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Exchlnge effects in the theory of radioactive decays
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A nuclear reaction theory derivation of the decay width for radioactive decay by particle emission is given.

Particular attention is devoted to exchange symmetry. The result is similar in form to that derived by

Fliessbach using time dependent perturbation theory except that in our expression the wave function for the

emitted particle is the solution of a Schrodinger equation, whereas Fliessbach finds that this function must be

calculated from a Hill-wheeler equation.

RADIOACTIVITY Width for radioactive decay by particle emission which in-
cludes effects of exchange symmetry is derived.

I. INTRODUCTION

It has recently been pointed out by Fliessbach'
that the effects of exchange symmetry have not been
properly treated in earlier analyses of radioac-
tive particle decay. Fliessbach seeks to remedy
this failing by a modification of the usual time de-
pendent perturbation theory approach.

In this paper we present an alternative treatment
of the problem based on nuclear reaction theory.
We use the "coupled equations formalism"
(CEF)' ' for multipartition nuclear reactions
which has been developed recently. In this formal-
ism the consequences of exchange symmetry may
be made manifest in a simple way by the introduction
of exchange operators into the equations of motion. '

To apply this reaction formalism to the calcula-
tion of the mean life of a metastable nucleus for
particle emission, we calculate the width of the
scattering resonance that occurs when the emitted
particle collides with the daughter nucleus. For the
purpose of relating the width of the scattering res-
onance to the wave functions of the parent and

daughter nuclei and to the interaction between the
emitted particle and the daughter nucleus we use
the Feshbach projection operator approach applied
to the antisymmetrized CEF equations of motion. '

The result we find is similar to that derived by
Fliessbach. The decay width is the square of the
matrix element of the residual interaction between
the emitted particle and the daughter nucleus. This
matrix element is calculated with respect to the
initial state parent nucleus wave function and the
final state emitted particle plus daughter nucleus
wave function. The difference between our result
and that of Fliessbach consists in the fact that in

our result the relative motion wave function in the
final state is a solution of a Schrodinger equation
with a nonlocal, nonsymmetric exchange potential
interaction. In Fliessbach's result this wave func-

II. ANTISYMMETRIZED COUPLED EQUATIONS

FORMALISM

Consider a system of N nucleons. For each par-
tition n, P, . . . of the nucleons into two sets or
clusters there is a decomposition of the Hamilto-
nian into two terms:

H =Ha+ Va =He+ Vg—- ~ ~ ~ .
H contains the kinetic energy and the intracluster
interactions, while V is the sum of the interclus-
ter interactions for partition n.

The transition operator for scattering from a
partition P channel to a partition n channel is

Tao= Va+ Va~ V8~

where

S =(& -H+ie)-'

is the system Green's function operator. The par-
tition y Green's function operator is defined to be

G„=(E Hy +is) '=(9 '+ V-„) '.
From the above equations one can derive the
Kouri-Levin4 CEF

(4)

tion is a solution of the more complex Hill-Wheeler
equation.

In Sec. II we present the antisymmetrized coupled
equations formalism (ACEF). The Feshbach pro-
jection operator method (FPOM) is applied to these
equations in Sec. III. From the resulting equations
an expression for the width of the scattering reso-
nance associated with a particular compound nucle-
us state is found. This is done in Sec. IV. In Sec.
V a simplified expression for the decay width is
derived wherein the transition matrix elements are
converted to surface integrals. Our formulas are
illustrated in Sec. VI where they are applied to a
simple model for radioactive decay.
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Taa= VIE Wa Gy G8 '+ Tya, (5
y=l

where Ã is the total number of (two-cluster) par-
titions possible for N (distinguishable) nucleons
and Wis a numerical %XX matrix such that

W„8 ——1. (6)

where

)(N n )) (1 25n~N/2)&

y=l

The channel coupling array W can be chosen in such
a way as to make the kernel of the coupled equa-
tions shown in Eq. (5) connected. '

In the case where the nucleons are indistinguish-
able the same transition operators T~s cannot be
used to calculate transition probabilities. The
antisymmetry of the wave functions and the phys-
ical indistinguishability of many of the partitions
leads to the prescription' that T ~ be replaced by
the combination

