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Two distinct variational methods for obtaining single determinantal states in light spherical nuclei are studied.

The first is the well-known Hartree-Fock method and the second is the minimization of the energy variance

method. The equations for determining the self-consistent set of single particle orbits using the new variational

procedure are derived. The widths of these states are also evaluated, which provide us with a measure of their
departure from the exact eigenstates of the nuclear system. Perturbation theory corrections are also calculated

for these determinantal states to estimate the correlation effects. A comparative study of the properties of the

Slater determinants using the Hartree-Fock method and the new variational method is also made.

NUCLEAB STBUCTUBZ Evaluation of variance for Hartree-Pock states, mini-
mization of energy variance for Slater deterFri~ri~nts.

I. INTRODUCTION

Slater determinant is probably the most widely
used approximate wave function for particles in a
nuc1eus. In the last 10 years or so, such a de-
terminant has very often been obtained by the
Hartree-Fock (HF) method' ' in which one finds
the determinant having the lowest energy. It is
generally accepted that the HF approximation
describes many nuclear properties, including the
ground state energy well. In particular, some of
the single-particle properties (expectation values
of one-body operators in the HF state) show spec-
tacular agreement' with experiments. In spite of
the agreement one finds with the experiments it is
not clear how "good" the HF wave function is. To
be more precise, one does not know how well this
approximate wave function compares with the "ex-
act" solution of the Hamiltonian in the model space.
Often one also does not know how the calculated
properties wouM change with improvement in the
wave function. It seems justified therefore not to
strive for very good agreement between the HF
results and the experimental ones without a proper
investigation of corrections to the HF. In view of
this, we make a modest beginning here of sys-
tematically studying these questions and also in-
vestigate a new variational procedure for obtaining
Slater determinants. A more detailed discussion
of some measures for testing approximate wave
functions and the related variational principles is
given in Sec. II.

Consider the HF solution for the nuclear system
and evaluate its variance' o' = (H') —(If)'. The
width 0 provides us with a measure of departure
of the approximate wave function from the exact
solution for the system. Qf course, this quantity
by itself does not tell us how important the "cor-

relation" effects are for the nuclear properties.
One way of learning about these is to improve the
wave function by the use of perturbation theory.
We have therefore evaluated the correction to the
HF wave function and the HF energy in perturba-
tion theory. This is described in Secs. III and IV.
The width may also be used as a measure for com-
paring two approximate wave functions. For exam-
ple, given the widths of two determinantal states,
one can say that the one with the smaller width is
closer to the exact solution of the system. In Sec.
IV we also discuss how the width of the HF state
changes with a change in the size of the vector
spaces. We also examine the changes in the ground
state energy with this truncation and see how' the
width is related to the total energy spectrum span
of the nuclear system.

Besides studying the HF solution we also examine
in Sec. V an alternative variational procedure sug-
gested earlier' to obtain determinantal states. In
this we minimize the variance 0' for the system
rather than the energy. It should be clear that the
energy of the new determinant 4, will be higher
than that of C „F, but its width will be smaller. If
we therefore use the width as a measure of good-
ness of a wave function, then the state 4', is an
improvement over 4'„~. Moreover, if we carry
out perturbation theory corrections for 4, and

4„~, we expect smaller 2p-h correction for 0,
than for 4'„~. This is because in the determina-
tion of 4', we are already including some excita-
tions to intermediate 2p-h states. Of course, as
far as the energy criterion is concerned the HF
solution is superior to the corresponding solution
obtained by minimizing 0

The numerical calculations in this paper are
carried out for light spherical nuclei within the
space of three and four harmonic oscillator shells.
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Tabakin interaction has been used. It should be
pointed out that the calculations we have carried
out are meant for internal comparison of the two
variational methods and for illustrating the various
points we are making in the paper. It is not our
aim to compare the results of our calculations mith

expel lxnental quantltles.
A discussion of the results and some concluding

x'emarks are presented in Sec. VI.

