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The problem of isospin mixing in nuclear resonance levels is studied using the framework of Feshbach's
unified theory of reactions. The nuclear matrix elements occurring in the theory are expressed in terms of the
measured quantities. These relations would be useful in interpreting the experimental data. The unitarity limit
on the phase of the mixing amplitude is derived.
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obtained unitarity bound.

INTRODUCTION

The mixing of nuclear resonance levels with the
same spin and parity but of different isospin T has
been observed in various nuclear reactions. ' It is
introduced by electromagnetic interaction and the
possible isospin symmetry breaking nuclear inter-
action. In the analysis of such experimental data,
it has always been assumed that the mixing coef-
ficients, occurring in the mixed states, are real.
It was first pointed out by Baryshavskii, Lyubo-
shitz, and Podgoretskii, ' and very recently by
Shanley, ' that the mixing with real parameters
is not sufficiently general and that it violates uni-
tarity of the S matrix. Following the reasoning of
Kabir, 4 Shanley formulated the problem of isospin
mixing with complex parameters. In order to re-
late the mixing parameter to the measured quan-
tities he utilized the Bell-Steinberger' sum rule
and other relations derived from the unitarity of
the S matrix. The main purpose of the present
work is to formulate this problem of isospin mix-
ing of nuclear resonance levels using the frame-
work of Feshbach's theory' of nuclear reactions.
We also derive the unitarity limit on the phase of
the mixing amplitude. It provides an alternative
formulation of the problem based on conventional
theory of nuclear reactions.

II. FORMALISM

We consider nuclear reactions in which only two
composite particles are involved in the open chan-
nels. The final product nuclei may be different
from the initial composite particles when the re-
distribution of nucleons takes place during the
reaction. The Hamiltonian H of all the interacting
nucleons in the two composite nuclei may be writ-
ten as H=H, +T,+ V„where H, is the internal
Hamiltonian of the composite nuclei indicated by
the suffix c, T, describes their relative motion,
and the interaction between the composite particles

is V, . The eigenstates and the corresponding
eigenvalues of H, are denoted by y„and 5„. The
two labels c and i still do not uniquely specify the
state of the two composite particles. They may
have spins S, and S, and isospins t, and t, We.
imagine the channel label a to specify the pair of
composite particles c, their internal state i, and
the usual spin and isospin coupling schemes

fci; S,S,(S}lJl8, t,t,TZ', }.
The resultant spin S of the two particles is coupled
to their relative angular momentum / to obtain the
total angular momentum J and its projection M on
the z axis. Similarly, the isospins t, and t, are
coupled to give the total isospin T and its projec-
tion T, . In order to simplify notations, we will
use the same suffix e to y, g, H, T, and V
instead of c and i. It is to be noted that g, H„,
T and Vo depend only on the index c and i and not
on the other quantum numbers required for the
complete specification of the channel wave function.
The wave function describing the relative motion
of the two nuclei in channel n is written as u (r„).
The many-body scattering wave function 4' corre-
sponding to the total energy E satisfies the
Schrodinger equation

(E -a}e=o.

In Feshbach's theory, ' one defines a projection
operator P which projects out the open channels
part from the total wave function 4. Then the
operator Q =1 —P acts only off the open channels:

E% = Q B~p~ ~

~( open)

The projection operators P and Q satisfy the fol-
lowing relations

P'=P Q'=Q and PQ= QP 0.

When P acts only on the internal parts of the wave
function it can be written as
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a(open )
lq. )(q. I, (4)

1E —Hpp —HPQ HQp E% =0
E-HQQ

(5)

where the round bra or ket indicates integration
only over the internal variables and the angular
bra or ket, the total integration. Using relations
(3), one obtains from Eq. (1)

of the incident plane wave in channel n. The
transition amplitude for reaching a fina, l state f
from an initial state i, in this approximation, is

t„ -& q „,u„, lU„ I4.,& . (11)

In Eq. (12), u'& is the plane wave of energy E
According to our assumptions tz, is a slowly var-
ying function of E over the energy range of interest
bE around E Th.e formal solution of Eq. (8) is

1
QQ HQP

PP
where

Hpp =PHP, HQQ =QHQ, HPQ =PHD,

and

(6)
E%~ =4~+ + 0 PVq qV IPeie„& . (12)

1 1

PP

The transition amplitude obtained from Eq. (12) is

Ty~=fy~+&@ ylVq(E H„) 'q-VIPq'
~&

. (13)

Using Eq. (8) for Pql, T&, can also be written as
HQP =QHP .