N~
&I j}/ -i/2l)/i(2 Q ( I )

}g}g(}}),P ( )+ 7

III. APPLICATION OF THE FESHBACH PROJECTION
OPERATOR METHOD

By means of the ACEF we have arrived at a set
of coupled integral equations for the transition op-
erators in which exchange effects have been made
manifest. For all but the simplest of systems these
equations are too complex to solve in full general-
ity by the methods presently available. Thus it is
necessary to make some simplifying assumptions.
The FPOM is a convenient framework for formu-
lating approximations which incorporate into the
formalism the two types of processes we know to
be of major importance in many reactions: direct
interactions between two-body cluster configura-
tions and compound nucleus formation. The as-
sumption that these two types of processes are the
only ones that occur leads to a relatively simple
set of equations when the FPOM is applied to the
ACEF.

To apply the FPOM to the ACEF we start by
writing Eq. (9) as a matrix equation in partition
space:

7' —I/A+ ~i/2I(gN i/2C( A+1}})'i/2 gite il}/i/~ + 2') ( I l )

%, is a matrix in which every element is the iden-
tity:

n is the number of nucleons in one of the two par-
tition e clusters, e, is one of the N partitions
physically indistinguishable from partition a, P~(n)
is the permutation operator that transforms parti-
tion a into partition (r„, and o (n) is the number
of nucleon pair transpositions contained in P (n).

It is possible to find a set of coupled integral
equations for the antisymmetrized transition oper-
ators. ' These read

Let us next define

Y= V+ VGY,

where

V= VA+N'~ WN '~'

so that

(12)

(13)

(14)

(15)

x (A&~&/'G s'/}/ f'+ T&8) (9)

where A~ is the partition n antisymmetrizer
N~

A =I}/ ' P (-I)'~(")P (n).

Equation (9) constitutes the ACEF.
Equation (9) for the ACEF differs from Eq. (5)

for the CEF in a very important way which is hid-
den by the notation. In Eq. (7) the partitions o., P,
y, .. . that are referenced are an %' member sub-
set of the entire set of all X possible two-cluster
partitions of N distinguishable particles. The par-
titions in the X' member subset are such that no
one partition can be transformed into any other by
the exchange of pairs of nucleons. Thus, for each
member o. of the subset there will be N~ -1 other
members of the entire set which are excluded from
the subset.

Now define a new set of operators Y~e by the mod-
ified coupled equations

Y~g = V~g+ V~yGy Py Yy 8, (18)
y=1

which differ from the coupled equations for Y dis-
played in Eq. (13) by the presence of the projection
operator Py which truncates the channel state ex-
pansion for Gy.

The partition Green's function Gy has an expan-
sion in terms of the partition y channel states

g&= p f g' f g' Ig»;&g».&g}g g&}}g(g}-,, '

C

X (Q(g) Q(g) 5 (r' —r„))

Qy, and Qy', are parti cular internal motion energy
eigenstates for the two clusters y1 and y2 that
comprise partition y. Fy is the displacement of the
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center of mass of cluster y1 from that of y2. The
sum on c is over all possible pairs of internal mo-
tion energy eigenstates P~z', i/&~',~. The effect of the

projection operator Pz is to truncate this sum to
just a few terms, namely those corresponding to
open scattering channels.

The transition operators Y~& which are the solu-
tions of the modified coupled equations, Eqs. (16),
are a cluster model approximation to the exact
transition operators Y~& which are solutions of Eq.
(13}. The Y s are similar to the transition oper-
ators that would result from a coupled reaction
channel calculation, or a resonating group method
calculation, or a generator coordinate method cal-
culation.

In the spirit of the Feshbach formalism we think

of the scattering reaction problem as being solved
in two steps Fi.rst, Eq. (16) is solved to give F,
which reflects optical potential elastic scattering
and direct interaction nonelastic scattering. Then,
Y is used as input in equations for Y in which com-
pound nucleus effects can be included. The equa-
tions for Y are found by using Eq. (16}to eliminate
V from Eq. (13):

V= Y(1+GPY)

Y= Y(1+GPY) '(1+GY)

= (1+YGP) 'Y(1+GY)

= Y(1+GY) —YGPY

= Y+ YGQY,

where

Qne=(1-P)as=5 s(1-Ps).

