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Ellis's method of constructing the random-phase-approximation ground-state wave function which avoids the
earlier dubious and incorrect quasiboson approximation is extended to the N + Z nuclei. The most important
effects arise from the appropriate treatment of the isospin quantum number. In application to the calcium
isotopes we find that the calculated relative shift of the proton rms radius from Ca to ' Ca R = —0,35% for
the first time agrees with the high energy electron scattering result R = —0.31%%uo. Excellent agreement is also
obtained for the difference of the neutron and proton rms radii in ' Ca. It should be emphasized, however,
that our conclusions concerning the magnitude of the effects on the rms radii due to ground state correlations
are more significant than the detailed comparison with experiment.

NUCLEAH STRUCTURE '4 Ca; calculated spectra, shell breaking, rms radii,
and density distributions. Ground-state correlations and isospin projection.

I. INTRODUCTION

The original shell-model assumptions relying on
the picture of the closed shells of the magic nu-
clei are clearly qualitative only. Extensive experi-
mental observations and theoretical investigations
have shown that appreciable core excitation corn-
ponents are present in the ground state (g.s.)
wave function of the magic nuclei. The nuclear
random-phase approximation (RPA)' provides the
necessary theoretical framework for the investi-
gation of such correlations. As early as 1963
Brown and Jacob, ' using a schematic interaction,
obtained an explicit form of the RPA ground-state
wave function. Sanderson' and Agassi, Gillet
and Lumbroso' then investigated several examples
of doubly magic nuclei with a residual force of
finite range. They found a considerable depletion
of the closed-shell component of the ground state
ranging from 40 to 80%. A common error of the
early investigators' consisted in the double count-
ing of certain RPA graphs. ' Performing the ex-
plicit summation of the needed diagrams, Ellis'
obtained the correct RPA ground-state wave func-
tion. Within this new formalism the correlations
are strongly reduced but are still appreciable and
even large for particular nuclei.

The problem of the ground-state correlations is
slightly more complicated in the case of the magic
nuclei with No Z if a sharp value T, = ,(N-Z) of-
the isospin is required. Namely, after a particle-
hole (p-h) pair is excited the resulting isospin T
of the configuration is formed by vector coupling

of the core isospin T, and that of the p-h pair T,„.
With T, W 0, two possibilities are open when T,„

1 T Tp To + 1~ Separation of these two compo-
nents must be ensured in the formalism, because
the nuclear interaction conserves isospin and the
long-range Coulomb force causes very little mix-
ing inside the nucleus: Isospin seems to be a
meaningful quantum number. ' The existence of
isobaric analog states provides a most striking
demonstration of it. Some problems of the g.s.
and analog states in NW Z nuclei have' been studied
within the Hartree -Fock approximation. E.g. ,
Engelbrecht and Lemmer' and Lee' have discussed
the cases where the isospin symmetry of the Har-
tree-Fock (HF) wave functions is restored in NeZ
nuclei after introduction of the RPA-type neutron-
proton correlations.

Following our previous calculation' we extend the
RPA ground-state theory to the NW Z nuclei by
improving the basis states with respect to the
isospin. An attempt in this direction has been
made by Parikh. ' We present here a new and
more transparent formulation and perform de-
tailed numerical calculations which are practically
absent in Ref. 7.

The new formalism was developed with the aim
of studying in detail the well known anomaly ex-
perimentally observed' in the root-mean-square
radii of the calcium isotopes: They do not follow
the usual A' ' rule. Our methods are suitable for
the description of the ' Ca and "Ca nuclear ground
states and we show in a numerical calculation that
the g.s. correlations are important and provide
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an adequate explanation of the anomaly.
The paper is planned as follows: The isospin

projected ground-state wave function of the N4 Z
nuclei is constructed in Sec. II. The excitation
spectra, obtained as a byproduct in our calcula-
tion, ground-state decompositions, the results
for the root-mean-square radii, and the density
distributions are given in Sec. III. Finally, Sec.
IV contains the conclusions.

II. RPA GROUND-STATE WAVE FUNCTION

WITH DEFINITE ISOSPIN

A. Isospin operators

In Nc 2 magic nuclei the vacuum ( T,T, & is as-
sumed to have no correlations built into it. The
total isospin operators are defined as in Ref. 9:

T'=Qb', a,

T =pa',-b, ,

T'= —P(b~ b, —at a, ),

where at~ and bt are the creation operators for
protons and neutrons, respectively. We list here
also the commutation relation between the opera-
tors T' and T,

which, acting on the uncorrelated shell-model
ground state I T,T, &, create the 1p-1h proton and
neutron states

~
& &=Qtp(a)(~ ~M) IToTo&

are introduced. Here the symbol [:::]denotes the
Clebsch-Gordan coefficient. Though orthonormal,
the sets

~
o.', & contain isospin impurities.