Substituting Pele from Eq. (2) into Eq. (5) and inte-
grating over the internal coordinates, one obtains
the following set of coupled equations:

t

(E See Tee)6ee8 (q'ee I Vee Iq'8)
8

Ty(=ty]+ 4~~ Vq E —H

1 ~l +—qV — Vq qV 4
PP

Let us define an operator 3C„

(14)

and
(8)

Q (E-& -T )6 a-(q IU lpga)

1
Vq qV Ws u8 0.

aa

In the direct interaction picture the fluctuating
term is neglected and one has the solutions

(9)

a(a)
8 8

8(open)

(10)

The suffix a on 4 and u8~ indicates the presence

1
Oa VQ QV y8 us =0. (7)E —HQQ

Our formulation is based on Lemmer's' approach
to nuclear reactions. The eigenstates of HQQ
which are near E will introduce rapid energy
changes in the last term of Eq. (7). The contri-
bution of these states therefore would be impor-
tant at E, while the contribution of other states
will be a slowly varying function of E and can be
absorbed in V . Let q project onto the states of
HQ Q that are impo rtant in the vie in ity of E, and
Q' onto the rest with Q =q+Q'. The effective inter-
action U varying slowly with E is

U„=V~+ V~@'(E —Hose) 'O'V~.

With this approximation Eqs. (5) and (7) become

[E—P(H +T +U )P]P4 = [E Ho»)M--
1

Vq qV P4'
aa

1
3C =H +qV + 0 Vq,

PP

and its eigenvalues E„and the corresponding
eigenfunctions 4'& by

K,4'~ =E~4'q .

(15)

(16)

(18)

From Eqs. (14), (16), and (18), we obtain

, ,~&4;,IVI'.&&q."IVIC:,&

P

One observes from Eq. (29) that the poles of the
T matrix are at the eigenvalues of 3C„and that the
corresponding resonance wave functions are 4„.
From the eigenvalue equation (16) one has

(q „ I(3t„-3C,', )Iq „& =(E„-E„*)&q'„ lq', & .

Substituting Eq. (15) into Eq. (20), one arrives at
the following relation:

n(openl

Clearly, X„ in Eq. (15) is not a Hermitian opera-
tor, therefore the 4'„& are not orthogonal. How-
ever, if we define another set of functions 4'„
such that

SCAN% =E*C (2'Iaa p p py

then (4'pq „& =0 for p cy. With the normalization
of q„chosenso that (q „lq „& =1, we have the com-
pleteness relation
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This is the Bell-Steinberger' sum rule used by
Shanley' [there was a misprint of minus sign in

his Eq. (6)]. In arriving at this result use is made
of the fact that V, H„, H», and q are Hermitian
operators. With the choice of the normalization
&+„l@„&=1 and the definition of E„=E"„—,iI—'„, the
width r„ is obtained from Eq. (21) with g'=y, ,

trix.
Let us consider a situation in which all the open

channels have good isospin, T =0 or 1. In doing
this, we neglected the mixing in the continuum
states. Further, let us also neglect the isospin-
violating part of V in Eq. (21). One then obtains
from Eqs. (21), (22), and (27)

r„=2m g l&e„l vlc.'& I'. (22)
n(open)

The relations derived in Eqs. (21) and (22) are
valid for overlapping resonances irrespective of
whether there is isospin mixing or not.