(18)

(19)

IV. MEAN LIFE FOR RADIOACTIVE DECAY BY
PARTICLE EMISSION

We seek an expression for the mean life of a par-
ent nucleus (P) which decays into a daughter nucle-
us (D) and an emitted particle (E}. Our approach
is to consider the scattering of E by D. The mean
life 7 of P is equal to 5 divided by the width I' of
the resonance in E+D scattering caused by the

Finally, substituting the formal solution of Eq. (19}
into Eq. (15) gives

T=[Y+ Y(G '-QY) 'QY] GA N' aG N' (21)

At this point one may approximate (G ' -Q Y) '
by

inverting G ' —QY in the space spanned by the con-
figurations that are important in the makeup of the
compound nucleus states in the range of excitation
being considered. This then supplies the approxi-
mate compound nucleus formation contribution to
T to supplement the direct interaction contribution
arising from the first term on the right-hand side
of Eq. (21).

Y= Vs~Ass(1+ GsnPsp Y). (23)

In these equations V» is the residual interaction
between E and D, H~=H —Vs~, Giz)=(E Hen+-fe) ',
A» is the sum of exchange operators that antisym-
metrizes a product of an antisymmetric E internal
motion wave function with an antisymmetric D in-
ternal motion wave function and an E+D relative
motion function. In addition,

Ns~= (Ns+Nn)! /Nsl Nn! =Np! /Ns! Np! . (24)

P» is the projection operator that projects onto the
elastic E +D channel, and Q»= 1-P».

Having made the single channel assumption for T
and Y we next make the single level approximation
for (E -H» -Qss Y) ' in Eq. (22). We suppose that
we have available a good approximation 4 ~ for the
wave function of the parent nucleus. Then in the
immediate vicinity of the scattering resonance due
to the formation of P as a compound nucleus in
E+D scattering we can set

(E -Hen QsnY) 'Q-sp

Qml@p&&C'p IQsn
&+plQss(E — sn- Y)Qsnl+p&

The denominator on the right-hand side of Eq. (25)
will have a Breit-Wigner form

&c'plQm(E -Hm- Y)Qml@p& E
&C.IQ:IC,&

(26)

where

E.=« IQ HQ ld &/&@ IQ (27)

That is to say, at energies E near E, the level shift
L and the width I' are independent of small changes
in E. Our task is to find F.

Combining Eqs. (26) and (27) gives

d, ——,'fr =&e, lQ„(Y- v„)Q„lc,&/&e, lQ lc,&.

(28}

To develop this expression we introduce the scat-
tering wave functions g and y associated with the
transition operator Y:

compound nucleus configuration P. Equation (21}
will be used to estimate the width of the resonance.

It will be assumed that at the energy in question
the only open channel is the D+E elastic scattering
channel. This means that in Eq. (21}only one par-
tition is involved, and the matrix equation becomes
an algebraic operator equation with W= 1 and & = 1:

T = Y+ Y(E Hsp-Qs-~Y) Qsn Y GspAsnGsp 'Nse.

(22)

The single partition form of Eq. (16) is
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YI4)& = YSD&»l(I)),

Y'I4)& =&SDYEDIX&,

(E -HED)I4)& = o.

(29)

(30)

(31)

The integral equations for these functions follow
from that for Y, Eq. (23):

Ix& =PEDIx& l@gc Dx(k +ED}&. (39)

The quantities 4» and 4~ are the internal motion
energy eigenstates of particles F- and D with eigen-
values eg and e~ The eigenvalue E of Eqs. (34)
and (35) is then related to k by

IO&
= I4»+GRIP (32)

SkE = +6g +E'Do
2 &Ea

(4o)

le = 14»+ Gh)P, ~ED&»l x&. (33)

Operating on these equations with C~~~
' then gives

the differential equations

(E HSD-)l(I)& =PED&ED&SDI(I)&r

(E H SD) Ix) PED+EDYgDIX &.

