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Excitation energies and B(E2) values of ’Ge, °Zn, and ’*Ge are investigated by means of an extended
generator coordinate method which allows in a microscopic way a simultaneous coupling of single particle and
collective degrees of freedom. For the generating wave functions angular momentum and particle number
projected Hartree-Fock-Bogoliubov solutions have been used. The low lying states of even parity and angular
momentum are dominated by a coupling of shape vibrations and K = 0 two-quasiparticle excitations. In
contrast to the yrast states especially the anomalously low lying first excited 0* state in 72Ge could only be
explained by a strong coupling of both degrees of freedom. For °Ge and "°Ge, the most important
contributions are due to the proton excitations, whereas in °Zn, the neutron excitations play the dominant

role.
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I. INTRODUCTION

With the introduction of the generator coordinate
method (GCM) by Griffin, Hill, and Wheeler '
physicists had a very flexible tool to describe in
a microscopic way the nuclear collective motion,
as for instance quadrupole vibrations, pairing
vibrations, and rotational-like excitations.?*
Now, the GCM theory can be generalized to con-
sider, apart from collective degrees of freedom,
also single particle degrees of freedom. A cou-
pling of both can be achieved by a supplementary
term to the general GCM ansatz of the nuclear
wave function, containing states which are either
particle-hole or two-quasiparticle excited con-
figurations® (GCM + QP).

Nuclei which are especially adopted for a GCM
treatment are, for instance, those far away from
closed shells such that shell model techniques
are no longer applicable without too severe trun-
cations of the configuration space. A particular
interest for the use of GCM + QP may be attributed
to those nuclei which exhibit excitation spectra
showing collective as well as noncollective ef-
fects. Suitable examples for medium heavy nu-
clei exist in the mass region A ~70, where one of
the most promising candidates is the Ge isotope,
which shows in addition to other anomalies a deep
lying first excited 0* state at about 0.7 MeV.
Other nonmagic nuclei with this feature are *°Zr
and ®Mo. These first excited states are in com-
plete conflict with any vibrational picture, al-
though the ratio E(4*)/E(2*) indicates a tendency
for the validity of the vibrational model in these
nuclei.

First attempts to understand those nuclei were
done by Kregar and Mihailovic® who used the
Davydov nonadiabatic model, assuming that the
first excited 0* states in the region of Ge and Se
isotopes correspond to the oblate “ground state.”
The real ground state itself should belong to the
prolate shape of small axially symmetric deform-
ation. In the special case of ?Ge, this model
could not explain the puzzling 0* state which came
out too high in energy.

In recent time the low lying spectrum of *Ge
has been investigated by Castel, Micklinghoff,
and Johnstone.” In analogy to the work of Bay-
man et al. ? who studied °°Zr in terms of a pair
configuration for the two valence protons occu-
pying the p,,, and g,,, orbitals, they performed
a shell model calculation for the two valence neu-
trons and considered in addition the coupling of
these neutrons to the observed collective excita-
tions of the °Ge core. Furthermore, they in-
cluded also excitations from the p,,, and f;,, sub-
shells by introducing second order perturbation
diagrams. With a two parameter fit, they got a
good agreement with experiment.

The success of this semimicroscopic model’
and especially the importance of single particle
degrees of freedom suggested that it should be
possible to describe "?Ge in a fully microscopic
way, where the collective and single particle de-
grees of freedom are taken into consideration by
the use of microscopic wave functions, which are
superimposed to give rise to the GCM + QP ansatz,
discussed in more detail in the next section.

The formalism of GCM+QP is also applied to
7Ge and "Zn to see how important single particle
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degrees of freedom are in the vicinity of ?Ge. In
the case of °Zn, we meet again a relatively low
lying first excited 0* which is situated slightly
above the first excited 2* but still not high enough
to be explained by the vibrational model.

