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Theoretical investigations of the yrast states of even erbium isotopes
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An angular momentum projection formulation in conjunction with the vri~rty-body Nilsson-
BCS variational wave function is presented for the pairing plus quadrupole interaction Ham-
ilto&i&n. The theory is applied to calculate the energies and half-lives of the recently ob-
served high spin yrast states in ' ' Er and Dy. The results of the calculation are
in good agreement with the correspon~i~~ experimental data.

NUCLEAR STRUCTURE Er isotopes; calculated energy levels, B(E2). Varia-
tion after projection method. Pairing plus quadrupole interaction. Derived

simplified ~»&ytic expressions.

I. INTRODUCTION

During the last few years, there has been a grow-
ing interest in a systematic y-ray decay study of
high spin states populated in the heavy ion reac-
tions in heavier nuclei, especially in the rare-
earth nuclei. In some of' the investigations, the
B(E2) values for the cascading y transitions are
also measured besides their energies. ' There is
a large amount of accurate experimental data
available in nuclei of this mass region. One knows
that neither the many-body theory nor the nuclear
forces are understood well enough so as to calcu-
late, from first principles, the nuclear energy
levels within an accuracy of a hundred keV. In
such circumstances, it is but natural that the first
attempts would be based on phenomenological mac-
roscopic approaches aimed at fitting the observed
energy spectra. The broad characteristic of these
spectra is the increase of the moment of inertia ~
with the angular momentum J and, in particular,
the stiff increase in 8 at the critical angular mo-
mentum J,= 14. This anomalous behavior of 8 with
J was first predicted by Mottelson and Valatin' as
a phase transition from the superfluid to the nor-
mal nuclear state. In this phase transition ap-
proach, however, the value of J, comes out to be
much larger than the observed value. The phe-
nomenological variable moment of inertia model'
gives a quantitative agreement with a part of the
data. However, this model does not clearly bring
out the physics behind the observed "back-bending"
phenomenon. The anomalous back-bending phe-
nomenon was qualitatively explained, in an alter-
native approach, in terms of a band crossing' in
which the band intersecting the ground band be-

comes the yrast band for higher spin states. Other
attempts based on a semimicroscopic deformed
nuclear model' with pairing interaction, were quite
successful in explaining the general features of the
yrast levels in a few selected nuclei. However, in
almost all the above attempts, one could not quan-
titatively explain the observed data over a wide
range of rare-earth nuclei without fitting a few rel-
evant parameters in each nucleus. The recent at-
tempts based on variational many-body methods
resort to simplifying approximations' regarding
the angular momentum conservation. These ap-
proximations can easily introduce errors of the
same order of magnitude as the observed energy
differences to be explained. The many-body vari-
ational calculations with good angular momentum.
reported so far, are very few."We have, how-
ever, not noticed any published work on the calcu-
lation of B(E2) transition probabilities (except that
in Ref. 8) which would provide an additional test
for the validity of the theory. The purpose of this
paper is to present the simplified formulas for the
relevant physical quantities in the microscopic the-
ory and to find out whether it can successfully ex-
plain the observed spectra and the B(E2) values of
the electromagnetic transitions between the high
spin yrast states. This may provide some insight
into our understanding of the mechanism respon-
sible for the back-bending effect. The success
would enhance our confidence in this variational
approach and may develop further interest in ex-
tending such investigations to still heavier nuclei.

In Sec. II we derive the mathematical formulas
in their most suitable form for the purpose of nu-
merical calculations. The application of this theo-
ry to the even erbium isotopes and '"Dy is pre-
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sented in Sec. III. The discussion of the results is
also given in the same section. The conclusions
are summarized in Sec. IV.

II. DERIVATION OF FORMULAS

In heavier nuclei where the level spacing is
smaller, one has to treat many nucleons dynam-
ically active in a large enough configuration space.
One can certainly cope with such a situation within
the constrained Hartree-Fock (HF) variational ap-
proach' wherein the angular momentum is not con-
served. The construction of good angular momen-
tum states by the projection method is met with nu-
merical complexities' and this is the main reason
why such calculations are not carried out in heavy
nuclei. In what follows, we will first briefly re-
view a general formulation of the angular momen-
tum projection method and then indicate the sub-
sequent simplifications possible in the case of a
simpler nucleon-nucleon interaction. Let the Ham-
iltonian of the system be