(34)

(35)

Since the interaction potential in the differential
equation for P is not Hermitian, the solutions of
this equation do not form an orthogonal set. It is
for this reason that the adjoint function X is intro-
duced. We can see that the g and the X are bior-
thogonal sets. Consider

&xg IE HEDI/E&-(xg' IE ff

EDIBLE&

=(Xg~ IPSDYEDx4 gD
—YED&EDPSDI(I'E& = 0 (36)

[PEDr HSD]I = 0 (37)

This follows from the differential equations and the
fact that

From Eq. (36) we get

(E -E')(xg 14& =&xs IHED E-DI(I)g& -0. (41)

= (2w)25(k' —k). (42)

From the integral equation for Y, Eq. (23), we

get the formal solution

Y= Vg~A~~+ V~~Agg) 9 ~V~~AE~,

9 ED [GgD EDGED SD) PSD

(43)

(44)

The hermiticity of H~~ used to get this result is a
consequence of the fact that X is constrained by
asymptotic boundary conditions that are the time
reverse of those constraining g. This is manifest
in Eqs. (32) and (33}.

Equation (41) expresses the biorthogonality of g
and X, namely that (Xg. I())s& = 0 if E ' x E. We can
choose the normalization of these functions such
that

&x, le ) = Jd'r„x(a', r„)'e(e, r„)

implies

I(I» =PEDIO& = 14 C~S(k, r )&E, D (38)
The Green's function operator 9» can be expressed
in terms of the wave functions g and y:

9 ED 2 2 l@s@D4(~ rgD}&g2 k2 k 2,. &@S4 DX(k', rsD)l
d'k' &so

e()r*))r Je(r)le, e, e()r, r„))IP,.-( e(e*-e *))&e,e,x(e,r„)l. (45)
0

Now combining Eqs. (28), (43), and (45) gives

&@PI SDYSD(&sD 1%SDIC'P&—
&C P I@EDIC'P&

(2E)2k'
+ d(k")k' dk'(4 Iq v A' lc 4 (I)(k' f' ))

s D" ' s s s (46)P gD SD gD g D r ED k2 kr2 (@ lq IC )

dk(@ lq y ~+ I@ @ y(k r— ))
(@ @ xs( D~ED) I YEDA. 1PEDI P&

(2v)212 P ED ED ED E D r ED (4, le.,lc,&

(47)

Equation (47), then, is our expression for the de-
cay width for the P-E +D decay in the one-channel,
one -level approximation.

The consequences of exchange symmetry for the
expression for the decay width are thus (a} the
wave function 4~ for the parent nucleus is antisym-
metric, (b) the wave functions &frg and 4 D for the

internal degrees of freedom of the decay products
are antisymmetric, and (c) the exchange operator
A', defined in Eq. (10), is present.

Our result is rather similar to that derived by
Fliessbach' from time dependent perturbation the-
ory. In our notation his expression has the follow-
ing form
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P k, ~ Jkkl(k I(((-k)& Ik k kk(k, k'*,)&II*

P k, . Jkk((k, I(( —(('Ik,k kk(k, k* » I',

(48a)

where '4 is the solution of the Hill-Wheeler equa-
tion

&@BC'D6(F —Fgn) I &En(H E)&-gnl4 BC'ne(k, Fgn)& = 0,

(48b)

In practice one does not solve this equation but
merely takes%, to be the solution of a two-body
Schrodinger with a phenomenological local E,D
potential energy. Fliessbach points out that this
is inconsistent with%I being the solution of a Hill-
Wheeler equation. He suggests that one should in-
stead approximate the quantity

(53)

Now we make use of the differential equations for
g andy,

(+ ff ED IBD~EDk4BD) I4 Ec D(I& (k, FED)& 0 (54)

(R H Pgnk4ED FED}IC EC DX(k Fgn)) 0 (55)

and the fact that 4 ~ is an antisymmetric approxi-
mate eigenfunction of H =H»+ V» to simplify the
matrix elements ~ and N:

M(k) =&@PIFBD Pgn+ F»IC'g@DX(k FED}&

= &4'pl(E ffg-n) —(E Hg-n) I@BC'DX(k,Fgn}&

&@PRED Hsnl+E@DX(k, FED}&,

N( }=&@PII'BDAED -&EDGED&snl@g@n)t&(k, Fgn}&

&@Pl(E Rgn)+ED —(E Rgn)-IC E@D(t&(k Fgn}&

Q(F) =
l d'sN'i'(F, s)%L(s) (49a)

