of heavy-ion optical
potentials should be rather small. There is some
evidence for this conclusion based on a recent
analysis of '60+ "Si elastic scattering between 33
and 215 MeV, "where a shallow energy-indepen-
dent optical potential is found to give good fits to
the data over this laxge energy range.

We conclude, then, that radial nonlocality effects
are quite small in heavy-ion transfer DWBA cal-
culations using strongly absorbing optical poten-
tials. We find that the Percy-Buck transformation
and LEA work surprisingly mell for heavy-ion re-
actions yrovided P —0.4 fm.

The authors a.re indebted to Dr. F. G. Pex'ey for
helpful discussions while this work was in pro-
gress.
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