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Cross sections for three-body photodisintegration of He are calculated in the electric
dipole approximation. The calculation is performed within the context of exact three-body
theory with the two-nucleon interactions represented by s-wave spin-dependent separable
potentials fitted to low-energy nucleon-nucleon scattering data. The photodisintegration am-
plitude is expressed in terms of the fully off-shell nucleon-plus-correlated-pair amplitudes,
a method applicable to any weak-process disintegration amplitude. The numerical results
indicate: (1) The 3He(y, n)2p total cross section has a peak value of approximately 1 mb.
(2) The neutron spectra for He(y, n)2P and the proton spectra for He(y, P) nP peak sharply
in the region of the strong P-P final-state interaction.

NUCLEAR REACTIONS Photodisintegration of ~He; exact three-body calculation;
separable potentials; neutron and proton spectra.

I. INTRODUCTION

The trinucleon system provides an excellent
test of our understanding of nuclear physics be-
yond the simple two-body problem. This three-
body problem is sufficiently complex that it tests
the details of the underlying two-nucleon input.
Yet, the calculations are in principle exact, so
that one is not forced to approximate the solution
prematurely. The photodisintegration of 'H and
'He is especially useful in realistic trinucleon
studies since the ground state is reasonably well
understood, the interaction operator is known,
and the resulting continuum is dominated by a sin-
gle partial wave (/ =1}. We have previously con-
sidered the two-body photodisintegration reaction
leading to the d-N final state. ' Here we report
our formulation of the three-body photodisintegra-
tion reaction and compare numerical results with
the available data. ' '

The previous calculation of this type was done

by Barbour and Phillips. ' They showed that the
rescattering effects in a correct treatment of the
final state were all important in understanding the
physics involved. The T =

& three-body channel
was strongly suppressed —most of that isospin
strength appearing instead in the two-body chan-
nel. The T = —,

' three-body channel (there is no
T =-,' two-body channel} showed large rescattering
effects as the cross section peak was moved from
the 20-25 MeV photon energy region to below 15
MeV. Although the shape of the spectrum was

found to be in reasonable agreement with the
data,"the magnitude of the cross section exceed-
ed the data in the region of the peak by some 20/o.
Recently, Fabre and Levinger have published a
calculation of the T =

& component of the cross
section using the lowest hyperspherical harmonic. '
Their calculation does not show the strong en-
hancement of the cross section below photon ener-
gies of 20 MeV that was present in the results of
Ref. 6. In addition to the data of Refs. 2 and 3 con-
sidered by Barbour and Phillips, there now exist
the data of Herman, Fultz, and Yergin' and the re-
cently completed analysis of Gorbunov. ' These
new data tend to confirm that the normalization of
the calculation reported in Ref. 6 is somewhat
high.

In this investigation, we have reformulated the
theory so that the photodisintegration amplitude is
given by an integral involving the N-d and N-@
off-shell scattering amplitudes. It is these off-
shell scattering amplitudes, instead of the photo-
disintegration amplitudes, that are determined by
a set of coupled integral equations. In addition to
permitting us to calculate separately the two-body
and three-body photodisintegration amplitudes,
this formulation of the problem provides a natural
extension to other similar reactions such as elec-
trodisintegration, pion absorption, etc.

We carry out this investigation using the mathe-
matically simplifying separable potential repre-
sentation of the N-N interaction, as did Barbour
and Phillips. The parameters of the s-wave spin-
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dependent rank-one potentials are determined from
the N-N singlet and triplet effective-range para-
meters. Unlike Barbour and Phillips, we use
these potentials to determine the initial as well as
the final state. We would prefer to compare with
the 3H reaction, where there are no Coulomb
problems; however, because the available data are
for the 'He reaction, we restrict our numerical
consideration to that nucleus. As in Ref. 6, we
neglect the pure Coulomb p-P interaction in the
final state; however, we do remark on inclusion
of the Coulomb effect in the strong interaction.