1a= P (n I TIP)a.'as+
4 g 1'„s&yaaasasa&,

tion are found"'" to prefer axially symmetric
equilibrium deformations. Besides this point, the
numerical complexity is a great hurdle in including
other degrees of freedom. The trial variational
nuclear wave function is the projected good angular
momentum (J) state obtained from the ¹ilsson-
BCS intrinsic state Cr(P, A~, 6„)of the A-nucleon
system. The deformation parameter P and the pro-
ton and neutron pairing gaps 4~ and 4„, respec-
tively, are the variational parameters for each J.
For axially symmetric intrinsic states of even-
even nuclei, the band quantum number is K= 0. In
the second quantized notation, one can express the
Nilsson-BCS intrinsic state for even-even axially
symmetric nuclei by

c,(p, n.„a„)=Q(u, +v, bt„t t )lo).

The gap parameters &~ and 4„are related to u;
and v„where v, '= 1 —u&' is the occupation proba-
bility for the ith deformed single-particle state
and the fermion operator b~~ is obtained from the
corresponding spherical state operators ~„by the
transf ormation

where T is the kinetic energy operator and V ~&z is
the antisymmetrized matrix element of the nucleon-
nucleon interaction. Quite extensive investigations
of the ground-state properties of even-even heavy
nuclei are carried out by Kumar and Baranger" by
employing a simpler quadrupole plus pairing inter-
action between nucleons. The parameters of the
Hamiltonian of such a many-body nuclear system
are well studied by them. In the numerical calcu-
lations presented in this paper, we will resort to
their Hamiltonian in the form

b,t= g (a+[C[i+) a~, . (4)

&I n &+= (-1)'~"
where

la+) =
l asm' = ln„,j, l, +m ).

The matrix representation of the operator T is

It should be noted that the basis states are divided
into two subsets that are connected by a time-re-
versal operator T:

H= e a~a

1—2x g (a le'"Ir)(&le'"IP) a asasa&

(a+ I TIP~) =o,

(a ~
l
T

l py) = (-1)'s's'™s6s .
(6)

——G g (-1)" ~~»atatazaz, (2)

The transformation coefficients in Eq. (4) satisfy
the following relations.

(a —lcli —)=( —1)' " (a+ lcli +),
where q'" is the quadrupole operator and X and G

are the strengths of the quadrupole and pairing
interactions, respectively. The subscript n in
Eqs. (1) and (2) denotes all the quantum numbers
(n, l, j,m ) necessary for the specification of a
spherical single-particle state. The sums in Eqs.
(1) and (2) run over the entire configuration space
considered in the calculations. In actual numerical
investigations, we will employ the same configura-
tion space as that in Ref. 10.

We consider only axially symmetric intrinsic
shapes since the rare-earth nuclei under investiga-

CC =CC =1,
where C is the transpose of matrix C.

The expectation value E~(P, S~, 6„) of the Hamil-
tonian in Eq. (1) with respect to the projected wave
function of angular momentum J,

(6)

can be expressed as

E (p, a&, s„)= h (p, n.&, z „)/p (p, a&, a„),
where
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b'(P, b.„b„}= (@zz I H+'„&

fD„(())(k, l
II

l
R (()k, )

(lo)

and p~(p, Ak, 6„) is obtained from Eq. (10) by re-
placing H by l. It can be easily seen that Eq. (10)
is obtained from Eq. (8) by expressing" the an-
gular momentum projection operator P~o in terms
of the rotation operator R(Q) corresponding to the
rotation through Euler angles Q = (Q„Q„Q,). The
calculation of E~ thus essentially reduces to the
evaluation of the matrix elements (C, I HIRE, & and

(4, IR4), & . It can be shown" that

(C, IR4 ) =A'[det(I+M}]' ', (11)

(a asztzarR& =(a, atzR&(a(a„R&

+ (a„a&R&(a Ba& R)

—(ataz R&(atz)arR&. (2o)

The generalized density matrices appearing in Eq.
(20) can easily be expressed in terms of the matri-
ces f, F, andM.

pz)„=( az asR) =[M(1+M) ']8

c,=( at at R) = [f*(1+M)-z],,
os =( a az)R) = [(1+M) 'F]8(z.

(21)

After carrying out a straightforward but rather
laborious algebra, one finally obtains for the Ham-
iltonian operator in Eq. (1),

where (HR& =P [[2(T+vX}p];„,-[1"(z]«,], (22)

uz z M =Ff*.