(ii) Lowdin&s'0 projection operators Prr are used
to obtain the states with definite isospin

The explicit form of P» can easily be written in
g

terms of T and T'.

Prr = (2T+1) (T+ T,)!

x (T-)T-Te »(T&&)T& T+& v

x (-)"
v!(2T+ v+ I)!

where v „, „ is finite and specified in Ref. 10. In
particular, when acting on Qt(TOT, & the projec-
tor is, e.g. , P» =I —,T T'/(T, —+I). In general,
the projected states are not orthonormal and may
form an overcomplete set.

(iii) The unitary matrix && which diagonalizes
the metric matrix N whose elements are

[T', T ]=2T

and the only nonvanishing commutators between
the T' and T operators and particle creation
(annihilation) operators,

(2) provides us also" with the desired orthonormal
set

[T', a, )=b, , [T',. b, ]

[T, b~~]=at, [T, a& ]

Then in our notation:

= -a.pm'

= —b)

(4)

B. Basis states

The orthonormal basis states with definite iso-
spin are obtained in three steps.

(i) The operators

A, being the eigenvalues of the matrix N. Natural-
ly, if the set (P,. & was overcomplete, one or sev-
eral zero eigenvalues A. appear. The correspond-
ing eigenvectors should be omitted in construction
of the set l y; & .

Let us note that this construction remains un-
changed if the operators (5) have a more compli-
cated (e.g., m-particle-n-hole) structure. In the
case of 1p-1h configuration the result is actually
very simple.

We denote by f the single-particle levels in the
neutron excess region. The set (y, & is constructed
from I T,T, & by the operators

Q'(i&ZM)= g ( )»&=~&-
pi hi

aapimpi "immi ~

—mh M I'„(i,ZM) = P A'(i, gM),

Qt (i& JM) = g (-)»&™&&

mpimhi

b' bpmi hmh
—mh M

i

where A~=Q~~ (At= Q~z) of Eq. (5) if p, =f (b, =f).
In the case of both p,.of and h, +f we have

(5) A (i&ZM) =
~2 [Q~(i& JM)+ Q„(i&JM)] (aa)
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A.'(f+ I,ZM) = ~ [n',(f, ZM) O-'„(f, ZM)] . (6b)
1

It is well known' that an additional 2p-2h admix-
ture of the form bt g7.' is generated in the last
case, namely,

1I, , ~ [fl,'-n', ]lT,T, &

0 1»»»» ~a» j»'» j"» 8»»» I»» I» ——f»l »» T ) IT T ) .
2(T +1) P»m»»»»»ls»»» P»wP»»»»IN1» T P»m»» lh»lag» I I 0 0&0+

mq -m»» M

The linearlzed index ~ lRbels the independent op-
81'Rtol'8 I . Tile fillRl se't lp») 11Rppells 'to be ldell-
tical with the choice of Jaffrin and Ripka. " It can
be cheeked that the operators r»r r {i,ZM) together

0 0
with their Hermitian conjugate rr r (i, OM) sa'tisfy
the folio%'ing I'61Rtlons required in the HPA fox'-
malism;

o„'le)= lx&,
{13)

0), l4&=0.

To derive suitable equations for 0~~ Howe" staxted
%'ith for mRlly exact equations of motions

&el[o„,[ff, o',]]le&= &el[o„,o'„]le). (14)

r, , (f, zM)lT, z, )=0, To px'oceed further, two main approximations ax'e
usual. First, the operators 0~~ are sought in a
strongly restricted space [see Eq. (19) for our
choice]. Secondly, instead of the exact ground
8'tR'te

I »I») Rll Rppl'oxlnlRtloll I Q& 18 cllosell with
the argument that Eq. {14)is, in fact, not very
sensitive to I 4). Finally, this approximation can
be improved by iterating Eq. (13).

We would like to stress that Eq. (14) relates the
gx'ound-stRte expectRtion vRlues of certain op6x'R-
toxs rather than the operators themselves. In this
formalism several earlier difficulties {e.g. , un-
certainty of the so-called linearization procedure)
Rx'6 Rvolded. Most important and unlike the other
derivations, Eq. (14) is not limited to tbe Hartree-
Fock foxm of the ground state. ""Using this ad-
vantage of the double commutator equations we
need not concexn ourselves with the isospin px'op-
erties of the HP states in Nw Z nuclei and can
safely use the uncorrelated shell-model ground
state I T,T, & in the capacity of I »f» as a, suitable
approximation to IC&. Because of the arbitrari-
ness of I Q &, Hermiticity of Eq. (14) may be lost.
To reestablish it, Howe'3 introduces the sym-
metrized double commutators

&r,r, l[r, , (f, zM), r', , (q, zM)]lT, T, &=6„.