Our three-body formalism is described in detail
in Sec. II. We apply it to the 'He photodisintegra-
tion reaction in Sec. III. The numerical results
and comparison with the data are presented in
Sec. IV. Section V summarizes our conclusions.

II. FORMALISM FOR THREE-BODY BREAKUP

pressed in terms of the particle masses, desig-
nated M, as

M~(My+ M„)
M +M~+M, ' (6)

(7)

with &4P 4y 4n and each index permitted to have
the values 1 to 3.

In this paper, we are concerned with three-body
disintegration amplitudes

&3(o" p k) =(@~un'yr, lH'l@a& (8)

where the superscript(-) denotes the outgoing state
which asymptotically corresponds to an incoming
wave. The three-body scattering state is a solu-
tion of

l e.-„-,-„&
= [1—G(E&:„- n) v] l4'..;;&

In parallel to our presentation of the two-body
breakup formalism in Sec. II of Ref. 1, we develop
in this section the corresponding theory for three-
body breakup of a three-body nucleus. The inter-
action which is responsible for the disintegration
process is assumed to be such that it can be treat-
ed per turbatively.

Consider the three-body total Hamiltonian

with g&0,

H, l
4'.„,-„-& =E."„';;lO'.„I&,

and the resolvent operator is defined as

G(z) =(H —z) '.
We define the operator

0,"(z}=Q,(z+it7) =1 —VG(z+iq)

(10)

(12)

where

H=HO+ V (2)

and write the three-body disintegration amplitude
as

A, (o., n, p, k) =(C'„g
l
fl,"(z)H'

l Cs& .

Ve V~y s

The H' represents that part of the interaction
which is to be treated perturbatively, H, is the
kinetic-energy operator, and V„. is the nuclear-
interaction operator for particles i and j. Speci-
fically, H is assumed to have a spectrum includ-
ing at least a three-body bound state and a scat-
tering state of three unbound particles, but it
could also have a scattering state of a particle
plus bound pair provided one of the nuclear poten-
tials can support a two-body bound state. For the
two former states, respectively, we have

H
l
4'z& = —Ez l

4'z&, Ez & 0, (4)
2 p 2

Hl+, „;;&=E"„'l4„g&, E'„"= + " (5)
2pl I 2pg~

where p is the relative momentum of particle n
with respect to the center of mass of particles P
and y, k~„ is the relative momentum of particles
P and y, the reduced masses I and p, ~„are ex-

n& &(z) =1-g T,(z)G, (z)n& |(z)
/=1
3

= 1-Q G, '(z)X,z(z) Tz(z)G, (z),

(14)

(15)

where Tz(z} is the two-body T operator defined as

Ta(z)Gq(z} = VzGz(z},

G,(z) =(H, —z) ',
Gz(z} =(H, + Vz-z} ',

the operator 0"(z}satisfies

(16)

(17)

(18)

0"(z)= 1-Q(l —6 JTz(z)G, (z)Gz" (z) (19)

The crux of our development lies in the fact that
fl,"(z}can be expressed in terms of the transition
operator Xo (z) which connects a particle-plus-
correlated-pair state with a state of three uncor-
related particles. This can be demonstrated by
formal operator manipulations or by the iterative
method used in Ref. 1. Specifically, we derive
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X z(z) =G,(z)(1 —5,z}-QX,„(z)T„(z)(1—5„JG,(z)

Xoz(z) =Go(z) —Go(z)g T„(z)X„z(z). (20) or
(21)

The three-particle dynamics of the continuum
state now reside in the transition operators,
X„(((z) which connect particle-plus-correlated-pair
states and are solutions of the operator equations

X„z(z) =Go(z}(1—5 z)- Go(z)Q (1 —5 „)T„(z)X„(((z).