The matrices f and F are given by

(12}
where the prime on the summation indicates that
the sum in Eq. (22} is over only one subset of
states and

f =COCT, F=DfD. (13)

The diagonal matrix O in Eq. (13) has elements
O„=(v,/u, )e„ in the deformed basis. The matrices
f, F, and D are defined in the spherical basis with
the rotation matrix

Xzi Q Vik jz Pzk 1

kl

l 1 ~ I~j j ~ Vlfkl ~1k e
kl

(23)

(a IDI(3) = e..g-, (Q}.

It can easily be verified that

(14)

(15)

pz,. =(b, b, R) =(j
I
1. UW 'U-CD*C Ii &,

(z, , = ( b, b,. R) = (i I
CD*CUW 'V C TC I j),

(z,', =(b, b, R) =(j I UW 'VCDCCTCli).

(24)

The matrix elements of the density matrices can
be easily evaluated to obtain the following rela-
tions necessary in numerical computations.

The generalized density matrices in the deformed
basis are given by

&+klR I
c o& =[detw]' ',

where the matrix W is given by

(16)

After carrying out some algebra with the help of
the relations in Eqs. (12)-(15), one finally obtains

p„,, p, , =e=,, &j+ Iz,-lz+&,

p,'; = p,z=& +jIz-lz -',
(z„,,=(z, , =&j —lz, li+),
(zz+z = —oz-z+=(zz+z =(j lzzlz+),

(25)

W = UCD*C U+ VC DC V .

Here U and V are the diagonal matrices with

U;~ = u]50, V]j = v, 5]) . (18)

=(j —
I z, lz+&,

(z,'„. = —a,' „=(z,'„. =&)+ lz, lz+&.

Here, the matrices Z„Z„Z, are given by

In order to calculate ( 4l)lHR$4), one has to
evaluate the matrix elements (I, I

atas IR4()& and

(C, lata~zaka„lRCJ. Let us introduce a short-
hand notation

Z, = UW 'UCD*C,

Z2= VW 'UCD*C,

Z3= UW 'VCDC.

(26)

&oR& =&4. I o IR@.& &C.IRC.& (19}

for any operator 6. For the fermion operators, it
can be proved that

It can be easily checked that, for a special case
R(Q=0}= 1, one obtains the usual Nilsson-BCS
results for p, (z, o', and (HR).
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(27)

where

Q~ ~ (gi+ai+qa~i+)pi+a~i
Al

I
~a+ a- ~

(26)

The expression for the B(E2; 4, - ji) value of
the electromagnetic transition from a state with
angular momentum J, to that of angular momentum

J& can also be easily derived" and in the case of
even-even axially symmetric nuclei, one finally
obtains

In the case of the nuclear Hamiltonian of Eq.
(2}with quadrupole and pairing interactions, the
expression for (FIR} in Eq. (22) can be consider-
ably simplified if one makes the usual assump-
tions' of neglecting the contribution of the pairing
interaction to the fieM producing potential X in
Eq. (23}, the contribution of quadrupole interac-
tion to the pairing potential Y' in Eq. (23), and the
contribution from the exchange term of the quad-
rupole interaction. These assumptions were
examined in detail and the validity of the three
approximations was found" to be quite good. With
these approximations, the expression for (IIR)
simplifies to

I
ei pi+ i+

Here (Z, O, 20~J&0) is the Clebsch-Gordan coeffi-
cient and

x[detW(8)]'I'sin8d8. (30b)

The necessary quantities Q~ entering into this
expression are given by Eq. (28}.

III. RESULTS AND DISCUSSION

The nuclear structure calculations in even-even
rare-earth nuclei reported in this paper are per-
formed by employing the variational wave func-
tions projected from the Nilsson-BCS intrinsic
state 40(P, b&, 6„) and minimizing the projected
energy E~(P, h~, +) obtained from Eqs. (9), (10),
(16}, and (27) by varying the deformation param-
eter P and proton and neutron pairing gaps 4~ and
b,„ for each angular momentum state J. We have
employed the Kumar-Baranger" nuclear Hamil-
tonian H with the long-range quadrupole interac-
tion and the short-range pairing interaction be-
tween nucleons. The same configuration space
as specified by them has been considered in the
present calculations. It should be mentioned here
that the inert core" of Z = 40 and N =70 neces-
sitates the introduction of the core contribution to
the nucleon charges and the moment of inertia 8.
As is the standard practice, ' ' "we replace bare
nucleon charges by effective charges to simulate
core polarization. In the same manner, core-po-
larization effects are incorporated in 8 by intro-
ducing a multiplicative constant

where f=E„„„,/E, „, ,

Q(~, - ~y) =g (2 —6&0)(~,0, 20IZy0}@~i. (30a)
y=o

where E~„, is the energy computed by considering
only the valence nucleons outside the inert core

TABLE I. The calculated and experimental values of the y-transition energy (E~-E~ 2) (in
NeV) are displayed for ' ' ~ ~ +Er and Dy. The tabulated experimental energies are
accurate only up to the second decimal place.