Commutation relations of the r»r r (i,JM) opera, -
tors with particle (hole) number operators

will be needed in the fox'thcoming application.
Their derivation is straightforward; we list here
as an example the result fox the neutron particle
QuIQbex' oper Rtox"

g[bt„,b,„,, r'„,,(&,zM)

( )'»»» ~»»»

fHPg ftl h) Vl pj

g (j) yt
@~mph h~nthy &

where 6»»'=0 if p =f and 6"'=bl t» if f» =f. .P.fffP. h~mh.
If both p,. Wf and I»,. »»f then

G(j+ 1) 0

@~ff4P~ h~'off N 7 PyfftPy@h *wh ~
y

C. RPA equations

%6 are looking for the operators 0~~ which create
nuclear excited states I z) out of a parent state
I@&:

[W, H, B]= —.
'

([[W,H], B]+[X,[ff, a]])
to obtain mell-behaved equations of motion

&@ l[o. H oljle&=~&el[o. , oljle& (16)

which follow from Eq. (14) in the limit that I p& is
an eigenstate of H, since then

&~ l[[o., ol], If]i&=0
The uncoupled equations of motion (16) were

frequently used to describe the N =Z nuclei,
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where the standard vector coupling techniques
help to construct the operators O~~(JMTMr). Since
the ground-state total spin and isospin is J,= To 0
here, the excited states (13) are characterized by
the sharp values of J and T.

For N &Z the ground state, though scalar in the
J space, has tensorial properties in the isospin
space. Tensor equations of motion have been sug-
gested by Rowe and Ngo Trong" to settle this
problem without introducing additional complexi-
ties into the operators Ot. The price to be paid
for this is a more complicated structure and a
certain asymmetry of the resulting matrix equa-
tions. Indeed a ground state is assumed in Ref.
14 but no attempt was made there to derive it.
The authors argue that the method of the tensor
equations of motion being designed for the study
of the nuclear excitation dynamics need not be
equally well suited for the description of the static
ground-state properties.

We are mainly interested in the ground-state
characteristics of the N& Z nuclei. The uncou-
pled form of the equations of motion (16) is there-
fore maintained. To separate the excited states
with good isospin, the projection operators" P»,
which we have already discussed, were used.
Employing the relation [H, P» ]=0, Eq. (16) may
readily be rewritten as

(T To ~[Q„,H, Q~]
~

T T ) =(g(ToT ~[Q„,Q~~]
~

TOT ),
(16)

since (T,T, I [[Q„,Qt], H] I T,T, ) = 0 as required. The
symbol Q~t is a shorthand notation for Qtrr (A, JM)

0
which we choose to be

Qt (A., JM) =+[X,. (A.)rt (i, JM)

+ r, (~)r„(i,J M)]. (19)

Then the expansion coefficients X, and Y,. are the
solutions of the matrix equations

(20)

(T,T,
~

T'a bHb aT
~
T,TO) (22)

of the matrix A. Using the commutators (2) and
(3) we can interchange the positions of T' and T
in (22). In effect we obtain a linear combination
of the usual 1p 1h matrix elements since T' [T,T, )

with submatrices defined as

A&,.
——(T T ~[r r (i, JM), H, rrr (j,JM))

~

T T ),
8, =(T,T ~[r„(i,JM), H, r„(f',J M)]

~

T,T, &.

(21)

The detailed structure of matrices A and B with
T = T, is given in Table I. As for the 2p-2h ad-
mixtures of the state (9) consider, e.g. , the term

TABLE I. RPA matrix of the nuclear Hamiltonian. The different configurations are labeled
by the operator A used in Eq. (7). Contributions E; to matrix A from the single-particle
Hamiltonian are given in the first entry, where &; = —(&p ~ &p ~ + &p ~ &I,.) &&& = (&p. +E'g.
—&p, —cz.)/2Tp. Note the nondiagonal term E,' =

2
[(&p+1)/&p] (&p,. —~&. —&p. +&&,.). To obtain

the interaction term of the matrices A and B insert Fz =F(pp pj &j&T) and Fz = —(—)»j+'"j'~+
x F(Pffft, ~T), respectively, into the second entry, where a= [2&p/(&p+1) J . The "hole-
particle coupled" matrix elements F(abed&7.') are those of Ref. 6; &p, &p, &p, and &z denote the
energies of the shell-model single-particle states for the proton particle, proton hole, neutron
particle, and neutron hol. e, respectively.