II. MEASURES FOR APPROXIMATE %(AVE FUNCTIONS

AND CORRESPONDING VARIATIONAL PROCEDURES

%'e discuss in this section tmo measures for de-
termining the goodness of an approximate wave
function.

First we considex' as a. measure the width o of
the approximate state, which is defined through
the variance o'. The variance o' for a state l4)
is defined to be

(2.l)

where H is the Hamiltonian of the system. It fol-
lows from this definition that if l4) is an exact
eigenstate of H then its width o is zero. Other-
wise, l4) will have a nonzero width which will
give us a measure of the departure of l4) from an
eigensta. te of H.

In order to get some more understanding of the
quantity o, consider the expansion of l4') over the
complete set of eigenstates lp, ) of our system.
%e have

where nk are the eoeffieients of expansion. A ylot
of the intensities lo, ~l' versus energy will then
provide a picture of the way in which the state
l%) is distributed over the exact eigenstates of

H. In practice, me seldom know all the zk's and

E,'s, and hence we mill not be able to determine
the distribution of l4). Let us suppose, however,
that we know the energy and the variance of l4').
These ean be written as

(2.2)

k k

%e see from these equations that E is the mean
energy and o' the second central moment of the
distribution —i.e. , these are the lowest tmo mo-
ments of the distribution. As me evaluate higher
central moments p, ~= &4 l(H E)~lk) (p&2), we-
learn more and more about the distribution. It
should be clear, therefore, that after the energy
the variance is the next simplest quantity that

we can evaluate for a state
l 4). Note that the

energy of a state by itself gives no indication at
all about the goodness of the wave function, but
the width does provide some information. In fact,
it gives the spread of l4) over the actual eigen-
states of H.

Further, it can be shown by making use of the
expansion in Eq. (2.l) that the width can be used
to give both a, lower and an upper bound to an ex-
act eigen energy of the system. More precisely,
me have the relation

whex e E and o are the energy and the width of
the approximate state 4, and E, is the exact
eigen energy closest to E i e , .lE. —E, l

& lE —E, l

for all Ek. Thus, if E is closest to the exact
ground state energy then the lowest two moments
provide bounds to the exact ground state energy.

Another possible measure which is often used
is the overlap of the approximate state

l 4) with
the exact ground state wave function. This is gen-
erally very difficult if not impossible to have.
Thus this measure is available only in some x e-
strieted problems and hence has limited useful-
ness.

It is worthwhile recalling at this stage tha, t,
among variational solutions, the one with the
lower energy does not necessarily have a smaller
width or a larger overlay with the exact ground
state. Furthermore, a smaller width does not
imply a larger overlap with the ground state either.
Thus the enexgy, the width, and the overlap px'o-

vide different criteria for discussing ayyroximate
wave functions.

Further, corresponding to each of these cx'iteria
one can set up a variational procedure. It should
be evident that if me allow for the most general
variation in the wave function then each procedure
mould be equivalent to solving the Schrodinger
equation. It is when me yut restriction on the va.ri-
ational wave functions that we obtain different
variational solutions. For determinantal states,
the energy minimization leads to the well-known
Hartree-Fock procedure. The minimization of o'
for Slater determinants will be discussed in detail
in Sec. V and the optimization of the overlap has
been considered by Kelson and Shadmon. '

III. HARTREE-FOCZ APPROXIMATION

There are already many articles' ' on the HF
ayproximation and hence we give very fem details
about the method here.

If 4 is a, Slater determinant describing the states
of an A-particle system, then we ean write it as
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H = K —P'/2mA . (3 3)

X= p, t va', a„

+—g (li v
I
V"

I
li' v' &ai ataxi a, . (3.1)

Here f is the kinetic energy operator p'/2m and

(y, v
I
V"

I
Ij, 'v'& is an antisymmetrized matrix ele-

ment of the two-body intera. ction. The single-
particle states p, , v, . . . belong to a complete orth-
onormal set. Before we proceed further we de-
scribe the notation used in this work. For details
we refer the reader to Ref. 3. The occupied
single-particle orbits will be denoted by the Greek
letters n, P, y, X, . . . , and the unoccupied ones by
i, j,k, l, . . .