156Er i58Er 160Er ~@Er 5 8Dy

J Expt. Theory Expt. Theory Expt. Theory Expt. Theory Expt. Theory

2+ 0.34
4 0.45
6+ 0 54
8+

10+
12+
14+

16
18
20+

0.20
0.42
0.56
0.63
0.72
0.79

0.19
0.34
0.44
0.52
0.58
0.61
0.51
0.47

0.16
0.36
0.50
0.63
0.52
0.55
0.42
0.34

0.13
026
0.38
0.46
0.53
0.58
0.59
0.53
0.56

0.12
026
0.40
0.48
0.55
0.58
0.56
0.54
0.54

0.10
0.23
0.34
0.43
0.51
0.56
0.58
0.55

0.11
0.24
0.34
0.45
0.49
0.52
0.55
0.53

0.14
0.2V

0.3V
0.45
0.51
0.56
0.60
0.61

0.14
0.29
0.39
0.52
0.43
0.51
0.57
0.60
0.67
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TABLZ II. The content P~ of the angular znomentum
state J in the intrinsic NQsson-BCS state @o is display-
ed for all the nuclei under consideration.

156Er i58Er 6OEr 156Dy

0 0.0485
2 0 3068
4+ 0 2597
6+ 02182
8+ 0.1412

10+ 0.0743
12+ 0.0329
14+ 0.0127
16+ 0.0042
18+
20+

0.0348
0.1559
0.2173
0.2117
0.1641
0.1066
0.0597
0.0294
0.0129
0.0051
0.0019

0.0245
0.1134
0.1710
0.1875
0.1691
0.1313
0.0899
0.0551
0.0306
0.0155
0.0050

0.0238
0.1104
0.1675
0.1852
0.1689
0.1328
0.0922
0.0573
0.0322
0.0114
0.0049

0.0284
0.1297
0.1899
0.1991
0.1691
0.1222
0.0776
0.0442
0.0228
0.0105
0.0040

and E~, is the energy corrected for the core
deformation caused by outer nucleons. One can
get a good estimate of f from

~out, ~ core

~out+ core & out

f (EJ=4 gg=o) /(Ez~4 @1=0)

so as to approximately reproduce the excitation
energy of J=4 state.

It may be stated here that, at the minimum of
energy for each angular momentum state, the
exact conservation of nucleon number does not
change the results obtained from the BCS wave
functions provided, the chemical potentials are so
calculated as to conserve the average nucleon
numbers to a high degree of accuracy. The fluc-
tuations from the actual nucleon numbers are
found to be very small (less than 0.01%) at the

energy minimum for each angular momentum
state.

The calculated energy spectra of "''" " ' '"Er
and '"Dy are displayed in Table I. A comparison
of the experimental and calculated energies in

Table I indicates that the accuracy in calculated
energy is quite good, the deviations in almost all
cases being within 100 keV. As mentioned above,
we have employed an empirical numerical factor
f, constant for all J states, to simulate the effect

where 8,„t is the moment of inertia calculated with
only the "outer" nucleons and 8„„(8„„&8,„,) is
the contribution of the core to the moment of
inertia. In the numerical computations reported
in this paper, we have assumed that f is constant
for all angular momentum states and its value is
fixed by renormalizing the calculated energy E~~,
with the corresponding experimental energy E~„pt

for a particular J. In particular, we have chosen

of the core on the energy spectrum. The value of
f goes on decreasing from f=1.00 in '~Er, f=0.95
in 'SSEr, f=0.80 in '~Er to f=0.72 in '~Er, as the
number of neutrons and consequently the deforma-
tion P increases from P=0.23 in "Er to P=0.32 in
'"Er. This decrease in the value of f with the
increase in deformation P can be qualitatively
understood in view of the increase in 8„„due to
the addition of outer nucleons which enhance the
deformation of the core. The calculated energy
spectra in '~Dy and " '"Er agree very well with
the corresponding experimental data. This good
agreement can be correlated to the fact that the
different yrast states in these three nuclei have,
as seen from Table II, an appreciable content P'
in the intrinsic Nilsson-BCS state from which
they are projected. With the reduction in defor-
mation P in '"""Er, however, the single Nilsson-
BCS state ceases to be a good variational state
for the yrast levels, particularly for those with
high angular momentum. This can be seen from
Table II, by observing a rapid decrease of the
content P~ of these high J states and consequently,
the agreement in """Eris not as good as in