Section II reviews the GCM + QP theory leading
to the solution of a coupled set of integral equa-
tions. Because of the strong pairing correlations
of the considered nuclei we used HFB states with
a given deformation as generating wave functions.
Before entering the integral equations mentioned
above, these wave functions are to be projected
on good angular momentum and particle number
in order to restore symmetries and remove spuri-
ous components which are known to effect notice-
ably the excitation energies.® The section is
closed by some numerical details and is followed
by the discussion of the most important results
in Sec. III. The last section finally contains a
short summary and some conclusions.

II. THEORY AND NUMERICAL DETAILS

Starting from a many body Hamiltonian the
generator coordinate method (GCM) describes
the collective degrees of freedom of nuclear mo-
tion on a purely microscopic level. In order to go
beyond the description of just the collective mo-
tion by including also single particle degrees of
freedom, one has to extend the general GCM
ansatz of the nuclear wave function by one or few
particle excited configurations.

In principle the GCM and GCM + QP procedures
consist of choosing suitable basis vectors with
different physical properties, appropriate to the
problem in study, and selecting in this way out of
the Hilbert space a subspace, where a total nu-
clear wave function is spanned by superposition
of the chosen basic states which are not necessar-
ily orthonormal. The generator coordinates are,
for instance, the quadrupole moment Q, a varia-
tion of which gives rise to shape vibrations, or
the orientation @ of the deformed nucleus, re-
sponsible for the rotational degrees of freedom.
In GCM + QP there are taken into account, in addi-
tion to GCM, also quasiparticle excitations on the
generating wave functions which allow one to take
care of specific single particle excitations.

Because the nuclei in the mass region A ~70
show somehow vibrational features, the ansatz
for the total GCM + QP wave function for the nu-
clei to be considered has the form

+ 3 [ @P,4,]64@). )

In this ansatz |¢>(B)> are self-consistent Hartree-
Fock-Bogoliubov (HFB) functions depending on
the deformation 8. These wave functions are ob-
tained by solving the constrained HFB equations,
where the Hamiltonian is written as

A=H-AN- Q. The N and @ are the particle
number and the quadrupole operators, respec-
tively. The second term in (1) contains two-
quasiparticle excited HFB states, depending on
the deformation 8. The index ¢ denotes the two-
quasiparticle excitations

|$¢(B)) =alal,| (), @)

where a! and al,are the quasiparticle creation
operators defining the HFB states | (8))
=IL;a;|0).

The HFB states | #(B)) and the two-quasiparticle
states I(b"(ﬁ)) are projected onto good angular
momentum J and part1cle number N by means of
the projection operators P, and §,,

Byu= 2J 2J+1 f aDIHQR(Q) (3)
~ 1 o . 1
QN:ET"/O‘ d9exp[i(N - N)z9]. (4)

The variational principle 8, |# - E|¢,)=0 de-
termines the unknown expansion coefficients

f(B) and £¥(B) in (1). This leads to a set of coupled
integral equations:

[ a8.18)( 8) |- 6 48))

+ 3 [ a8 86,8 | F - E| 9%(8)) =0,
' (5)
[ a8.76)<04(8) |- B[ 6,8

+ 3 [ a8, 7 B4 B |- E| 6(8)) =0.

The usual Hill-Wheeler equation appears as an
approximation of these equations if one omits the
terms corresponding to the single particle de-
grees of freedom. In practical calculations the
integrals in (1) and (5) must be made discrete so
that a finite number of generating wave functions
|#(8)) and | ?(B)) are used. The solution of sys-
tem (5) then consists of a diagonalization of the
Hamiltonian in the nonorthogonal basis. The non-
orthogonality of the overlap matrix elements
takes care of the linear dependence of the basis
states.