In our work the ground state wave function is
approximated by a single spherically symmetric
Slater determinant having the lowest energy. Such
an assumption seems to be reasonable for double-
closed shell nuclei like 'He, "Q, "Ca, etc. Such
calculations have been reported earlier in litera-
ture" ~. The assumption of spherical symmetry
means that each single-particle orbit is a linear
combination of harmonic oscillator (ho} states
having the same angular momentum quantum num-
bers l and j but different radial quantum numbers
n. Thus we have

l(ljmr} &=+ C„ ln„l~ m T )

where the operator at creates a fermion in the
orbit i, and so on. These a~ and the corresponding
destruction operators a,. obey the well-known
fermion anticommutation rules. In this formalism
the Hamiltonian X of the system has the form
shown in Eil. (3.1):

1 P (nP IHlkl&(kl I H I nP)
4assi ~s+ ~i —~a —~s

(3 4)

Here c, refer to the HF single-particle energies.
The wave function corrected to first order may

be written as

+HF n +HF+ Q i
S

(3.5)

Here a' is the intensity of the HF state, and C,.'
is the intensity evaluated in second-order perturba-
tion theory of the 2p-2h state 4 .. The normaliza-
tion condition is given by n'[1+,.C,.'] = 1.

IV. WIDTHS OF HF WAVE FUNCTIONS

A. A method for evaluating widths

Now we describe in detail a method' for evalu-
ating the variance defined in Eil. (2.1). To evalu-
ate it we make an intermediate state expansion in
the complete set of particle-hole (p-h) states built
on the wave function 4. The Eq. (2. 1) leads to

All the calculations described in this paper have
been carried out with the intrinsic Hamiltonian H
of Eil. (3.3). This method for including the center-
of-mass motion (c.m. m) correction was used by
Kerman, Svenne, and Villars. '

Having obtained the HF wave function we can im-
prove upon it by including 2p-2h corrections to it
in perturbation theory. It should be pointed out that
by definition the Hamiltonian H does not connect
the HF state with 1p-1h state. We can also evalu-
ate the second-order correction E(2) in energy.
The expression for the total energy E is given by

E = E„r+ E(2),
where

=g C„ ln s„m r„&, (3.2)

where m stands for the projection of j along the
z axis and v is the third component of the isospin
of the nucleon. Also, s denotes in a compact way
the quantum numbers l, j . In the HF wave func-
tion the expansion coefficients C„are such that
they characterize the determinant having the low-
est energy.

Since we are concerned with light nuclei the cen-
ter-of-mass motion cannot be neglected, and its
effect on the HF wave function, its energy, and
width have to be properly taken care of. The op-
erator for the center-of-mass energy is P'/2mA,
where P is the total momentum. If we subtract
P'/2mA from the total nuclea, r Hamiltonian we get
the intrinsic Hamiltonian H,

2ph

Note that the series on the right-hand side in Eq.
(4.1) terminates at two particle-hole states since
H, being a two-body operator, will not connect
states higher than 2 p-h states to the ground state.
Now, since IC„„&-=I%'&, the first and last terms
in Eil. (4.1) are identical. Thus we get

(4.2)

From Eil. (4.2} we see that the width of the wave
function I@& arises from the one particle-hole and
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o'(e„,) = p I&+„,Iff Ie„,)I'. (4.3}

%'e see therefore that the width of the HF ground
state arises purely from the 2p-h excitations.

We nom give explicit expressions for the vari-
ance. In the formalism of second quantization me

can write

(4.