Type of
configuration 2-1/2[pe + gf ] 2-i /2[gf gT ]

O,P

E =~p;-~n;P P

—Fp+Fi

Ea = ~p —~as
N N

—F2Fp
—aFi

2-i/2[g f+g ]

~~~[Qt —QJ]

—Fp+Fi

~2Fp

—aFi

—Fp —Fi

aFi

—02F
p

E;=~;

—2Fp

Eoff
i

aFi
Eoff

5

E +~Et

—2Fi



14 RANDOM-PHASE-APPROXIMATION GROUND-STATE. .

=(T,T,
~

T = O. Another interesting feature in
Table I is the nondiagonal contribution from the
single particle Hamiltonian arising between the
states generated via operators (8a} and (8b).

D. RPA ground state

The ground-state RPA wave function4' in terms
of the new basis can be written as

(23)

where the correlation matrix C is given by

(24)

III. SPECTROSCOPY OF OCa AND ~8Ca

A. Residual interaction and the single-particle energies

and the energies E, and matrix elements B~& are
specified in Table I.

The correlated ground state (23) is a direct gen-
eralization of the corresponding result obtained in
Ref. 4 by explicit summation of the perturbation
theory diagrams. Ellis' treats the particle-hole
creation operators At [e.g. , our Eq. (8}]as bosons
and introduces the exchange correction term sep-
arately. Our I'~ operators may be treated in pre-
cisely the same way since the additional b aT
term, by the same argument as used in connection
with (22), contributes only the usual lp-lh expres-
sions in the calculation of the correlation energy,
normalization factor X„and occupation probabili-
ties for the ground state (23).

The quasiboson form of the ground state, which
corresponds to the omission of the second term
in the square brackets of Eq. (23), can indeed be
obtained in the formalism with projection opera-
tors P» by the direct application of the Sander-
son' method.

The nonlocal separable Tabakin potential with
'P, phase parameters as in Ref. 15 has been used
for calculating the matrix elements between y-h
states. For the evaluation of the second-order
Born corrections, the method of Clement and
Baranger" was used. The parameters are as
follows: Fermi momentum E~ = 1.3 fxn ', 8'0
= -10.0 MeV, harmonic- oscillator well param-
eter b = 2.063 fm. The integration over e.m. mo-
mentum is from 0 to ~.

Since several sets of single-particle and -hole
energies have been introduced i.n the literature,
we examined the stability of our numerical re-
sults against a change of these parameters. They
are listed in Table II for the ~OCa and 48Ca. nuclei
No Coulomb corrections are included in the case
of "Ca.

Inclusion of the Og, &, single-particle (s.p.) state
into the model space, though irrelevant in ~OCa,

wouM be desi. rable in the case of the ~'Ca nucleus

TABLE II. Single-particle energies &~ (in MeV) of Ca (roars 1-8) and Ca (rows 9-12).

2 Sg/2

DM (Ref. 18)
ETh (Ref. 16)
EEx (Bef. 16)
D (Ref. 19)
GP (Bef. 17)
GN (Bef. 17)
GAv (Ref. 17)
Z (Ref. 20)

-13.10
-14.10
-13.50
-13.30
-12.61
-13.27
—12.94
-11.70

-9.60
-9.10
—9.80
—9.80
—9.51

-10.17
-9.84
—9.70

-7.10
-7.50
-7.20
—7.30
-6.71
-7.37
—7.04
-7.20

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.70
3.60
2.10
2.00
1.90
1.95
1.95
l.90

5.95
6.20
5.50
6.20
6.40
6.40
6.40
6.25

3.25
5.40
4.10
4.10
4.10
3.95
3.95
4.25

JR (Bef. 12) neutron
pl oton

E (Ref. 16) neutron
proton

-16.57
-19.41
—22.1
-21.8

—13.63
-15.26
-13.5
-15.5

-13.64
-15.63
-13.6
—15.5

—9.94
—9.62
-7.6
—9.5

-5.14
-5.20
-2.8
-3.2

-1.18
—3 67
—1.0

2 y7

-3.12
-2.76
—0.9
-0.9
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since there it opens many new excitation possi-
bilities. Unfortunately, its position is not well
established. Therefore we are forced to omit
this state.

Since our final aim is to study the relative
change of the rms radii from ~'Ca to 'Ca we are
especially interested in the pairs of the s.p. en-

ergy sets for these nuclei constructed by a unique
prescription. The sets consistent in this sense
are E and ETh calculated in%oods-Saxon potential
well by Elton" and the pair GAv- JR extracted
from the experimental separation energies of the
neighboring nuclei by Gillet and Sanderson" and

Jaffrin and Ripka. "
B. RPA results for 40Ca

To be able to draw conclusions on the behavior
of the nuclear radii we have to describe mithin the
same scheme both the 4'Ca and 4'Ca nuclei. %e
used the symmetrized version of the RPA method6

when calculating the ground and excited states of
~ Ca. The lowest J'=1, T=O state, which in the
RPA calculations yields imaginary energy, is
considered to be mostly spurious and has been ex-
cluded from further calculations. The lowest non-
spurious solution is then related with the observed
1 state at 6.94 MeV since the 1 level at 5.90 MeV
seems to belong to a rotational band. The re-
sulting negative-parity excitation energies ~ given