In the present calculations we restricted our-
selves to axial symmetric HFB states with K=0.
This has the advantage that the angular momen-
tum projection operator 13“, can be simplified to
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A 2J+1
7= 2

f' da sinad J (@)R(a) . (6)

Furthermore, we select pairs of time conjugated
quasiparticle excitation operators a}a'g in Eq. (2).
The use of those K =0 quasiparticle excitations
has the advantage that the two-quasiparticle states
can be written as a product of quasiparticle anni-
hilation operators acting on the vacuum so that the
numerical methods of the evaluation of the norm
and energy overlap matrix elements can be applied
just as for the normal HFB states. The restric-
tion to K =0 quasiparticle states only may be
justified because the lowest two-quasiparticle
state is of this form. In addition the low lying
excitation spectrum should be dominated by K =0
configurations.

With all these simplifications which reduce to
a great amount the numerical effort, an energy
overlap matrix element can be written:

(@80 ,(8))
= [ asag (@) sing [ avexp-itN,(8,9) (7
with

ho(B,9) = (b (B,) |HR(B)S(9) | 6(B,)) - ®

The detailed formulas for this overlap and the
norm overlap can be found in Ref. 10.

The model space for the HFB functions is
spanned by eigenfunctions of the three-dimen-
sional harmonic oscillator. Our basis includes
the 1p5/,, 0f;,,, 1p,,., and Ogy,, shells, assuming
%Ni as an inert core. Furthermore, we allow
only T'=1 pairing for protons and neutrons, re-
spectively, an assumption which is known to be
valid for N>Z nuclei. Coulomb, center-of-mass,
and isospin corrections are not taken into account.

As a nucleon-nucleon force we used the “modi-
fied surface 6 interaction” (MSDI)

V,;=4TA78(2,,)6(Q; - R)6(R;~ R) + B(1;" ;)
9)
depending on the isospin 7.
The parameters A, and B as well as the single
particle energies € have been given by Glaudemans
et al.'’ The values for these parameters are

A,=0.35, A;=0.43, B=0.33, and the single parti-
cle energies are

€(11)3/2) = 0.0 MEV,
€(1p,,,)=2.20 MeV,

€(0f5,,)=1.75 MeV,
€(0g,,,)=3.39 MeV .

1II. RESULTS AND DISCUSSION

In order to get a first idea about the vibrational
degrees of freedom in “Ge, the intrinsic defor-

mation energy surface has been calculated. The
total binding energy surface ($(B) I}? | #(B)) for the
nonprojected HFB states is displayed in Fig. 1
(dashed line). The curve shows a very flat valley
around the spherical minimum so that it is not
possible to attribute a certain deformation to the
nucleus. Nonetheless, one can conclude that "?Ge
is a rather soft and weakly deformed nucleus.

An analogous independence of energy on small
deformations is shown in Fig. 2, where the pairing
energies for neutrons, the one for protons and the
total pairing energies

A:-;- 3 Viemn(CieR e nC ) (10)

ikmn

are given. The order of magnitude of the total
pairing energy (~- 7 MeV) makes the use of HFB
states rather than HF states indispensable. This
has been verified by using also HF states where
the total intrinsic energies are about 1 to 3 MeV
smaller. Even by a superposition of a few Slater
determinants we could not account of all the cor-

------- Intnnsic Binding Energy 32691‘0

Projected Energy

E(MeV)

005 005
Deformation B

FIG. 1. Intrinsic binding energies (¢(8)|H|#(3)) (dot-
ted line) and the binding energies of angular momentum
and particle number projected wave functions
(¥ (B)| A1 ¢¥(B)) are plotted as a function of the deform-
ation 3. | #(B)) are axial symmetric HFB states con-
straint on a given deformation 3.
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relations of the HFB functions.