With these the Eqs. (4.2) and (4.3), respectively,
reduce to Eqs. (4.5} a.nd (4.6):

+—g &npIv" Iuf&(uf Iv" Inp&4 offal
(4.5)

o2(e„,) = —g(npIv" I~i)&uf Iv" Inp).
a Bkl

Here the matrix element &n I
i Ik) of the single-

particle Hamiltonian is given by
A

(4.6}

(4 7)

8. Numerical results

We have carried out radial Hartree-Fock and
width calculations for the double-closed shell nu-
clei He, "Q, and "Ca. The calculations mere
done in the space of the first four oscillator major
shells. The single-particle orbits were expanded
in the spherical oscillator basis states as de-
scribed in Eq. (3.2). The correction due to the
center-of-mass motion was included. The cor-
rection arising from Coulomb repulsion mas, how-
ever, not considered. Thus the binding energies
presented here refer to the nuclear energies only.

It should be pointed out that five distinct types

tmo particle-hole excitations only.
Since the Hamiltonian 0 cannot connect the HF

states with the 1p-h states, me obtain for the width

of the HP state

of uncoupled matrix elements of VA enter into the
calculation of width. These a,re & pp I

~"
I pp),

&p, v' p.&, &ppIv Ipp&, &p-Iv" p-&, ~d
& pH V" pn& . Here p stands for a proton in a cer-
tain state and p a proton in the time reversed
state. Similarly for n and n. Note that of these
five types only the first four enter in the ordinary
Hartree-Fock calculation.

We have done calculations using the Tabakin"'
matrix elements. We show in Table I the results
of our calculation.

The HF energies for the Tabakin interaction are,
as is mell-known, ' lorn compared with the experi-
mental binding energies. Further, the second-
order correction in energy E(2) is approximately
20% of E„~ for 'He and "Q, which is not negligible.
This was first noted by Kerman et al. ' The widths
0 are large for the HF solutions of all the nuclei
shown. In "Q the HF determinant has a spread of
about 24 MeV about the HF energy. This large
spread implies that the ground state mave function
of "0 (and of other nuclei discussed) cannot be
described by a single HF determinant. In fact, the
HF intensity shown in column 6 of the table gives
us a measure of the importance of the HF state in
the wave function corrected to first order [see Eq.
(3.5)].

We see from the values of n' [see Eq. (3.5}]
given in Table I that except for 4He there is a
sizable admixture of the 2p-h states in the other
nuclei. In column 5, the rms radius r calculated
using the HF determinant is shown. We have also
studied the effect of the c.m. m term on the HF
energy E„~ as mell as the width 0'». We find that
the HF energy for the Hamiltonian H [see Eq.
(3.3)] is lower by about ll MeV compared to that
for the Hamiltonian X. The width o„F is also
smaller by about 2 MeV when the c.m. m term is
included. This trend for both E„~ and o'„p fol-
lows from the positive definite nature of the c.m. m

term. Finally, recalling the discussion in Sec. II
about the bounds on the exact energy, we see that
the interaction used here may give an additional
binding of about 3 MeV per particle in 'He, 1.5
MeV per particle in "Q, and 0.5 MeV per particle
in ' Ca.

TABLK I. Some properties of the HP ground states of spherical nuclei. Calculation in four
oscillator major shells vrith c.m. correction. Interaction: Tabakin (5 =1.81 fm for 4He and 80,
b =2.03 fm for 40Ca).

Nucleus
@HF

(MeV)
E(2)

(MeV)
E(Total)

(MeV)
x(HF)

(fm) e (HP)
%idth
(MeV)

4He
feO

40Ca

—10.25
—44.29

-125.16

-1.93
-9.14

-15.67

-12.18
-53.43

-140.83

1.83
2.42
3.44

0.97
0.86
0.55

12.32
24.29
21.34
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It should be emphasized again that the HF calcu-
lations of energy, rms radius, and the perturba-
tion corrections to E„~ and 4'„F are meant basical-
ly for making comparisons with the results of the
new variational method (see Sec. V). These quan-
tities have been calculated earlier and in much
larger spaces as well. Qf course the evaluation
of O„F has not been done before even in these prim-
itive spaces.