in Table III are all about 1 MeV too high when
compared with the experiment. In Table III we also
list the probability P, of finding a double closed
shell configuration in the ground state. I', and I'~
are probabilities to find tmo and four particles ex-
cited in the ground state.

The nice feature of these results is that they de-
pend only slightly on the choice of the s.p. ener-

gies. Among many s.p. sets we have tried, the
most extreme results were obtained with the ETh"
single-particle scheme.

C. RPA reSultS for 4sCa

The energies of the negative- and positive-parity
excited states of 4'Ca as obtained mith the s.p. en-
ergy sets of Hefs. 12 and 16 (see Table II) are
compared with the experimental results in Table
IV. Again the lowest 1 state was omitted as highly
spurious. The most interesting collective 3 level
is very satisfactorily described with the s.p. en-
ergy set JR". Two groups of the observed J ex-
cited states centered at about 5.5 MeV (four
states) and I MeV (five states) exhibit different be-
havior, e.g. , the second group accounts for =75k
of the p-decay strength of the "K nucleus. " These
two groups are mell separated in our calculation
and they come out with correct spins and parities.
Both groups are, however, shifted to higher en-
ergies by slightly less than 1 MeV (the Set JH) and

by almost 3 MeV with the Set E. Despite the limi-
tations of the chosen model space which is rather
inappropriate for description of the positive-parity
states (see Sec. III A) even the 2', 2', and 4' levels
were obtained at an approximately correct position
and with correct densities.

The decomposition of the RPA ground-state wave
function of "Ca is displayed in Table V. The
probabilities P»(n) [P»(P)] are those of the excita-
tion of 2k neutrons (protons) in the ground state.
(In our previous work the proton and neutron oc-
cupation probabilities should be 69 and 80%, re-
spectively (p. 1246 of Hef. 6), they were inter-
changed in typing by mistake). Comparison of the

TABLE IV. Eigenvalues ~ (in MeV) for the various J'"
states compared with the experimental values for 4 Ca.

ETh D GAv Exp. ~

Po
I'2
P4

7.82

4.26
7.83
8 ~ 63

0.399
0.363
0.154

10.15

4.78
8.31

10.28

6.10

0.482
0.346
0.119

8.54

4.67
8.19
8.96

0.449
0.354
0.133

8.17

4.46
7.93
8.81

5.57

0.406
0.366
0.165

6.94

3.73
6.29
6.58

See Ref. 21.

TABLE III. Eigenvalues ~ (in MeV) for the various
T= 0 states compared with the experimental values

for 4 Ca. The last three rows contain the probabilities
P& for finding 2n particles excited in the RPA g.s. of
40Ca

See Ref. 22.
See Ref. 21.

JR

7.76
7.98
7.10
8.40
4.31
6.27
7.81
6.03
6.48
5.99
4.85
5.03
4.84
7.05

9.95
10.85
7.26

10.70
5.09
6.38

10.07
6.21
6.68
6.09
4.85
5.02
4.84
6.90

Exp.

6.61
7.30
6.69
6.90
4.51
5.37
7.40
5.15
5.25
5.73
3.83
4.61
5.15
6.34'
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TABLE V. Probabilities P& for finding 2& neutrons (protons) excited above the Fermi level
the BPA ground state of 48Ca. In the last column the average number N of excited particles

above the Fermi level is given.

Pp 0(+) +0(~) +2(+) P2(~) +4(~) +4(~)
N

neutron proton

0.698
0.802

0.904
0.936

0.770
0.857

0.091
0.061

0.199
0.129

0.005
0.002

0.026
0.010

0.202
0.133

0.516
0.309

probability P, = P, (n) x P,(P) = 0.69 to find the
closed shells with the corresponding numbers for
"Ca (Table III) shows that "Ca contains less cor-
relations in the ground state. It can obviously be
connected with the observation that the excited
states of "Ca are, in general, higher than the
corresponding ones in coCa.

D. Radii and densities

Precision measurements performed recently
with the high-energy electrons' and protons" pro-
vided detailed information on the root-mean-
s1luare (rms) radii of the charge, neutron, and
matter distributions in atomic nuclei. In N= Z
(A ~ 12) nuclei the r~ A'/' -rule is now well es
tablished. A less rapid growth (-A'/') was ob-
served in the various chains of isotoyes. In the
Ca isotoyes, on the other hand, the rms charge
radius stays virtually constant from coCa, to 48C

precise experiments' give even a small decrease
with the result

To understand the origin of the anomaly, sever-
al calculations have been performed. Elton"
built up the charge distribution from single-par-
ticle proton wave functions calculated in a spheri-
cal potential so as to fit s.p. separation energies
and the electron scattering data. In such a fit ac-
ceptable agreement with the measured isotope
shift was obtained. Hartree- Fock calculations
with density-deyendent residual interactions"'"
and with the Tabakin and Hamada- Johnston poten-