Let us consider now a special case of mixing of
two resonances of isospins T =1 and T =0. Let
the corresponding unmixed resonance wave func-
tions be 4

&
(i =1,0). Before we switch on the

isospin breaking interaction v„one has to carry
out the resonance mixing analysis as described
above. In the particular case of our interest there
is only one level of each value of T; we assume
that

X 4f gjc (23)

(Ko, +v,)4, =E,C, (24)

where 3C,', implies that in X„we have put v, = 0.
According to the above analysis &4;. I4&& =6,.&. When

v, is switched on, the new resonance positions and
the corresponding wave functions will be given by

i(E, E—+)&e, l eg

(el &c, IV I4.'& I' —e*l &4 o IV IC;& I'}
a open)

(1+ I.I')'"

(28)

Ime
&+if+a& = (I, I, I2)li2 (29)

» g (l&c, ivlc.'&I'-l«olvlc"&I'}
(r, -r, )= a( open)

I + lel'

(30)

(r, —r.)(1+ I e I')
2(E", —E".)(I —

I
e I') (31)

The phase of the mixing amplitude e =
I
e

I
e'~~ is

obtained from the real part of Eq. (28} and Eqs.
(29) and (30);

This equation gives the resonance positions

EO, 1 21 &0 Ul [( lo 0 } ~10 01]

where

(25)

From Eqs. (29), (30), and the imaginary part of
Eq. (28), one also obtains the matrix elements
(unperturbed widths due to only nuclear interac-
tions)

q,'=q, +&4';IV, lc,& .

The corresponding wave functions are

+ 10 » g l&c.lvlc:&I'=r. -r, lel'.
a( z'=0)

(32)

V01
(26)

It is to be noted that the complex number V,p

=&4';Iv, I40& =
V&» =&40lv, lC', & from time-reversal

invariance. It also follows from Eq. (25} that

Ep + E1 'gp + p I From this relation and with the
definition of the mixing parameter

e =V, /(E —q,'},
the normalized wave functions become

If only one isospin value, say T =0, is possible
for one of the decay channels z, it follows from
the use of Eq. (27} that

'/Io.

From the eigenvalue equation for E,. and the defi-
nitions of 4, in Eq. (27), one easily obtains the
mixing interaction matrix element

e«0 Ei& le IEo-- Eile"" "
33)(1+e') 1+ el'+2lel'Cos2y, '

e, =[C,+ee, ]/(I+ Iel')"
e, =[e,—.c,]/(I. I. I

»~ .
(27}

where

tana, ,=ale I'[I —le I'+A'(I+ Ie f'&] '

These wave functions were derived by Shanley'

using the Bell-Steinberger' sum rule and other
relations derived from the unitarity of the S ma-

and

a =-,'(r, —r, )/(E", - E",) . (34)
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From Eqs. (33) and (34) one observes that the
interaction matrix element is real to order

I e I'.
This was also found by Shanley' in the numerical
calculation of the a decay of 'Be 2+ level.

Let us consider now a general case where par-
ticle decay channels of both T =0 and T =1 are
open, and the electromagnetic decay widths are
not negligible. We will still assume that isospin
is conserved in the particle decays, i.e., the
continuum states have definite isospin, and that
the interaction causing the decay conserves T.
Following an approach similar to that of Gien, ' we
derive the unitarity bound on the phase of the iso-
spin mixing amplitude y, . The relation in Eq. (21)
can be rewritten as

-»m. lE.-E*, I=2~ g «-~~I(c, IvIc.&)
a(T=i)

—g e*e '"l(@.IVI4~+&I'
a(T =o)

+(1, +
I e I

)'/ (r)ro)'/ e(9'7 .
7 Y

(35}

The phase q in Eq. (35) is defined from Eo —E*,
= IEO —E*,

I
e ", tanri = 2(I', +ra)//(E") —E )0; and the

phase y comes fro.m the electromagnetic decay
matrix elements of the levels I and 0 with the
electromagnetic decay widths 1 ' and I'&, respec-
tively. The following equation is derived by taking
the imaginary part of Eq. (35):

