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S-matrix perturbation theory accurate to aQ orders in the strong interaction poten-
tial is developed. The method presented is applied to the derivation of two important
relations: (a) The complex level shift in a hadronic atom is expressed in terms of the
logarithmic derivative of the regular wave function at the nuc1ear boundary; and (b) the
complex level shift is related in a model independent way to the zero-energy hadron-nu-
cleus scattering phase shift. It is shown that these two relations provide practical means
for a fast and accurate evaluation of the complex leve1 shifts and generalized scattering
lengths.

NUCLEAR REACTIONS S-matrix theory, hadronic atom complex level shift cal-
culated and correlated with zero-energy phase shift.

I. INTRODUCTION

The purpose of this paper is twofold; (i) we

present a very simple method for calculating the
level shifts e and level broadening I' in a hadronic
atom, and (ii) we correlate the complex level shift
with the zero-energy scattering phase shift in a
model independent way (for a review of the experi-
mental situation cf. Ref. l). lt is well known that
in most cases conventional perturbation theory is
inadequate for a hadronic atom problem and the
calculated e and I' may disagree by a factor of 2
to 3 with the correct values, not to mention that
e may have the wrong sign. The hadron-nucleus
strong interaction, which may be conveniently
represented in a form of an equivalent complex
potential, appreciably distorts the hadronic wave
function only in a small distance of the order of
the nuclear radius, but this very region turns out
to be most important in the calculation of e and
I", so that perturbation theory fails badly. Qn the
other hand, since the range of the distorting po-
tential is small in comparison with the spread of
the Coulomb wave function, ~ and I' are both much
sma11er than the Coulomb binding energy. Although
this fact calls for an approximation scheme, owing
to the long tail of the Coulomb potential and the
presence of absorption in the strong interaction
potential, all the approximate procedures known
to us have appeared rather impractical, i.e. , not
easier than a direct method of solving the complex
eigenvalue problem for the appropriate wave equa-
tion.

The idea nf relating the hadronic atoms complex
level shifts with the hadron-nucleus zero-energy
scattering phase shifts has attracted many au-
thors. ' ' Indeed, both the level shifts and the

phase shifts are correlated through the hadron-
nucleus potential and either of these may be cal-
culated once the potential is given. This procedure
defines the desired functional dependence, but in
practice, the derivation of the equivalent poten-
tial is the most difficult part of the theory of had-
ron-nucleus interaction. Another important ques-
tion is whether the above-mentioned relationship
could be formulated in a model independent way,
i.e. , so as to be insensitive to the form and the
strength of the potential.

As emphasized in Ref. 8, this relation provides
the unique opportunity of deducing the zero-energy
phase shifts directly from the experimentally mea-
sured hadronic atom level shifts. For l ~ 1 this
information is hardly accessible from the low

energy scattering data, since for k-0 the s wave
dominates the cross section. Another advantageous
feature of the above-mentioned correlation is the
theoretical possibility of describing the observed
level shifts in terms of multiple scattering theory,
without ever introducing the equivalent hadron-
nucleus potential.

To realize the above program, however, one
must make sure that the theory is adequate for
very strong potentials which preclude perturbative
treatment. Furthermore, the nonhermicity of
the Hamiltonian and the presence of the long-range
Coulomb potential introduce additional nontrivial
complications. It will be shown below that the
powerful S-matrix method provides an effective
tool to cope with this situation.

In Sec. II we develop an S-matrix perturbation
theory, somewhat similar to the methods applied
about ten years ago to evaluate the SU(3) symmetry
breaking effects. The binding energy is then
sought as the pole of the S matrix. The binding-
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We shall consider individually each quasibound
state of a hadronic atom characterized by the
quantum numbers (n, I). The strong interaction
gives rise to the shift of the total (relativistic)
energy. We shall denote this shift by OE and de-
fine it as the difference

E= k -E, = —c —i-,'F,
where E and E, are the eigenvalues of the relativ-
istic Hamiltonian with and without the strong in-
teraction, respectively. Owing to the absorptive
nature of the strong interaction, 5E is complex
and the imaginary part is related to the width I'
of the level in the usual way; the real parameter
e represents the shift of the binding energy.