tials" result in isotope shifts of incorrect size
and/or sign. Dramatic effects from neutrons
caused by their charge form factor and syin-orbit
interaction were found by Bertozzi et al.': f,&,
neutrons cause a decrease of the rms charge ra-
dius from 4'Ca to 4'Ca by 0.021 fm.

In the present investigation we study the role of
the ground-state correlations in description of the
rms radii and density distributions. The relative
importance of the corresponding corrections can
be seen from a comparison of the rms yroton ra-
dius of the 4'Ca nucleus calculated with three dif-
ferent wave functions (w.f.). Starting with an un-

correlated ground state (harmonic oscillator) we
obtain increase of 0.01 and 0.04 fm in the rms
proton radius (1')~'/' using the BPA g.s. w.f. of
Ref. 6 and the sharp-isospin HPA g.s. w.f. con-
structed in Sec. II, resyectively. Such large
changes indeed deserve careful consideration.

From the calculation we get the rms radii cor-
responding to the distribution of the proton (neu-
tron) centers. They are then corrected for the
finite nucleon size ((r~') =(r„')=0.64 fm'); there-
fore our rms proton radius

(y2) 1/2 ((y2) + (r 2)) &/2

has to be comyared with the observed radius of
the charge distribution.

In what follows we yresent the results obtained
with the HPA g.s. w. f. as given by Eq. (23}. I.et
us stress once again that the processes resyonsible
for the g.s. correlations are correctly summed uy
in E1I. (23) avoiding the earlier" "double counting"
errors, and the correct value of the g. s. isosyin
quantum number in both ' Ca, and "Ca nuclei is
guaranteed.

The free parameter of our method is the spring
constant of the harmonic-oscillator basis functions.
This parameter is of a "mathematical" origin and
does llot appeal' 111 'tile self-consistent (Hart1'ee-
Fock or Brueckner-type) theories. In the shell-
model calculations v is traditionally fixed sepa-
rately for each nucleus. Since we are looking just
for the behavior of the nuclear radii which is
mostly affected by the parameter v, it would be
particularly unsatisfactory to introduce two dif-
ferent values of v for "Ca and "Ca. %e assume
th at vco vce v and argue th at if the inc orp or ation
of the ground-state correlations is to be con-
sidered as a valid explanation of the isotope effect
it must provide an answer independent of v. Actu-
ally we have calculated the differences d= (r')~, '/'
(r'), '/' and n = (r')„„'/' —(r')~, '/' over a broad

range of the harmonic-oscillator (h. o.) constant
0.23 fm ' ~ v ~ 0.30 fm ' with the results stable
within 5% over this range for both d and n.

Further, we were interested in whether the
single-yarticle energies which go as input values
into the RPA part of the calculation do appreciably
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TABLE VI. The rms proton radius of Ca (in fm),
columns are labeled by the s.p. energy sets introduced
in Table II. We have (r)&t/2 ——(r )„4/ = (r ) 4/

T. he
measured values are 3.4869 fm (250 MeV electrons),
3.526 fm (500 MeV electrons), and 3.491 fm (1 GeV pro-
tons) obtained by Frosch et al. (Ref. 8) and Alkhazov
et al. (Ref. 23), respectively. To show that the results
do not change appreciably with the shifts of s.p. energies
we fixed deliberately the h.o. constant, v=0.265 fm

DW ETh EEx D

( )ch40 3.4855 3.4790 3.4834 3.4818

GN GAv

( ')ch40 3.4903 3.4824 3.4857 3.4882

influence our results. The calculated values of
the proton rms radius of 'Ca obtained with eight
different single-particle energy sets of Table II
are given in Table VI. As a matter of fact, the
results are more stable against the changes in
s.p. energy sets than expected. Relying on the
above argument we have deliberately chosen v

= 0.265 fm '; therefore comparison with the ob-
served values is useless. Similarly the rms radii
of the proton, neutron, and matter distributions
in "Ca as given in Table VII are intended to de-
monstrate their relative independence on the s.p.
energy sets. The measured quantities are only
displayed for the reader's convenience.

After this preliminary discussion of the stability
of our calculation against the free parameters we
shall present the most interesting quantities which
characterize the isotope shift and the difference

of the proton and neutron distributions in "Ca.
The relative change of the charge rms radius
& = ((r') u,

«'/' —(r') ~40'/')/(r'), ~0'/2 was precisely
measured in 250 and 500 MeV electron scattering
experiments by Frosch. ' Our calculated results
which are given in Table VIII were obtained with
the s.p. energy sets GAv- JR and ETh-E of Table