C. Effect of enlarging the space

The spectroscopic space one deals with in nu-
clear physics is a finite vector space. Moreover,
one also tries to simulate the effect of the real
interaction in the Hilbert space by an effective
interaction in the truncated space. Several inter-
esting problems arise from this process of re-
ducing the infinite Hilbert space. Here we ask
ourselves the question how the widths are affected
by truncating or equivalently by enlarging the given
finite space. If a wave function calculated in a
given space is transported into another larger
space and allowed to spread there, one can then
study the effect of the enlargement of space on the
width of the wave function. We show in Table II
the results of one such calculation. To start with,
we made a spherical HF calculation for "0 in
three oscillator major shells. Then we opened the
Of-1P major shell and allowed the three-shell wave
function to spread. As can be seen from Table II,
this spread is greater than both the three major
shell and four major shell HF widths. These cal-
culations do not include c.m. correction. This re-
sult shows that a proper self-consistent solution
in four shells (column 3) is a definite improvement
over a three-shell HF solution considered in the
space of four shells. The difference arises from
the mixing of the Op and 1p oscillator orbits.

We also show in columns 5 and 6 the width for
the pure oscillator determinant (Os)'(Op)" in the
space of N= 3 and N= 4 oscillator shells. Again
we see that the HF solutions are better in the
sense of widths than the pure oscillator states.

Another feature we observe is that the widths
become larger and larger as we enlarge the space.
This would mean that as we carry out calculations

in increasingly larger spaces the HF solution gets
worse; in other words, there is an increasingly
greater departure from the model eigenstate. We
can understand this increase in width with increase
in the size of the space as simply arising from a
large number of states the HF state can mix with.
It should be remembered, however, that although
the HF state may have a sizable matrix element
with a distant state, the mixing of this state (in
the HF state) will be small because of the energy
denominator which enters in the expression for
the mixing amplitudes.

In view of this we have evaluated the ratio of
the width with the spectrum span that the model
nucleus has in the space. The spectrum span was
determined by assuming the nuclear states(ina
finite space) to have a Gaussian distribution" in
energy. The parameters" which define the Gaus-
sian density are the centroid energy and width.
These were evaluated" and the ground state E
determined by using Ratcliff's' procedure. The
spectrum span was then taken to be 2(E, —E,). Al-
though this method is probably not as accurate as
some of the other methods suggested in Ref. 10, it
provides a reasonable estimate of the spectrum
span.

This ratio is shown in column 9 of Table II. We
find that it is very small and more or less con-
stant, implying thereby that in each case the HF
state can mix appreciably with only those states
which lie within this small fraction of the spec-
trum span.

Although in our examples the widths of the states
increase with an increase in the size of the vector
space, it might be interesting to consider inter-
actions where the widths "saturate" as the space
is enlarged. Note that since the width is a sum of
squares of matrix elements, such a constraint on
the interaction is nonperturbative and also more
severe than demanding convergence in perturba-
tion theory.

V. MINIMIZATION OF ENERGY VARIANCE

A. An alternative to Hartree-Fock method

We gave in Sec. III a brief description of the
Hartree-Fock approximation to the ground state of

TABLE II. Effect of enlargement of space on width (a). Nucleus is 60, N is the number of oscillator major shells
in which 0 was calculated.