We assume that the hadron- nucleus strong interac-
tion potential V(r) has the following properties:
(a) V(r) is less singular at the origin than r '; (b)
V(r) = 0 for r ~ R, where the range R is much
smaller than the classical Coulomb radius; (c)
V(r) is regarded as a scalar in Minkowski space;
(d) otherwise V(r} may be a general nonlocal op-
erator. ' With these assumptions the relevant
Klein-Gordon equation may be written in the form

g" (k, r)+ [k' —2EaZ/r —A(h. + 1)/r' —2pV(r)Jg(k, r)
=0, (1)

where E = (k'+ p.')'~', p is the hadron-nucleus
reduced mass, (-a) is the fine structure constant,
and a=[(l+ —,')'-a' Z']' ' ——,'. Let y(k, r) and f(k, r)
be the regular and irregular solutions of Eq. (1),
respectively, with their usual boundary conditions"

li [ m~r-'y(k, )J =r1,r~o (2a)

lim[exp [ fkr+ f(aZE/k-) ln(2kr)Jf(k, r)j= 1.
p~ oo

(2b)

We denote by yc (k, r) and fc(k, r) the purely Cou-
lomb wave functions. They become the solutions
of Eq. (1}if V(r) is switched off and they obey
the boundary conditions (2). The Jost function is
defined as the Wronskian"

F(k) = 6'[f(k, r ), y (k, r )J

(3)or

energy shift and the zero-energy phase shift are
expressed in terms of the logarithmic derivative
of the regular wave function at the nuclear boun-
dary. In Sec. III we derive the relation between
the complex level shift and the zero-energy phase
shift. This relation turns out to be model inde-
pendent and practically holds for arbitrarily strong
interactions. In Sec. IV we present our conclu-
sions.

II. CALCULATION OF THE COMPLEX LEVEL SHIFT

because for r ~ R one has f(k, r) = f (k, r) S.ince
the binding energy corresponds to a zero of the
Jost function, we are looking for the solution of
the equation F(k) = 0. Introducing a new function
H(k)= F—(k-)/[f (k, R) 4i(k, R)], this equation in
view of (3) can be written as

H(k)= y'(k,-R)/&(k R) fc'(k R}/fc(k R) 0 (4)

We are going to solve Eq. (4) by the familiar New-
ton-Raphson iterative procedure. This method
refines the initial value of the root a by setting
k = x+6k and expanding H(k) in a Taylor series
around ~

H(k) = H(z)+ okH(x)+ ~

where the dot denotes differentiation with respect
to k'. Neglecting higher order terms, one has

6k = —H(x)/H(g) . (5)

The value v+ 6k may be next used as a new initial
value and the whole procedure is repeated until
desired accuracy is attained. This form of the
Newton-Raphson method guarantees quadratic con-
vergence. "

In order to bring formula (5) to a more tractable
form we have to evaluate H(n) Using th. e defini-
tion (4), one finds

H(K) = [4i(K, R)J iV[$7(K,R), $7(K, R)]

-[fc(x,R)] 'fV[ fc(x, R), fc(x R)j (8)

We can get rid of the dotted quantities by making
use of the wave equation. Differentiating (1) with
respect to k' one obtains the following equation for
y(k, r):
j"(n, r)+ [k'-2EaZ/r —a(X+ 1)/r' -2p V(r)j j(k, r)

= —2k(1 -aZ/Er)y (k, r) . (7)

Multiplying Eqs. (1) and (7) by 4i(k, r) and 4i(k, r),
respectively, and subtracting, one has

d—iV[y(k, r), 4) (k, r)j = —2k(1 -a Z/rgb(k, r)j',
(8a)

and similarly

k'[f (k, r), f (k, r)]=-2k(l-aZ/rE)[f (k, r)J'.
(8b)

The Wronskians iV[y, &pj and W[f ,f J are now'
readily obtained by integrating (8a) and (8b) in the
limits (0, R) and (R, ~), respectively. Inserting
the resulting expressions into (8), the formula
for H(x) takes the form
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R

H(»)= -2» (1 nZ/rE)[fp(», r)/(p(», R)J' dr
0

J (1 —aZfrk)[f (,r)ff ( ZB)) Z'I.