The different energy surfaces discussed so far
allow a very rough estimate of the connection be-
tween energies and deformations. But they are no
longer suitable for a detailed treatment since the
intrinsic HFB wave functions violate angular mo-
mentum and particle number conservation. There-
fore we consider now the binding energies given by
angular momentum and particle number projected
HFB states. The corresponding surfaces are
visualized by the full lines in Fig. 1. In contrast
to the flat intrinsic binding energy surface, they
have distinct minima for roughly all spins at de-
formations B8 ~+0.07. This behavior may slightly
be changed when another effective Hamiltonian is
used, but one can learn that a careful study of the
projected energy surface is important rather than
to look to the intrinsic properties only.* The
minima of the angular momentum projected ener-
gy surfaces shown in Fig. 1 yield the first spec-
trum of Fig. 3. One sees immediately that the
spectrum projected before B variation (PHFB)
does not follow the J(J+ 1) law of the pure rotator
model because of the small deformation.

---@---@--- Proton Pairing Energy 72
--------- Neutron Pairing Energy 326940

Total Pairng Energy

E MeV

L 1
-005 +005

Deformation B

FIG. 2. Proton pairing energies (upper curve), neutron
pairing energies (middle curve), and the total pairing
energies of HFB wave functions are plotted against the
deformation 3.

For the following application of GCM, it is rea-
sonable and consistent with the minimization prin-
ciple to rely upon those HFB states whose pro-
jected spectra exhibit already energetic minima
on either side (Fig. 1). It has been shown that in
many cases the vibrational degrees of freedom are
sufficiently well described by a superposition of
projected wave functions corresponding to those
prolate and oblate minima only.* The results of
such a prolate/oblate mixing can be found in the
second column of Fig. 3 (3-GCM). Compared with
the first spectrum (Fig. 3, PHFB) the first 0* and
2* states are lowered by 0.15 to 0.25 MeV, where-
as the 4* and 6* are nearly not affected. But the
first excited 0* still lies too high in energy. This
may be explained by the fact that the two prolate-
oblate states projected on J=0* have an overlap
of 45% only. Therefore the energy difference be-
tween the two 2* states is smaller than for the 0*
states. Additional generator functions with differ-
ent deformations did not change very much the
given spectrum (B8-GCM) which means that one can
assume to have taken into account the most im-
portant vibrational degrees of freedom by mixing
only prolate and oblate deformed HFB states.

In order to increase the model space we include
also quasiparticle degrees of freedom by using the
two-quasiparticle excited HFB states [Eq. (2)].
The states 7 defined in the excitation operator
ala} are those lying in the neighborhood of the
Fermi surface E,. The HFB functions on which
the creation operators act are the prolate and
oblate states described above. The quasiparticle
energy levels for those two functions are given in
Fig. 4. The important quasiparticle levels are for
the protons in the prolate case the p;/, .3/, and
fs72,1/2> in the oblate case the p;,, ,,, and
fs/2,5/2- For neutrons, the only important level
was the prolate p,,, g.;/,. Other excited HFB
states have been tested, but their contribution to
the final spectrum turned out to be negligible.

Now GCM + QP calculations are performed using
different sets of generating wave functions. The
results are given in Fig. 3. In the third column
[2qp (oblate)] only oblate states are taken into
account. Compared with the previous one (8-GCM)
all levels are higher in energy. Therefore, we
couple now all available proton quasiparticle ex-
cited states to the simple prolate and oblate de-
formed states. The resulting GCM + QP function
produces the spectrum in the fourth column of
Fig. 3 [B-GCM+2qp (proton)]. Here, all energy
levels are lowered, compared with the previous
spectra. Especially the second 0* has come down
by more than 1 MeV and is lying now below the
first 2* state, in agreement with the experimental
sequence. In the next to last spectrum (B-GCM
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+2qp) the remaining neutron component has been
added, but it does not affect noticeably the low
lying spectrum. This spectrum is represented
by the total nuclear wave function which will be
analyzed in more detail in Table I, where the
overlaps | (¥| #(8)|? and || ¢*(B))|? for J=0¢
and 0; are listed. One sees that for the ground
state, all excited components contribute with
about 1%. The main contributions come from the
projected prolate and oblate states. This situa-
tion changes completely for the second 0*. Here
the main contribution comes from the quasiparti-
cle states, where the prolate proton states are
dominant.