&@P I ED Rgnk4EDI@B@ DII (k Fgn}& ~ (57)

by the solution to a two-body Schrodinger equation,
where N' ' is defined by

(49b)

N(F, t) =&6(F-Fgn)&BEAD I+gD I 5(t FED)4E@D&NED ~

Here we have used the fact that V» is Hermitian.
Now we observe that

8H» -Hg +H g)
— V„2p»» (58)

and that H~ and H~ are Hermitian in these matrix
elements. In consequence,

(49c)

Thus, in this approach one must get %. by solving
the difficult Hill-Wheeler equation or by evaluating
the operator N ' ', which is also difficult, and us-
ing it in conjunction with a solution of a two-body
Schrodinger equation.

In our approach the functions g and X appear in
place of %t. These functions are solutions of Eqs.
(34) and (35) which are two-body Schrodinger equa-
tions with nonlocal nonsymmetric exchange poten-
tial interactions.

N(k) =N~(k)+N, (k),

N, (k) =&kkpIHED(1 Agn)I)ks(k Dg(k-, Fgn)),

tif(k) =
3 & f.(F)Iv„' —v„'Ix(k, F}&,&»

((F)= &c B~'n 6(F Fgn) I@p&. —

(59)

(60)

(61)

(63)

V. TRANSFORMATION TO SURFACE INTEGRALS

rA dk I N k, (50)

A = &Bnk&((gs@'&@'p l@gnl4'P&),

M(k) =&4PP I@~ED~BDI@E4&nx(k Fgn}&

(51)

(53)

Our expression for the decay width, Eq. (47),
involves matrix elements of the residual interac-
tion Q»V»A~~ between the emitted particle E and

the daughter nucleus D. This expression can be
simplified somewhat by transforming the matrix
elements of Q»V»A~~ to surface integrals.

Let us write Eq. (47) in the form

The term N, (k) is purely exchange contribution. It
does not simplify, but NE(k) and M(k) can be con-
verted to surface integrals by Green's theorem:

O'R'
&( (k) =

k f 1&) [k(k &))~ ((R)* —((&)) k( R)~], k

(64)
2

M(k) = d R [X(k,R}—((R) —((R}*—X(k, R)].2~» BR BtR

The radius R must be greater than the range of
Vsc

Next let us make partial wave expansions of g, X,
and &. We assume for simplicity's sake that the
particles E and D have zero spins:

$( , k)=R4r Q t I'f(k) Fi,(R)f~(k, R)/R, (65)
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x(k, R}=4m Q i Yf(k) Yl",(R) gl, (k, R) /R, (66)

((R) = $), (R) Y('(R)/R. (67)

Substituting these expressions into Eq. (64) gives

g2 ~ X

N~(k) = Y~g(k)*[fq(k, R)—$q(R)
2 I"sa

H =00+ V,

10 =-——,r, +—,r,
2p

——v'[e(R -r,)+e(R r-,)],

(74)

(75)

-k~(R) R f~(k, R)],
a

(68)

g2 ~ X

iaaf(k) = Y|l(k)'[g~(k, R)*—$), (R)
&so 8R

—~, (R)—, g„(k,R)*]. (69)

Substituting these expressions into Eq. (50} and

neglecting the exchange term N, gives

g Qm), ng

psD(4w) q

The residual interaction V is seen to be a three-
body square well force. This choice leads to ma-
trix elements that are easy to evaluate.

In this model the parent nucleus wave function is

(77)

Q„(r) =A„sin(X„r), r &R

=A„sin(A.„R}exp[-v„(r-R}], r &R, (78)

m„=g„(k,R) —(„(R)—$ ~(R) gg(k, R—),
9 8

n&, =fz(k, R) —$z(R) —$z(R) fz(k, R),—a 8

q =1 — «$x(r)'.
0

(71)

(72)

(73)

R sin2A, „R sin A.„R
2 4~„2w„

tank. „R= X„/r„,
72 V2 y2

ff tl

The final state wave functions are

(80)

(81)

This result is the same as that of Fliessbach' ex-
cept that he has q = 1 and f~ = g„=the solution of a
Hill-Wheeler equation. Earlier treatments' had

q = 1 and f„=g„=the solution of a Schr'odinger equa-
tion with an optical potential interaction. For us

f& and g), are solutions of adjoint Schrodinger equa-
tions with nonlocal exchange potential interactions.