(22)

The three-body disintegration amplitude is then
written as the sum of three terms:

3 3

~s(»n»k&=&4". yf IH'Iq's&-Q&cn. ,al z(z)GO(z}H'Iq'z&+ Q &4"..pl T,(z}X,z(z)T8(z)Go(z)H'l@s)
B=x

(23)

with z =E(3„'+i@. The three terms in Eq. (22) are
designated the plane-wave Born term, first-re-
scattering term, and the term which sums all re-
scatterings beyond the first, respectively. '

In Ref. 1 the usefulness of expressing the two-
body disintegration amplitude in terms of the par-
ticle-plus- correlated-pair amplitude was made
apparent. The final-state three-particle dynamics
are separated from the disintegration of the ground
state due to H'. As can be seen from Eq. (23) and
from our application of Eq. (23) to three-body
photodisintegration of 'He in Sec. GI, this is also
the case for three-body disintegration processes.
Once the particle-plus-correlated-pair amplitudes
are generated from given phenomenological two-
particle interactions, two- or three-body disinte-
gration processes reduce to calculating the effect
of H' on

I
4's) and folding the result with either a

plane-wave state or a particle-plus-correlated-
pair state. As mentioned in the Introduction, the
point is that, for a given set of two-particle inter-
actions and a specified three-particle excitation
energy, the three-particle continuum amplitudes
need be calculated only once to compute the ampli-
tudes for several different disintegration mecha-
nisms.

I

The lower-case letters s and t denote singlet and
triplet spin, respectively, for the interacting nu-
cleon pair, while the upper-case letter S (I) repre-
sents the total spin (isospin) of the three-nucleon
system obtained by coupling the spin (isospin} of
the noninteracting particle a to the spin (isospin}
of the interacting pair Py. The strength of the
interaction is given by X„and the form factors

I g „) determine its range.
Prior to specifying the form of 0' for this prob-

lem, a considerable amount of algebra can be
carried through for Eq. (23) solely on the basis of
the interaction defined by Eq. (24) and the assump-
tion of identical nucleons each with mass M. The
plane-wave Born term in Eq. (23) does not require
knowledge of T (z), so we ignore it for the mo-
ment and consider the first-rescattering term and
then the term which sums all rescatterings beyond
the first.

The first-rescattering term is rewritten by first
inserting Tz(z):

&C( „--
I
T (z )G (z)H'

I
4' )

= -Q &O',;.-Igz.&rz.(z)&gz. IG.(z)H'
I
q.) (25)

III. APPLICATION OF FORMALISM TO THREE-BODY
PHOTODISINTEGRATION OF He

Vfe now apply our formalism of the previous
section to three-body photodisintegration of 'He
assuming separable nuclear interactions. The
two-nucleon transition operator in the three-par-
ticle Hilbert space is taken to be attractive, s-
wave, spin-dependent, but charge-independent:

T.(z) =-pig..)r..(z)&g..I(15f&&» I)... (24)

where

..(*)= '" (- '" (r..(lc.(*)(lr..)) '. (»)Rfl 2 p 2 p
cctl 0

&O'.„;-„IT,(z&G, (z)H
I
e,&

t gr

kBP1 gB 7 B
%=8

x&gz PzlG, (z)H'lqs), (27)

where &P k
I

= &Pzk((l =&PP„I has been used and
the total spin-isospin projection has been sup-
pressed. The unsymmetrized first-rescattering
term is obtained from Eq. (27) by multiplying with
(-1}and summing over P. The symmetrized form
of the first-rescattering term is generated by sum-
ming over a and dividing by ~. This procedure
yields, after some manipulation,
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1/2
)&:(» id=(k p&x,i.(IG,(*)x lze) (29)

t 3 2

=QQ&k nlg &r z — 8'„(z,p ), (26)
m=s eU

w'here 7. =-7, since the subscript a would now
be redundant and

B„(z,pi& is the off-shell Born amplitude.
The third term in Eq. (23) is handled in a simi-

lar manner. Firstly, we insert the explicit form
of the two-body transition operators. This step
yields