Interaction
~(+HI:)
(Me V)

~(e„(' in four-
major-shell space)

(MeV)
+(+pure ho )

N

(Me V)
Spectrum span

S Ratio cr/S

N=3 N=4 N=3 N=4 N=4 N=4
Tabakin

(b =1.81 fm) 18 .29 26.49 29.99 19.41 30.73 461.44 672.034 0.0396 0.0394
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a nucleus. However, the lax'ge widths seen in the
HF determinants (see Sec. IV} imply that though
the HF determinants are the best in the energy
sense, they do not seem to be so in the width
sense. Naturally, one would like to know whether
a. single Slater determina, nt designed to give mini-
mum energy var ance rather than minimum energy
would provide a better description of the ground
state of a nucleus.

Consider a Slater determinant l&f & for a nucleus
consisting of A nucleons. Then with the energy
variance a'(q } defined as in Eq. (2.1) we require
that for a first-order variation in I4'& the variance
o' is stationary with the constraint that I&f») is nor-
malized, i.e. ,

where 5 denotes the va.riation. Then from Eq. (2.1)
we have

5{&+IH'jq& —l&~ IH I4&l') =0. (5.1}

Since
I
4&) and its conjugate &q I can be varied in-

dependently, we choose to vary &q j. Now for a
first-order change in &4 I

we must have

5&4
I

= I)(e„„j,
where I) is an infinitesimal Rnd &4„„I is a one par-
ticle-hole state. With this the Eq. (5.1) becomes

(»I =0, 1,2, . . . ) built on the state Ig&. Note
that the p-h states with n ~ 3 do not contribute
to the first term in Eq. (5.2} because H is a two-
body operator. Since I4,',„)-=I&f&, Eq. (5.2)
simplifies to

g &q„„jHI4,',„&(+,'„IH I4'&

—(4 IH I+&(4„„IHI@)= 0. (5.3)

By expressing I4„„&, I4"„„),and Iq&'„h& in the
secolld qllalltlzed notRtloll Rs 111 Eq. (4.4) Rlld mak-
ing extensive use of Quick's theorem, we finally
obta, in the following equation:

2 &&I» If&«l» I~&-Q &&l»lfI&&pl» I~&

g «I» Is&&p&ll'" I«&.Q &s I» If&&&f1 &"I~s&

+-'g &Pulv" lfm&&fmjv" IPn)
2 pre

1-g &um
I

v" IPy&&PyI V" j&m&=0. (5.4)
aym

Here (i I» I j& is a matrix element of the one-body
Hamiltonian defined below:

x.e.
y

In order to evaluate the first term in Eq. {5.2) we
carry out an intermediate state expansion where
we choose for the intermediate states the complete
set of particle-hole (p-h) states f4„',„)

X occuyied

Also, it should be recalled that Greek letters cy,

P, y, X., etc. , refer to occupied single-particle
states, and 0, /, m, etc. , to the unoccupied single-
particle states.

Next we define a single-pa, rticle operator

»*= E IP &»i&It&&&l» I»&-P &»I&I&»«&I&I»& ~ Q «I& I&»&»»i»" I&»&.Z «&i»i&&&»&l& "I &»

—'2&»»I»" i&1&« I»" I&&»& —-"2&» I»"I&&»&&&&»I»" I» &I»'». ,
QIm 2 gym

(5.5)

where f«and &I are arbitrary. Then Eq. (5.4),
willcll we obtalIled by 1111111IIllzillg o ( f»), lmplles
that the operator g ' does not connect the occupied
and the unoccupied single-particle spaces. This
property allows us to diagonalize the o' matrix
in the space of occupied single-particle levels
only. As in the Ha, rtree-rock method, the matrix
elements of 5 ~ are functionals of occupied orbits.

So one starts with a trial set of occupied orbits,
up the 0 matrix and diagona liz es it to ob

tain a new set of orbits. '7his initiates the next
cycle of the iterative procedure which goes on till
the input and the output wave functions are the
sa,me. At this point one claims that the wave func-
tion so obtained is self-consistent; with this wave
function one then computes the enexgy variance
118111g tile expl'essloI1 1I1 Eq. (4.5).
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8. Numerical results

We have carried out the energy variance mini-
mization calculations for the double-closed shell
nuclei 'He, "0, and "Ca. We have assumed that
the Slater determinants are spherically symmetric.