(9)

Since the range 8 is small according to our as-
sumptions, the dominant contribution comes from
the second integral; thus to a good approximation
we have"

H(») = -2» [f (», r)/f (», R)J'dr.
0

Inserting the above expression into (5) we obtain
our final formula for 5k

Ok = Wl fc(» R) 2 fp(»ZR)]fc(»)R

2 2(, )2) J (f'(», )I* 2
0

(10)

This equation establishes our iterative scheme.
It is obvious that the number of iterations re-

quired to achieve the desired accuracy depends
crucially on how well we have chosen the initial
guess, i.e., how far we start from the true so-
lution. As we have already mentioned, we know
from experiment that the energy shifts are smaller
by several orders of magnitude than the Coulomb
binding energies. This indicates that if we were to
take the Coulomb energy as the initial value very
little refinement would actually be needed and the
first iteration should provide sufficient accuracy.
Indeed, owing to the quadratic convergence, the
relative error incurred is of the order of (6k/»)'
(which is typically 10 ' or less), so that the sec-
ond iteration is hardly necessary. "

Then let F (k) be the Coulomb Jost function and
k, the root of the equations (k) = 0, i.e.

k = i[n(Zp[(Z+ 1)'+ n' Z'] ' '

For k = k, the function f (ko, r) is proportional"
to the regular Coulomb solution fpc(k„r), and the
first order formula (10) for the energy shift simp-
lifies to the form

1 fp '(k„R) (pc' (k„R)
2E, p(kf„R) fpc (k„R) J

"-fpc(k r)'
(pc (ko, R),

where E, = (k,'+ g2)' '. In order to relate (11}to
the conventional perturbation formula, let us no-
tice that the Wronskian in formula (10) can be writ-
ten'0 as

&lf'(k, R), q (k, R)l

=(r (k) ~ J fz(k, )Zkr( )r(k, r)a, (12)
0

Remembering that Ec (k, ) =. 0 and inserting (12)
into (10), one finds

1 2pc(ko, R) J, fpc(k„, r)2t(, V(r) fp(k„, r)dr
[y (k r)]'dr

(13)

Expressions (11)and (13) are equivalent; thus, if
one uses the wave Eq. (1) in the integral that en-
ters the numerator of (13}, one gets back formula
(11). Approximating fp(k„r) by fpc(k„r) in Eq.
(13), we recover the conventional (first order in
V) perturbation formula. However, this would be
a poor approximation unless the potential V(r)
were sufficiently weak.

In the hadronic atoms one is interested in the
so-called circular orbits for which n= l+ 1. For
this case formula (11)yields the following expres-
sion for the total energy shift:

exp(2ik, R) ( —2ik, R)'""
2E,R' r(2~+ 3)

x R „" —(~+1)-ik.R (14)
fp'(k„R }
9) ko, R

Our final formulas (11) and (14) have two rather
advantageous features: (i) they are valid to all
orders in the perturbing potential V(r), and (ii)
the shift oE is expressed only in terms of the log-
arithmic derivative of the regular wave function
at the nuclear boundary. These two features allow
for a fast and accurate evaluation of the shift.

The accuracy of formula (14) has been tested
for a model kaonic atom calculation where V(r)
is of a Woods-Saxon shape"

V(r) = V, [I + exp [(r —c)/a]] ', (15)

with a = t/(4ln3), where t and c are the usual den-
sity parameters and where the complex depth Vp

is given by

V, = (a/2t(, ) (1+m»/m„) (3A/c')[1+ (va/c)'] '.
(16)

Here m~ and m„are the kaon and the nucleon
masses, respectively, A is the mass number, and
the complex parameter a is the measure of the
strength of the potential.