»leIsin(i(), —&}) p I(4') Ivl@n&l'+(1+ I~I')' '(r'„r'„)' 'sin(((()„-&i)+2ml oisin(c), +rl) g l«'olvl@a&l' =0.
a{T=i) a{T=o)

(36}

The relations between the total widths are obtained from Eq. (20):

((, -(,-r', );)=2m('( ', E l&~, lvl&:)I'- P l«, l) l~:&I*,
a(T= z) a(T=0}

(r, r, -r„'-("„)=2 E l&e, l)'l~:)I* ~ 2 1&o.(l)'(l~:&I') .
a(T= s) a(T =o)

(38}

Substituting Eq. (38) into Eq. (36), one has

+ 2

S ) Cosq(r, ('.-r,'-r')-Coe&, a q(r, -r, -r„' (',)((' ('(, =((+
(

I*)'*(rP',)'*s (z-w )/(la(l.

(39)

Let us define the phase q' and the magnitude A by

, (1+I~I'}(r,-r, -r,'+r'„)
„

and
2 2

+cos'ri(r, +r, —r,'-rP'. (40)

The following inequality can easily be derived
from Eqs. (39}and (40):

l»n(v, —n ')
I
- (1+ I e I')'"(r„'r'„)"/'ft

I e I (41)

For the known values of the partial widths and

resonance positions, Eq. (41}limits the values of

cp, . It is interesting to note that when the I"' are
very small as compared with the total widths I'&,

one obtains from Eqs. (40) and (41) the expression
for tang, which is the same as that derived in

Eq. (31).
In principle all the terms appearing in the scat-

tering amplitude expression in Eq. (19) are mea-

surable. The slowly varying direct part of 7&, is
usually determined from the elastic scattering
data off the resonance using the optical model
potential. This is then used in the analysis of
other reactions involving the same composite
particles. The extraction of the resonance ampli-
tudes of T«requires knowledge of the resonance
energies and their total widths. The complete
resonance amplitude cannot be determined from
this information alone. The measurement of the
partial decay widths gives the magnitude of the
nuclear matrix elements occurring in the reso-
nance part of T&, in Eq. (19). The determination
of the phases of these matrix elements requires
additional data that depends on the interference of
these resonance amplitudes. In a special case of
mixing of two resonances of isospins T = 1 and

T =0, the number of measurable parameters in

the theory depends on the number of open channels.
If only one channel e of T =0 is open besides the
elastic channel, the measurable resonance param-
eters are E"„ I „E"„I'„ the two partial decay



ISOSPIN MIXING IN NUC LE AR RE SONANCE LEVE LS 13

widths of the T =0 channel, and the phases of the
nuclear matrix elements. Using this information,
the complex mixing amplitude is calculated from
Eq. (31) and (&j'= I'/I'0. From the known value
of e, the Coulomb matrix element can be calcu-
lated from Eq. (33). The nuclear matrix elements
corresponding to T = 1 and T = 0 are determined
from Eq. (32).

III. CONCLUSION

The problem of isospin mixing in nuclear reso-
nance levels is formulated using Feshbach's theory
of nuclear reactions. Some of our results are
identical with those derived by Shanley using the
well-known results in high energy physics. The
Bell-Steinberger sum rule and other relations

derived from unitarity of the S matrix in high

energy physics follow from Feshbach's theory.
The nuclear matrix elements occurring in the re-
action model are expressed in terms of the mea-
sured quantities. These relations would be useful
in the interpretation of the experimental data. In
many cases the y widths of the resonance levels
are of the same order of magnitude as the isospin
forbidden n-decay widths or the particle emission
widths. In the above formulation (as well as that
by Shanley) the effect of y-decay channels is not
included. In some cases different T channels are
also open. The above formulas cannot be used
directly to analyse such data. Using the unitarity
relations, the limit on the value of the phase angle

y, is obtained in terms of the resonance parame-
ters.
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