To get this simple result we have neglected the
exchange term N, . The justification of this step is
not clear at this point. However, N, is found to
vanish in the model calculation done in the next
section.

(82)

4i(ri) X(r.)4 s4 s}((k,r) = (83)

The differential equations for g and X follow from
Eqs. (34) and (35). For this case the equations for

g and X turn out to be identical because V is sym-
metric in r, and r,. For P,

VI. APPLICATION TO A SIMPLE MODEL

We will next consider a simple model which ex-
hibits radioactive decay via nucleon emission. It
also exhibits effects due to exchange symmetry.
Thus it serves to illustrate some of the conse-
quences of exchange symmetry for radioactive de-
cay.

The model consists of two nucleons bound in s
states to an infinite mass square-shaped potential
well. The initial state 4~ will consist of a (2s, 3s)
configuration. Then, due to a small residual inter-
action V between the two nucleons, a transition oc-
curs in which one nucleon descends to the 1s state
and the other goes up into an unbound state. The
process is shown schematically in Fig. 1.

The Hamiltonian for this model is
FIG. 1. Initial and final states of a simple model for

radioactive decay.
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JP+„,+a'e(R -r) g(r) =b'e(R -r)@,(r), (84)
Let us compare this with what is given by Eqs.
(50}, (68}, and (69). Neglecting Ne we get

(85) r=,(c„5,-c„5,)' (92}

[R
a' = v'+ — d r P,(r )',

0
(86) bg =4(R) dR 4g(R) —4g(R)dR [|(R). (98)

~2 R

«4, (r)4(r).
2 0

(87)

The functions tI) and X should be normalized so that
for r )R,

1 sin(kr +5)
(88)

Substitution of these expressions into Eq. (47) gives

Equations (89) and (92) would agree if di were equal
to 6f.

Suppose we define gf.

~

~, ' ~,~ [
' ~ ']e(R —r)I ;[[=0.f d&2 (94)

Then by using Green's theorem we get

IekI' = 2,4 „(c„d,-c„d,)', (89)

[1[&(R) Pg(R) —Pg(R) [l[y(R)

c(y = «4((r)4g(r)
0

dq =[v' dr (i[,(r) [l([r).
0

(90)

(91)

Thus we see that 5, =d~ would hold if Eq. (94) in
some sense were a good approximation to Eq. (84).

Let us next examine the neglected factor N, :

h'e = &C's IRgn(1 -&an) l@s@v4(» rsv)&

p, (r,)4[,(rm) —4(,(r~)p, (r,) 8' 1 [r 1 8'
2

( } +(, p, (r,) (l((r,)

I' » $2(r,)P,(r,) —Q,(r,)Q,(r,) 4[,(r, ) [l[(r,)

=0 (96)

1 Q,(r,) a(r, ) Q,(r, ) 'IL(r, )
72,r,44' r,~47[ rj4w r,44m

where 'h is a solution of

(97)

k' ~,~ u'e (e —
)t %I(r[=p'e((( r)e,(r) ~r'e, (r[, -

(98)

Here we have used the fact the C~ has been ap-
proximated by an eigenstate of 0», and we have

used the orthogonality of the Qf's. Thus N, van-
ishes as a result of the approximation we have

made for 4p.
One should not conclude that the vanishing of N,

implies the validity of Eq. (92). Equation (92) is
equivalent to Eq. (89) when N, vanishes only if C~
is an eigenfunction of H rather than of H», as has
been assumed for our model calculation.