To provide a numerical illustration we have com-
pared three methods of calculation of 6E: (i) con-
ventional perturbation theory, (ii) the S-matrix
approach developed in this work, and (iii) the
method of solving numerically the complex eigen-
value problem for the Klein-Gordon equation. In
Table I we present the results of the computations
performed for the E -"Satom, for several levels
and for various values of the strength parameter
a [the corresponding depth (16) is rather big, V, is
of the order of 100 MeV]. As seen from Table I
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TABLE I. The values of c and I for theK - S atom in a model calculation. The perturbing potential was of Woods-
Saxon shape (15) with density parameters c=2.93 fm, t =2.45 fm, the same as used in Ref. 14. The exact values have

been obtained (Ref. 14) by a numerica1 solution of the complex eigenvalue problem for the Klein-Gordon equation [we
have verified those entries with our code (Ref. 15) and corrected some typographical errors of Ref. 14] . The pertur-
bation theory values have been obtained from the conventional first order perturbation formu1a with relativistic Cou-
lomb wave functions. In Ref. 14 nonrelativistic perturbation theory was used and therefore slightly different values
were obtained. The S-matrix theory values have been obtained from formula (14) with R =30 fm.

Level a (fm)

e (keg)
Perturbation S matrix

j r (keV}
Perturbation S matrix Exact

3d -0.6-i 0.8
0 -i 0.8

+0.6-i 0.8

+0.972
0

-0.972

-0.357
-0.478
-0.721

-0.355
-0.477
-0.721

1295
1295
1295

1.011
0.674
0.439

1.012
0.674
0.440

4f

5g

-0.6- i 0,8
0 -i 0.8

+0.6- i 0.8
-0.6- i 0.8

0 -i 0.8
+0.6-i 0.8

+1.125x 10 3

0
-1.125x 10 3

+0.706x 10 6

0
-0.706x 10 ~

+0.389x 10 +0.389x 10
-0.343x 10 -0.343x 10
-1.084x10 3 -1.084x 10 3

+0.582 x 10 +0.594x 10
-0.087x 10 -0.081x 10
-0.713x 10 6 -0.707x 10 6

1.450x10 3

1.450x10 3

1.450x 10

0.942x 10
0.942x 10
0.942x 10

1.798x 10 3

1293x10 3

1.016x 10 3

1.071x10 6

0.914x 10
0.822x 10

1.798x10 3

1.293x10 3

1.016x 10 3

1.071x 10 6

0.914x10 6

0.822 x 10 ~

the 8-matrix method is sufficiently accurate to be
used in all realistic calculations of the hadronic
atom level shifts. It should also be added that
since formula (14) involves no iterative scheme
this method of computation is extremely fast.

III. RELATION BETWEEN THE COMPLEX LEVEL SHIFT
AND THE ZERO ENERGY PHASE SHIFT

Many years ago Deser eI, al. ' derived a simple
linear relation between the s-wave scattering
length and the energy shift for the 1s level of a
pionic atom. Their relation, accurate to all orders
in the strong interaction and obtained under fairly
general assumptions, was essentially a direct con-
sequence of the fact that the strong interaction is
of a short range relative to the atomic scale.
Since the work of Deser et aL. several papers have
appeared' ' trying to generalize their formula and
through a more quantitative treatment to find cor-
rection terms that would make the formula more
accurate. All these analyses, however, are not
satisfactory because the authors, more or less
explicitly, make the rather unrealistic assumption
that the hadron-nucleus potential is weak (e.g. ,
the assumptions that both the hadron-nucleus scat-
tering length and the range of the potential are
much smaller than the corresponding Bohr radius
puts an upper limit on the potential strength}. Con-
sequently, it was not at all clear whether the de-
rived relationship would still hold for arbitrarily
strong potentials. Furthermore, since in general
neither the scattering length nor the energy shift
could be calculated perturbatively, it was far
from obvious whether these two quantities could
be connected by a formula whose validity rested
heavily upon perturbative arguments. To prove

that this is indeed the case a nonperturbative cal-
culational scheme for 5E is necessary. Having
developed such scheme in the preceding section
we shall now derive the relation between the level
shift 5E and the complex hadron-nucleus scat-
tering length.