&e&Er and &SeDy

It may be stressed here that the deformation
parameter P changes very slowly with J except at
J,= 14 where it changes abruptly from 0.27 to
0.24 in 'MEr, from 0.32 to 0.30 in '~''"Er, and
from 0.30 to 0.34 in "Dy. This characteristic
feature of a sudden change of P at J,= 14 may be
correlated to the experimentally observed' back

ng in xm. ieo. ie2Er and upward bending in 5 Dy
at around the same critical angular momentum.
Similar observation was made in our earlier in-
vestigation of Dy isotopes. ' %'e also find that the
pairing gaps b~ and b decrease with increasing
J. They, however, do not vanish at J,= 14. This
behavior indicates that the back-bending phenom-
enon at J,= 14 in these nuclei is not due to a phase
transition from the superfluid to the normal intrin-
sic state of the nucleus. The neutron gap b,„van-
ishes at J,=20 in '"' '~Er and this Mottelson-
Valatin phase transition may be correlated with
the experimentally observed' forward bending in
' 'Er at around this critical angular momentum

J,= 20.
The B(Z2) values given by Eq. (29) a.re calculated

from the wave functions projected from the intrin-
sic state which minimizes the energy of the J =0
ground state of a nucleus under consideration. The
only parameters used in the calculation of reduced
transition matrix elements are the effective
charges, e~ for protons and e„ for neutrons. In
the calculations presented here, we have used the
effective charges e~ =1.53e and g„=0.53e which
are slightly less than those quoted by Kumar and
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TABLE III. The calculated and experimental half-lives (in psec) for y transitions between the states J-J-2 are
exhibited.

Expt.

i 56Er

Theory Expt.
i58Er

Theory

i60Er i62 E i 56D

Expt. Theory Expt. Theory Expt. Theory

2 33.2 + 1.7
4' 5.42+ 0.66
6+ 1.14+ 0.66
8+

10+
12+
14+
16+
18+

23.2
4.31
1.62
1.64

300+15
14.4 + 0.72
2.8 + 0.47
1.21+ 0.47
0.8 +0.4

&O.V

2.1 +0.5
1.7 +0.6

&1.5

318.5
13.7
3.05
1.25
0.72
0.55
1.29
1.83
0.73

2156+ 46
34.5 +1.7

5.39+ 0.47
2.16+ 0.47
1.24~ 0.4 7

2141
39.8
6.82
2.51
1.18
0.54

5352
71.5

1623
42.5

Baranger. " For comparison with the experimen-
tal data, we have, in Table III, displayed the half-
lives 7g/2 of various states in the nuclei under
consideration. The corresponding B(E2) values
can be obtained from the relation

B(E2)= 568/(7, g ~Ey '),

where r, ~, is in psec, E& is in MeV, and B(E2) in
e fm'. As seen from Table III, the calculated
half-lives of the nuclear states are in good agree-
ment with the corresponding experimental values'
except for the 2' state in 'MEr. The tabulated
experimental half-life of the 2' state in '~Er is
extracted from the experimental" B(E2) value
since the reported' experimental half-lives include
decay processes other than electromagnetic tran~
sitions.

IV. CONCLUSION

An explicit formulation of the angular momentum
projection calculations in connection with the many-

body Nilsson-BCS variational wave function is
presented. The essential simplification of the re-
sults in the case of quadrupole plus pairing inter-
actions is worked out. The theory is applied to
calculate the energies and half-lives of the nuclear

6Dy and ' I' ~' 6 Er. The results
of our calculations are in good agreement with the
corresponding experimental data. The character-
istic feature of a sudden change in the deformation
parameter P at the critical angular momentum

J,=14 in '"""''"Ermay be correlated to the
experimentally observed' back bending in these
nuclei at around the same critical angular mo-
mentum. The pairing gaps b~ and 5,„, though de-
creasing with increasing J, do not vanish at
J,=14, thereby indicating that the observed back
bending is not due to a phase transition from the
superfluid to the normal intrinsic state in these
nuclei. The calculated pairing gap + vanishes
at J,=20 in '"Er and this may be associated with
the experimentally observed' for@sard bending in
'"Er at around the same critical angular momen-
tum.
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