II. As discussed in Sec. II these sets should be
most appropriate for calculation of such relative
quantities. Let us note, however, that for all
other pairs of s.p. energy sets the results are re-
markably stable varying from -0.17 to -0.49Vo as
compared with the order-of-magnitude larger pos-
itive and negative values calculated by other au-
thors, which are also displayed in Table VIII. Our
calculations are in close agreement with the mea-
sured value R = -0.31/0 as obtained by Frosch et
cl

The calculated and experimental results for the
difference & = (r')„«' ' —(r2)~0' ' of the neutron
and proton rms radii are given in Table IX. Con-
sistent with the previous theoretical investigations
and with early experiments we found that the neu-
tron distribution extends beyond the proton dis-
tribution in "Ca. Recently, scattering of 79 MeV
n particles" led to the value & = 0.03 + 0.08 fm.
The reason for this discrepancy may lie in some
fine details of the optical-model analysis which
necessarily introduces certain simplifications.
On the other side, the Glauber model used in the
analysis of the 1 GeV data'4 is currently con-
sidered most reliable and the results obtained
both at the Leningrad" and Saclay'4 machine nicely
agree with our calculation.

It is well known that neither single-particle mod-
els" nor Hartree-Fock calculations" (with den-

TABLE VII. The rme radii (r2)& /2, (r2)„'/2, and (r )~4 2 of the proton, neutron, and mat-
ter distributions in Ca (in fm). The first and second row contain our calculated results
labeled by the input s.p. energy sets defined in Table II. The other are experimental results.
Again the h.o. constant is deliberately fixed at ~ =0.265 fm

Method Reference (r2) 4/2 (r2) 2/2 (~2) 1/2

(4) = JR
(e) =E

This paper
This paper

3.4733
3.4669

3.6883
3.6863

3.6002
3.5965

(250 MeV)
e (500 MeV)
P (1G v)'
p (1.044 GeV) '
p (1 GeV)
p (1.044 GeV)

P (1.044 GeV)

8
8

34b
34 c

34b
34
34 c

3.4762
3 ' 5170
3.443
3.443
3.513
3.513
3.475

3.661
3.645
3.633
3.621
3.661

3.572
3.562
3.584
3.576
3.585

Charge parameters for E& =250 MeV taken from Ref. 8 were used in data analysis.
Leningrad results.' Saclay results (saturn I).

Charge parameters for && = 500 MeV taken from Ref. 8 were used in data analysis.
~ Charge parameters taken from Ref. 8 ("main result" ) were used in data analysis.
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TABLE VIII. The ratio E=[(r)&4~' -(rt)&40' ]/(r)&«' t (in%) calculated in the present
work and by other authors. The electron scattering measurement by Frosch et al. (Ref. 8)
yields Rexp= —0.31%.

Present work Ref.

R
-0.355
-0.348

GAv-Jr
ETh-E

-0.593
+ 1.111
+ 1.436
-3.690
+4.444

Elton (Ref. 24)
Negele (Ref. 25)
Vautherin et al. (Ref. 26)
Lande et al. (Ref. 22)
Meldner (Ref. 29)

sity-independent nuclear interactions) are able to
reproduce the detailed density distributions. As
demonstrated above, the ground- state correlation
effects yroved to be important for the correct de-
scription of the nuclear radii. Therefore it was
interesting to study the question of whether our
RPA method is also cayable of producing the den-
sity distributions in agreement with experiment.

It was known from the time of the first high mo-
mentum transfer (q&3 fm '} electron scattering
experiments" that the nuclear charge densities
differ from the early assumed structureless dis-
tributions by a distinct peak of p(r) at r=0. Re-
cent analysis of the available high momentum
transfer measurements together with the x-ray
data" discovered even a discrete ambiguity of
p(r) at small radii, the solution with the higher
central yeak being better founded in the case of
"Ca. Such a feature can be qualitatively under-
stood in terms of the shell model; it is connected
with the yronounced narrow peak of the 1s y/2 sin-
gle-yarticle wave function. Quantitatively, how-
ever, the earlier theoretical attempts predicted
this peak by a factor of about 2 too high. It has
been shown by Negele" that the dependence of the
nuclear potential on local density (plus suitable
modification of the HF theory) contributes strongly
to depressing the central density (see Fig. 4 of
Ref. 25). Comparison of Negele's and our results

for "Ca in Fig. 1 shows that the ground-state cor-
relations introduced by RPA produce a similar
flattening of the distribution. In the most interest-
ing case of "Ca we also found considerable im-
provement of the theoretical p(r) due to the in-
corporation of g.s. correlations as can be seen
from Fig. 2.

The calculated density distributions have to be
corrected for the center-of-mass motion effects
and for the finite proton size. These corrections