The familiar expression for the effective range
expansion in the presence of the Coulomb field
takes the following form':

}
k"" [C,'(q) cato, + 2@k(q)J

1 1= ——+ -R k'+ O(k4) (17)
A l

where 0, is the lth partial wave phase shift, A, is
the generalized scattering length of the dimension
(length} ' ", R, is the effective range of the di-
mension (length)' ". The other quantities in form-
ula (17) are defined as follows:

q =aZp/k,

k(q) = Re g(fq) —ln(~o. J &p/k),

C,'(q) = 2vg/(e""-1),

where g(x} is the logarithmic derivative of the
I' function. The phase shift 5, , and subsequently
the parameter A, defined by formula (17), is ob-
tained by matching at r = A the logarithmic deriv-
ative of the regular wave function cp(k, r) with the
logarithmic derivative of the appropriate linear
combination of the regular and irregular wave
functions. The final expression for A, can be
written as'



734 A. DEL OF F 13

(p'(0, R) qc'(0, R)
y(O, R) V (0 R) '

P (o, R) =
2

i+i I2u«R I

' '1 (2l + 2)
2p.Q Z

&&g„, , (2 I2po. ZR I'~'),

(19a)

(19b)

(O, A)J'y(R)l. l+ e(R)% (O, R) y(A)J ', (18)

where

As seen from (22}, the dependence on the potential
V(r) that enters (18) through the logarithmic de-
rivative (19a), has been eliminated in (22) in favor
of 6E T.hus, formula (22) constitutes the most
general relationship between the shift 5E and the
scattering length A, that may be formulated in a
model independent way. The approximate equality
(20}, so crucial for the derivation of (21), holds

(A/2r„)«1, (24)

where

1+ 6E[ge(R)/(p (c,0A)
(21)

( = 2E, [pc (0, A )/yc (k„A )J' [yc (k„r)J' dr .
0

Neglecting 6E in the denominator of (21) and set-
ting y"'(O, R)= q (k„R), an extremely simple re-
lation follows:

A, = 6E 2E, [y'(k„, r}J'dr . (22)

For circular orbits, introducing the binding energy
B = E —p, , the Bohr radius r, = (In IZp, )

' and the
Coulomb energy B„=k,'/2g, formula (22) takes
a more familiar form

6(R)= —v I2ynZRI' ' Y„„(2I2p.uZRI' '}
I'(21 +2)

(19c}

and J„„and Y»„are Bessel functions of the first
and second kind, respectively.

Thus far no approximation has been made in the
derivation of formula (18). The dependence on
the interaction V(r) enters, as in the preceding
section, through the difference of the logarithmic
derivatives (19a). This time, however, this dif-
ference is taken at zero momentum, rather than
at k = k, as in formula (11). On the other hand,
for values of R such that 2p, IV,» (R) I» Ik,'I and

Ik,'I »2p IV(R) I
these quantities will not differ

much from each other, i.e. ,

(p'(k„R) yc' (k„R)
(p(k„R} yc (k„R)

P ( ) P ( ) O(k 2) (20)
I

q(o, R) y'(O, A)

Eliminating the above difference of logarithmic
derivatives betweenEqs. (11) and (18) one arrives
at the desired relation between oE and A, :

that is, if the range of the hadron-nucleus potential
is much smaller than the classical radius, r„= (l
+ 1)/Ik, I. This condition seems to be quite well
fulfilled in all practical applications. The deri-
vation of formula (23) implies a number of corol-
laries:
(1) Formula (23) is valid to all orders in the per-
turbing potential. Even though, for strong poten-
tials, bothA, and 5E are nonlinear functions of
the potential strength, they are still correlated by
a linear relationship. "
(2) Formula (23) is model independent; notice that
even the dependence on the matching radius does
not appear.
(3) Finite size of the nuclear charge distribution
and vacuum polarization effects can be completely
disregarded. They can always be calculated per-
turbatively and enter as additive corrections to
the binding energy. Since 5E is a difference of
two binding energies these corrections will even-
tually cancel out and need not be considered. "
(4) The scattering length A, , is defined in the pres-
ence of the Coulomb field.
(5) A, need not necessarily be less than r„"'';
actually, formula (23}still holds even if IA, I

&

r B
"' provided I is large enough so that

I6B/B, I
«1.