Finally, it might be interesting to see what the
Hill-Wheeler equation, Eq. (49}, for the final state
wave function would be in this model. The Hill-
Wheeler final state wave function is

R
c[' = v'+a[' dr 4[,(r)',

0
(99}

p =[v « 0 (r)'a(r),
0

(100)

y' = dr Q,(r)Ik' d+'Id r'+ v'e(R —r)]%(r). (101)
0

This model illustrates how the decay width is
calculated from the wave function of the parent
nucleus and the wave function for the final state.
The wave function for the relative motion in the
final state is the solution of a Schrodinger equation
with a nonlocal exchange potential interaction. Al-
though this equation, Eq. (84), resembles the Hill-
Wheeler equation, Eq. (98), there is a vital dif-
ference between the two due to the presence of the
term y'&j[, in Eq. (98). This term cannot be re-
garded as an interaction term because it does not
depend on the interaction strength so and because
it depends on the value of the wave function L over
all space rather than just the interaction region
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0&r &R. The solution of the Hill-Wheeler equa-
tion lacks uniqueness inasmuch as &+CQ, is a
solution if is a solution, where C is an arbitrary
constant. Equation (84) is not afflicted by the ex-
istence of such redundant solutions.

We see from our model that the surface integral
version of the theory displayed in Eq. (70) does
not necessarily agree with the more exact volume
integral version shown in Eq. (47), even when the
exchange term N, [Eq. (60)] is negligible. We have
noted that the two versions will agree if g& of Eq.
(94} is equal to (C) of Eq. (80) for 0&r&R. This
would indeed be the case if v'»k', v~', so', that
is, if the square well potential binding the nucle-
ons to the parent nucleus is very deep.

For comparison let us apply the Fliessbach' ap-
proach to this model. If we start with Eq. (48),
convert it to a surface integral, and apply it to
our model we find

It is clear that the Hill-Wheeler equation is just
the result of projecting the Schrodinger equation
onto the portion of Hilbert space spanned by anti-
symmetric cluster states. Having assumed a par-
ticular cluster state solution in our model, N is
the projector that enforces antisymmetrization.

Given the definitions

(r)= Jar'm'~'(, ')e( '), (106)

where (108)

n(r, r') = 5(r —r') —4),(r)4), (r') =IV(F, r')4 re'

(107)
Fliessbach would replace Eq. (102) by

8k dI'=2
4 &o(R) &—g(R}—g(R) d—&o(R}2p 4v

Sk
4% PgD

a - a~~ &(red}
P r@D rgD S D~4&&

V —V

d
~(R)—G(R) —G(R)—~(R)dR dR

(102)

g(R} =
JI dr n '~ (R, r)G(r}.

Equation (108) is an approximation to

Skr=, d (r) (
'r'()(, r)—G()()2u 4v

(109)

where 'Ll(r)/r is the regular solution of the Hill-
Wheeler equation Eq. (98) and G(R) is defined by

G(R) = c„y,(R) —c„y,(R) . (103)

4,(r) y, (r')
(104}

Thus we find

%=I —A, = QA), (105)

where A& is the projection operator onto the jth
square well eigenstate.

This expression for the decay width is identical to
Eq. (92) except that 'll is a solution of Eq. (98) in-
stead of Eq. (84).

Following Fliessbach we seek to replace the
function tt/rv 4v by 0 defined by Eq. (49a). For
our model the operator N defined by Eq. (49c) is
given by

5(r, —r) p, (r, ) 5(r2-r') y, (r,}
r 47r r, l/4w ~ r"4s r, ~41r

—G(R}—n ' (R, r)dR

(110)
Equation (110) results from using Eq. (106) to
eliminate M from Eq. (102}.

Strictly speaking n ' ' does not exist since n' 2

=n is a projection operator. One must agree to
restrict 'Lt, and co by a supplementary condition re-
quiring them to be orthogonal to f,. In that case
n becomes the identity operator and co becomes
identical without, . What has been gained by this ex-
ercise is the appearance of a supplementary con-
dition to be used in conjunction with the Hill-
Wheeler equation. This supplementary condition
selects a particular solution%, from among the
family of redundant solutions of the Hill-Wheeler
equation. Approximating this solution by a solu-
tion to a two-body Schrodinger equation that ful-
fills the supplementary condition will no longer be
inconsistent with the assumptions used to derive
Eq. (48).

The author is grateful to T. Fliessbach for help-
ful correspondence on the subject matter of this
paper.
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