were calculated in the standard manner (see, e.g. ,
Ref. 25} for the "Ca proton distribution. Further
flattening of p(r) near the origin appears. In con-
cluding we must emphasize that in spite of sizable
effects from the g.s. correlations the calculated
density distributions still differ from those ex-
tracted from experiments, especially the region
of small radii is yoorly known.

The difference in the charge density distribu-
tions +r' (p« —p«) is believed to be the most
precisely measured isotope effect. ' Bearing in
mind the above mentioned deficiencies in descrip-
tion of the individual densities p4, and p«we can
hardly expect good results when calculating their
difference. Actually we have tried all combina-
tions of the s.y. energy sets of Table II and sever-
al values of the harmonic oscillator constant v.
The results differ strongly from each other while
retaining, however, two common features: (i)

TABLE Ix. The difference in rms radii of the neutron and proton distributions A= (r )„«' '
-(~ )&48 (in fm) for the 4 Ca nucleus calculated in the present work (rows 1 and 2) is com-
pared with other theoretical and experimental results.

+theor Reference & exp Method Reference

0.215
0.219
0.34
0.23
0,12
0.27
0.14

(e) =ra
(e}=E

Elton (Ref. 24)
Negele (Ref. 25)
Vautherin (Ref. 26)
Lande (Ref. 27)
Meldner (Ref. 29)

0 13
0.22 b

0.39
0.21
O.2O '
0 17
0.03 + 0.08

p(1 GeV)
p (1 GeV)
p (11-16MeV)
& (42 MeV)
n ()=30 MeV)
P (25-40 MeV)
a (79 MeV)

Alkhazov (Ref. 23)
Alkhazov (Ref. 34)
Lombardi (Ref. 30)
Fernandez (Ref. 31)
Bernstein (Ref. 32)
Maggiore (Ref. 33)
Lerner (Ref. 35)

' Corrections for the neutron form factor and spin-orbit interaction (Ref. 28) included.
See also Table VII.' Values calculated by Lombardi et al. (Ref. 30) from the data of Refs. 31-33.
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FIG. 1. Density distributions for protons in Ca I,for
HPA (dot-dash line)] and I.for RPA with center-of-mass
and finite proton size corrections (dotted line)] are com-
pared with results by Negele (dot dot-dash line, Bef. 25,
Fig. 5} and with experimental distributions (full line,
Bef. 8 and dash-line, Bef. 34).

Near the origin the difference p4, —p4, is negative
in contrast with the experiment; and (ii) both
minimum and maximum of the difference are too
large in absolute value. We conclude that just as
in the previous theoretical approaches, we are
unable to describe this fine effect."

IV. CONCLUSION

The HPA ground-state wave function for the
N 4 Z doubly magic nuclei has been constructed.
The sharp value of the isospin quantum number
T, = (N- Z)/2 is ensured by applying the appro-
priate projection. As an example we have analyzed
the "Ca nucleus. The spectrum of the low-lying
excited states was obtained as a byproduct when
constructing the g.s. wave function. The spectrum
(especially the important collective states) is in
fair agreement with the experiment.

Our main aim was to explain the isotope "anom-
aly" observed for the charge radii in calcium iso-
topes: the measured x'ms charge radius decreases
from OCa to 4'Ca by 0.01 fm. In our BPA ap-
proach we were able to show that the ground-state
correlations provide an appropriate explanation
of the effect if introduced with care of the isospin

I

x {fm)

FIG. 2. Density distributions in 48Ca for protons (dot-
dash line) and for neutrons (short-dash line) from pres-
ent work (no c.m. or proton size corrections) are shown
together w'ith the experimental charge distributions
(full line, Ref. 8 and long-dash line, Ref. 34).

conservation. The parameter- independent nu-

merical result was obtained for the difference of
rms proton radii in "Ca and "Ca, in excellent
agreement with the high energy electron scattering
experiment by Frosch et al. ' Similarly we repro-
duce very well the difference of the neutron and
proton rms radii in "Ca as recently measured
at two high energy proton accelerators. 34 An im-
portant improvement was also obtained for the
density distributions. Further work is, however,
necessary both on theoretical and experimental
side (larger q values with better statistics) in
order to draw definite conclusions about the cen-
tral densities. Our x esults show that the ground-
state correlation effects are numerically at least
as important as several others already discussed
in the theory of nuclear radii (e.g. , neutron form
factor and spin-orbit interaction, Ref. 28) and
most probably should be considered on the same
footing.

We express our thanks to Professor G. D.
Alkhazov for the correspondence concerning the
1 GeV proton experiments.
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