In the present model it turns out that the deep
lying first excited 0* can only be explained by a
coupling of the proton quasiparticle degrees of
freedom to the vibrational degrees of freedom.
The neutron components are not so important for
the lowest energy levels. In comparison with the

experiment one sees that all levels have been cal-
culated in the right order and that there is an
overall good agreement.

For Zn and "Ge the investigation of the intrin-
sic binding energies and the pairing energies
shows that again the variation after projection
and the use of HFB states is indispensable. The
method of selection of the generating wave func-
tions and quasiparticles is the same as has been
described in the case of ?Ge. The results ob-
tained for "Zn and ™Ge are given in Fig. 5 and
Fig. 6, respectively. In the second columns the
projected spectra of a two-quasiparticle excited
HFB state (P2qp) are displayed. One recognizes
that the spins are not monotonically ordered so
that the lowest spins have a very high excitation
energy, whereas some higher spins, especially
the 8* for Zn and the 6* for “Ge come rather
low. Therefore these projected states will in-
fluence essentially the higher spins in a GCM + QP

PHFB B-GCM 2qp

(oblate)

L+
L —_—
0 .
— cn—— . emm—— Lt
= — L, O..
g —
—~ 2+
wl
— )t 2+ — )
R 1 —_—
o 0

72 Ge
327740 7
6+ 64 6* —
L — L+
+ 0.: +
O f
—_— 2
2 —2
—  e— —
— 2t — 2"
L‘
2¢
—7 — .
J— . y
—— ()
——— ()" o* o* -
B-GCM B-GCM Exp.
+29p +29p
(proton)

FIG. 3. Comparison of successive GCM +QP calculations for "?Ge with experiment. PHFB denotes the angular mo-
mentum and particle number projected spectrum with a variation of the deformation after projection. The next spect-
rum (3-GCM) is obtained by a mixing of the two prolate and oblate projected HFB minima. The result of a mixing of
all two-quasiparticle excited oblate states with the zero-quasiparticle oblate ground state is given in the third column.
The next spectrum [3-GCM +2qp (proton)] results from a mixing of the collective components with all proton two-quasi-
particle excited states. (8-GCM +2qp) contains in addition to the previous spectrum one neutron two-quasiparticle ex-
cited state (total wave function). The last spectrum (Exp.) shows the experimental data.
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Quasi Particle Levels 7ZGe
327760
B =+0068 1 B =-0068
’; Proton Neutron Proton Neutron
[
= — 4927
w — 152,572 6 34 9272
, —_— g9/2.9/2 {
e 99/2.3/
3 99/2‘3/22 —2 15212
—— ‘}
9 s . 8 q9/21/2
LB w2 T === q9292 0=—= g9/2372
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—_— 15232 T
S 2 52502
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&£ 3202
14-
—_ 97 =22 49/2.3/2 B 15232
——p32V2 T 9921/2 % 5 99292
g - 5Ry2 =232 s
w -
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oL p3/23/2
- 522 o .
—_ p3212

FIG. 4. On the left side one finds the quasiparticle
levels of the prolate HFB state at the deformation 8
where the 0* binding energy exhibits a minimum. On
the right side there are the quasiparticle levels of the
corresponding oblate HFB state. Ep is the Fermi sur-
face.

calculation, as can be seen in the fifth columns.
Other projected quasiparticle states show spectra
with relatively low lying 0* states which will con-
tribute to the low lying excitation spectrum.

It is interesting to see that in the case of "°Zn
the relatively low position of the first excited 0*
is mainly caused by the neutron quasiparticle ex-
citations (see column 5, Fig. 5) in contrast to the
results in Ge.

A comparison of the final GCM + QP spectra
(B-GCM + 2qp, Figs. 5 and 6) with the experimental
data shows a qualitative agreement for "Ge and

°Zn. In order to get a better quantitative agree-
ment one may multiply the calculated spectra with
a scaling factor of 0.8 for "°Zn and 0.5 for "“Ge.
The reason for the particularly large discrepancy
in "™Ge may be that the effective Hamiltonian fitted
for lighter nuclei is not appropriate.