The accuracy of formula (23) has been tested on
a model calculation for the kaonic atom case con-
sidered in the preceding section. We used the
same Wood-Saxon potential (15) and compared the
scattering length calculated from the exact formula
(18) with the approximate values obtained by means
of formula (23); the results of the computations
are presented in Table II. As seen from this table
the error, being always less than 4, is getting
smaller for higher orbital momenta, because then
the ratio (R/r„) decreases in accordance with the
requirement (24). Notice that since rB=3.5 fm,
for l = 4 one has IA, I&r~"''; nevertheless, the
accuracy of formula (23) is better than 1%.

oB 1 2&+2

B, (2l + 1)! l + 1 r'"' (23) IV. CONCLUSIONS

which is nothing but the well-known relationship
obtained by many authors for weak potentials. ' '

In the nonperturbative, i-matrix approach de-
veloped in this paper we have derived two impor-
tant relations. The first one expresses the com-
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TABLE II. The scattering length A, in {fm) ' for E —2S scattering in a model calcula-
tion. The scattering lengths A~ have been calculated for the Woods-Saxon potential {15)with
c =2.93 fm, t =2.45 fm. The exact values have been obtained from formula (18) for R =30 fm,
the corresponding S-matrix values have been calculated from the approximate relation {23).

State a (fm)
ReA) {fm)2'+~

Exact S matrix
ImA& (fm)2 +

Exact S matrix

l =2

l =3

-0.6 —i 0.8
0 -i 0.8

+0.6 -i 0.8
-0.6 —i 0.8

0 -i 0.8
+0.6-i 0.8
-0.6 —i 0.8

0 -i 0.8
0.6-i 0.8

0.6804 x 103
0.8753x 103
0.1294x 104

-0.1421x 10~

0.1300x 10~

0.4056x 10'

-0.1118x 107
0.1695x 10~
0.1364x 10~

0.6621x 103

0.8861x 10
0.1338x 104

-0.1473x 10'
0.1300x 105

0.4102x 105

-0.1129x 107

0.1680x 106
0.1372x 107

-0.1780x 104

-0.1197x104

-0.7753 x 103

-0.6737x 105
-0.4828 x 105
-0.3783x 105

-0.2048 x 107
-0.1746x 10'
-0.1569x 10'

-0.1875x 104
-0,1249x 104

-0.8151x 103

-0.6802 x 1Q5

-0.4889x 105
-0.3843x 105

-0.2060 x 10'
-0.1758x 10'
-0.1581x 107

plex energy shift in a hadronic atom in terms of
the logarithmic derivative of the regular wave
function at the nuclear boundary. The obtained
formula allows for a fast and accurate evaluation
of the complex level shift once the equivalent nu-

clear potential is given. The second relation cor-
relates the complex level shift with the zero-energy
scattering phase shift. The relation obtained is
model independent, that is, it does not depend on
the form of the potential, nor on its range, as
long as the latter is small in comparison with the
classical Coulomb radius. Thus, the low energy

data. , viz. , the hadronic atoms binding energies, and

the corresponding zero-energy cross sections
have been correlated by means of a simple linear
formula. On the theoretical side, this means that
multiple scattering theory may be used to explain
the observed hadronic atom level shifts; there is
no necessity to invoke the notion of the equivalent
nuclear potential.
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r)drdr' should be added. In either case these
extra terms are small and can be neglected.
Of course we have tacitly assumed that the potential. is
adequate to explain the experimental shifts, whereas
for a quite arbitrary potential the first order correction
BA does not necessarily need to be small. Such a situa-
tion may, for instance, occur if one wants to adjust
certain parameters of the potential to fit the data.
Nevertheless, the method is still very efficient even if
more than one iteration has to be performed.
R. Seki, Phys. Rev. C 5, 1196 (1972).

5A. Deloff and J. Law, Phys. Rev. C 10, 1688 (1974).
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Strictly speaking, the relation between 6E and A, is
nonlinear, for solving eq. (21) for 6E one ends up with
formula (23) multiplied on the right-hand side by the
factor [1+A& ~(R)/y (O,R)] . In realistic situations
this factor is close to one, but has to be included if the

potential is strong enough to yield binding. If this is
the case, A& jumps from-~ to+~ when the depth of the
potential increases and reaches sufficient strength to
produce a zero-energy bound state. However, due to
the extra factor 6E remains finite, as it should.