The calculations were done in the space of the first
four oscillator major shells using the Tabakin"'
matrix elements. We now give the matrix elements
of the one-body operator &' of E&I. (5.5) in the
basis of harmonic oscillator orbitals

f
nl j) using the

notation of Sec. III.

(s,nf cf sn,')

= g (s,n, fi fs,n, )(s,n', fq fs n', )6,C„'.*C„' —g (s,n, fq fs,n, )(s,nsfq fs,n')6, C((pC((

srnrnr 8"8"8

+ . , g (s,n, fe fs,n,)6„+(2r+ )(2m+I)((s,n„s.n. ) f
V f(s,n„s.n. ))„C„C~C„,C„

'rnr+r

+(s,n, f~ fs,n,)6„+(2&+ l)(2J'+ l)((s,ng, s n ) f
V" f(s,n'„s n')), ~„'*C„'~C„',C„'

JT

+ . , — Q Q (2T I+}(2Z I+)((s ((nss n )
f

V" f(s(n(, s n })~r((st'„s n')
f

V" f(s8ns, s,n'))~r2 2j~+I) 2
8((n((ni( Z T
srnrnr

srlenfnntn

xCIr*CrPCm+Ca. Cr C~
nrI} nr n ntr nr n

g(21'+(((2&+()&(s, „s n„)(('"~(s~n~, sn)) „&( ', P')(('"~(s, ' s„'„)&
8 I(S88
syn~n~s

sfnntnntn

gCB+Cg'WCmgCIr Cy Cnt
n& n„' n n n„n' (5.6)

Here the C~, etc. , are the expansion coefficients,
nB

the 5 function 5 ~= 5r r 5~ &, and so on.
The high degree of nonlinearity of the equations

in Eq. (5.6) is evident. Whereas the Hartree-Fock
method gives rise to a, set of simultaneous cubic
equations, the present method yields a set of si-
multaneous equations of the seventh degree. Con-
se(luently the numerical solution of E(I. (5.6) be-
comes harder and poses some convergency prob-
lems. Another source of complication is the exis-
tence of multiple minima. We have not studied all
the solutions corresponding to different local mini-
ma, but they may provide some interesting infor-
mation about high lying states having J=0 and
T=0. For comparison with the HF results we
have always chosen the solution having the lowest
energy.

We show in Table III the results of calculations
made with Tabakin matrix elements. In this table
we show the same quantities as were shown in
Table I, for the HF solution. We see that the en-

ergies obtained by the two different variational
procedures are nearly equal in all the nuclei
studied. This shows that a variance minimum so-
lution exists in the neighborhood of the HF solution.
The maximum difference of about 2.3 MeV in the
energies obtained by the two procedures is found in
the case of '60. Further, the minimum variance
obtained is at best only a few percent smaller than
the variance of the HF solution. This means that
the wave function obtained by minimization of o is
not really very different from the HF one. In
other words the HF solution nearly minimizes the
width in the ground state domain.

We have also calculated using the minimum vari-
ance wave function, second-order perturbation
corrections to the energy arising from 1p-h and
2p-h excitations. The total correction in energy
is denoted by E(2) iu Table III. It should be em-
phasized that unlike the HF solution the state 4',
gives nonzero contribution from 1p-h intermediate
states.
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TABLE III. Some properties of the 4'~ solution for
spherical nuclei. Calculation in four oscillator major
shells with c.m. correction. Interaction: Tabakin
{b=1.81 fm for He and 0, b=2.03 fm for 4 Ca).