B(E2) values for ?Ge and "Zn are listed in
Table II. It was possible to fit simultaneously the
2: - 0%, 2;—-2;, and 25— 0; transitions in Ge and
the 2; — 0} transition in "Zn with only one set of
effective charges Ae,=0.8 and Ae,=0.9. Although
no unique experimental value could be assigned to
the 2} - 0; transition in ®Ge, it seems to have
strong collective components which could not be
reproduced in our calculations. A detailed anal-
ysis of the different transition matrix elements
defined by the components of the total GCM + QP
wave function shows that the biggest absolute
values for the single transition matrix elements
are given by the admixture of the two different
deformations of minimal projected energy for the
0 qp states, but they cancel because of different
signs. Only the components containing quasiparti-
cle excited wave functions sum up coherently, but
their absolute values are by a factor 0.1 to 0.01
smaller than the collective terms. In a stability
test one sees that by increasing the space, all
transitions, but the 2]~ 0;, remain stable within
1% or less. Only the 2} -0} transition increases
by about 300%. This demonstrates the well known
fact that stability with respect to the energies does
not yet guarantee stable transitions. A common
feature for the transitions in both nuclei is that
the intraband transitions [J, - (J - 2),] are much
more collective than the interband transitions
[Jo=(T=2);a#0a’].

IV. SUMMARY AND CONCLUSION

In the present investigations, we tried to de-
scribe in a fully microscopic way properties of
nuclei by coupling quasiparticle degrees of free-
dom to the collective motion of the nucleons. This
aim could be reached by adding K=0 two-quasi-
particle excited HFB states to collective states

TABLE I. Analysis of 0*-wave functions in "2Ge. The percentage with which the different
GCM+QP components contribute to the total GCM+QP wave function is given for J= OI and
J=03. P and O designate prolate and oblate states, respectively. pl is the proton quasi-
particle level nearest the Fermi surface Ep, and so on, 71 is the neutron quasiparticle level

nearest the Fermi surface, and so on.

P(p1) P(p2) O(p2) P(n5)
P o (B3/2,3/2) @sr2,172)  Fspad) Uspnsn) Bage,0)
0'{ %) 46.0 52.0 0.01 0.01 1.2 0.0
OE (%) 2.6 11.5 33.2 30.3 6.0 8.7
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FIG. 5. Comparison of successive GCM +QP calculations for "Zn with experiment. PHFB is the minimized angular
momentum and particle number projected spectrum. The next spectrum (P2qp) results from a projections of a two-
quasiparticle excited HFB state. In the third column (8-GCM) the levels are obtained by a mixing of the two zero-
quasiparticle prolate and oblate projected ground states. The following spectrum [3-GCM +2qp (proton)] includes the
two nonexcited prolate and oblate states as well as all proton two-quasiparticle excited states. (B-GCM +2qp) contains
in addition to the previous spectrum some neutron two-quasiparticle excited states (total wave function). The last spect-
rum (Exp.) shows the experimental data.

TABLE II. Electromagnetic transitions in "*Ge and "*Zn. BE2 values for ?Ge and ""Zn are given between the initial
state J; and the final state J;, whose energies are denoted by E; and Ey, respectively. Calculated values (GCM+QP)
are compared with the experimental ones (Exp.).