E(0) E{2) E{total) r (a) Width
Nucleus {MeV) (MeV) (MeV) {fm) 0. (0) (MeV)

4He —9 .65 -2.96 -12.61 1.75 0.97 11.72
6O -41.98 -10.66 -52.64 2.30 0.87 23.08
Ca -125.07 -15.87 -140.94 3.43 0.55 21.29

It is seen that the second-order perturbation cor-
rections E(2) obtained for the two solutions do not
differ very much. However, the 2p-h intermediate
state contribution to E(2) calculated for the mini-
mum variance wave function is found to be less
than that obtained for the HF wave function. The
reason for this is as follows: in minimizing ener-
gy variance we are minimizing the sum of one par-
ticle-hole and two particle-hole contributions to
the ground state wave function, as is clear from
Eq. (4.2). Thus the minimum variance wave func-
tion already contains some two particle-hole con-
tributions in contrast to the HF wave function
which, does not and cannot contain such a contri-
bution. We find that in the case of "O this differ-
ence in the 2p-h second-order correction is about
1.7 MeV. Thus the present method provides us
with a determinantal wave function that has less
2p-h second-order perturbation correction than the
HF determinant. Let us next consider the intensity
of the state 4', in the wave function 4,"' (corrected
to first order in perturbation theory). If we com-
pare the numbers in column 6 of Tables I and III,
we find that in almost every case the intensity of
4 in 4 " is almost the same as the intensity of

HF HF'
We show in column 5 in Table III the r.m. s.

radius r obtained by using 4,. It is seen that the
minimum variance method gives a nuclear radius
smaller than the HF method. This is due to the
fact that the HF single-particle orbits have less
mixing compared to the single-particle orbits ob-
tained from the minimum variance method.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper we have studied two different varia-
tional methods for obtaining Slater determinant
states in light spherical nuclei. These are the
Hartree-Fock and the minimization of energy vari-
ance methods. The results indicate that at least
for the cases studied both the variational methods
give rise to determinants which are very similar.
The difference in energy and the width between the
two variational solutions is in all the cases studied
only a few (s5) percent. It is tempting therefore

to conclude that in the ground state domain of
spherical nuclei the HF determinant is just about
the best determinant one can have. Our calcula-
tions therefore provide a different and more de-
tailed justification of the use of HF method to gen-
erate Slater determinants. It should be remem-
bered that while minimizing 0' we obtained several
solutions corresponding to different local minima.
One of these (4',) is close in energy to the HF solu-
tion, but the others, which lie at various excita-
tion energies and sometimes have width smaller
than that for 4„may provide approximations to
some excited states. This aspect needs to be
studied more.

One can also study the two variational methods
for nonspherical nuclei. The determinants in these
cases would not be eigenstates of angular momen-
tum and hence one would have to carry out the
angular momentum projection. It is possible that
for such nuclei the projected ground state obtained
from 4, may have a lower energy than the one ob-
tained from 4HF. The alternative variational meth-
od may therefore have more interesting conse-
quences (in the ground state region) for deformed
nuclei than for the spherical ones.

Furthermore, in both the methods the determi-
nants have large widths so that neither approach
leads to wave functions which are close to the
exact ground state of the system. This does not
mean that the approximate states cannot give rea-
sonably accurately the expectation values of some
operators. As mentioned earlier, the width by it-
self does not give us an idea about how important
the admixtures with other states are in correcting
the energy or some other quantity. Our calcula-
tions show that the correlation effects, discussed
in perturbation theory, are fairly important and
contribute about 20% to the uncorrelated energy.
Hence these corrections ought not to be neglected.

It seems therefore that in order to improve the
wave function it is necessary to explicitly include
2p-2h states. It does not seem possible to incor-
porate the correlations in a single determinant by
the use of a different variational principle. The
inclusion of the 2p-2h states can be carried out in
a nonperturbative way by evaluating the lowest
three moments of H for the Hartree-Fock state.
These moments of H can be evaluated directly
from the Hamiltonian matrix elements, without
making an intermediate state expansion, by using
the spectral distribution method. " This will be
discussed separately.
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