72Ge TOZn
E;/E{(GCM+QP) B(E2)(GCM+QP) B(E2)(Exp.) E;/E{GCM+QP) B(E2)(GCM+QP) B(E2)(Exp.)
BANNA (MeV) (e*fm%) (e?fm?) (MeV) (e?fm?) (e*fm*)
27 of 1.13/0.0 482 440£502; 234° 1.15/0.0 333 320+28 ®
4t 2% 2.43/1.13 681 2.43/1.15 390
6 4 3.90/2.43 740 4.10/2.43 114
8f 6f 5.54/3.90 739 3.77/4.10 316
107 8t 7.29/5.54 665 4.57/3.71 433
400+70%; 51%5°
2t 0f 1.13/0.94 9.8 264 +489; 1.15/2.09 1.4
370 +489;
2% 0f 2.18/0.0 18.4 1.5° 2.56/0.0 4.5
2% 2t 2.18/1.13 623 711° 2.56/1.15 346
4t 2f 2.43/2.18 5 2.43/2.56 70
2 See Ref. 13. ¢ See Ref. 15.

b See Ref. 14. 4 See Ref. 16.
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described by the generator coordinate method
(GCM). The generating wave functions were
Hartree- Fock- Bogoliubov states (HFB), con-
strained to different quadrupole moments. The
use of HFB states rather than Hartree- Fock
states (HF) was indispensable, because the pairing
correlations of the discussed nuclei (?Ge, "°Zn,
and "Ge) could not be neglected. These states
have been projected onto angular momentum J and
also on particle number N. The intrinsic binding
energy surfaces are rather shallow for small de-
formations B. In the procedure of variation after
projection, however, two distinct prolate and ob-
late minima were found for all spins at nearly the
same deformation. Projected states with these
deformations were used to span the GCM and
GCM + QP wave functions. The good agreement

of the resulting GCM + QP spectra with experiment
demonstrates that the low lying excited levels of
the considered nuclei are dominated by the cou-
pling of quasiparticle excitations to shape vibra-
tions. A detailed analysis shows that most of the
yrast states are already well described by pure
shape vibrations. On the other hand, particularly
for the low lying 0; states, which can hardly be
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understood in a pure phenomenological model, the
mixing between quasiparticle and shape vibrational
degrees of freedom turned out to be necessary for
a reasonable description. In Ge, for instance,
the main contribution (90%) for this state came
from the quasiparticle components, among which
the proton excitations were the most important
ones. In the case of °Zn, the greater influence
was caused by the neutron excitations.

The spectrum of *Ge was in worse agreement
with experiment, possibly caused by the effective
Hamiltonian which has been fitted to lighter nuclei
by Glaudemans and collaborators.

For the B(E2) values too, we got a rather good
agreement with the experimental data, using one
common set of small effective charges for all
nuclei. For the 2} - 0} transition in ?Ge, the
present description seemed not to contain enough
two-quasiparticle components to build up a collec-
tive transition.

Another shortcoming of the model presented
here is the fact that the y deformation degree of
freedom is not included. The theoretical formula-
tion of the model may be easily generalized to
include this degree of freedom. But numerically

e _—0
L 5 —_—
—_— 6*
—— ("
| —— 0"
[R—————A
3 -
z
w2
n— 2’ —_—
— ()"
ok e
PHFB P2qp B-GCM

0-0

7LGe
327742 i
—
=" v o
y =5 i
— crm— [ 6+
P | o Lt
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o* T
— 2" — 2t — ]
PURN—— A A
2" 2" o*
= |
——-O* ——— O+
— O]
———— L*
2 2 — Ot
—— DY
o 0* 0t
B-GCM B-GCM Exp.
+2gp +2q9p
[proton)

FIG. 6. Comparison of different GCM +QP calculations for "4Ge with experiment. The details are the same as in

Fig. 5.



the calculations are getting too lengthy since the
angular momentum projection requires the numer-
ical integrations over all three Euler angles. One
expects that this degree of freedom affects the
second 2" states and higher lying levels.
Nevertheless, we can conclude that the
GCM + QP method is flexible enough to describe
nuclei whose low lying spectra are dominated
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simultaneously by a few collective and single
particle components. The resulting microscopic
nuclear wave function can easily be analyzed to
study the influence of the different degrees of
freedom on nuclear properties.

One of us (K.G.) thanks B. Castel for fruitful
discussions during his stay at Queen’s University.
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