&c'..;ilr, (z)x„,(z)r,(z)G.(z)H'I+z& =gg &@';klg, &, (z)&g, Ix„,(z) lgz. &&i. (z)&gi IG.(z)ff' l~s&
mw m'=s

(30)

t t 2 3P'
(k'.„;;(T,(z)X,»( )1'z(*)G,(*)X' lk ) =pg (k,"IX,.&;. — ' fk*kz&XZIX„, (z,) IX»„.iz& z, . *-

m' =s

x &g()m pi I
G(&(z+ I @z&» (31)

where, again, the total spin-isospin projection has been suppressed and use made of the fact that &pP, I

=&pg„l. Secondly, the contribution of this term to the unsymmetrized amplitude is obtained by summing
Eq. (31) over P and y. Finally, the symmetrized contribution follows from the latter result by summing
over e and dividing by ~. After some algebra, we derive

1 /2 3 3 3

4 -„T~z X„Bz TB z Go z H' 4~
eA BM p=l

t t 3P ' 3pI2=QQQ(k, zlg, „)» *— ' f» k &i (X ,( )l.i &z. *— ') ' (z i'), (kk)
m=s m'= s

where

3 3

&5lx„(z) I
p'& =3g g &g p IX, (z) Ig(, p'&.

a=1 B=l

(33)

The full symmetrized three-body disintegration amplitude is obtained from Eq. (22) by summing over a
and dividing by v 3. This procedure leads to

Z»",(,i,k)=(- QA, (z, , i, k)
e= 1

(34)

or

3P
M,"(z,p, k)=C,"(p, k)+ gP (k nlg~ &r z — ~ 8'(z, p~)

m~ a=1

t t 3 2 3pl2
z Qgg $. lx..) .*- z~ fz'k'(i lx..( )li'&z. —

»M )&: (,i') (35)
a= 1 m=s m'=s

with

+ +i@, —c",(p, k) = — g &c',-;Ia'Ie, &,
e=l

(36)

where use has been made of Eqs. (29) and (33). The fully-off-shell three-particle scattering amplitude
under the integral in Eq. (35) satisifies the integral equation

t tl2

(i(x„„.(&(i&=&ilz„„.()li)+ Ef z k &ilx..( &li & .*-,I &i" Ix.. ( &Ii'&.
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He
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~+ ZZ
P=l m=s

He

Total
iso spin
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2 ands S 23 E23

Spin-isospin
function

TABLE I. Amplitude projections.
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N
m
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3
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0 0
1 0
1 1
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1 1
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X 4
X ~

X 8
X 7T
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FIG. 1. Diagrammatic representation of the calculation
of the three-body photodisintegration amplitude. The
wavy line represents the disintegration mechanism (i.e. ,
in the case of photodisintegration a photon), the triple
lines the trinucleon ground state, and the cross-hatched
double lines a particular correlated pair plus nucleon
(Ã) being off shell. The upper part of the figure desc-
ribes the amplitude Ms as a sum of Born, first-reseat-
tering, and integral. over the off-shell scattering ampli-
tude X~„;&~ is the off-shell Born amplitude. The lower
part of the figure describes the integral equation that
determines the off-shell scattering amplitude X„„'.

where
3 3

&p lz.„.(z) Ip'& =
3 p p (I —5.z)&z..p I GO(z) Igz p'& .

e=l /=1

iS

~ pX - rX n tt'o ~ 41

In Eq. (41), p and r are the standard Jacobi vari-
ables for three identical particles conjugate to p
and k used above, e.g. ,

]p=r, —z(r, +r, )= zr, ,

r = r2 —r

(42a)

(42b)

and y'(1, 23) [y"(1,23}]is a spin- z function obtained
by first coupling the spins of nucleons 2 and 3 to
spin zero [one]; the spin-isospin functions are

(38) 15'=~(x'n" —x n'), (43a)

The last two equations follow from Eqs. (20) and
(33). Equations (35) and (37) are readily inter-
preted in terms of a diagrammatic representation
as in Fig. 1 and explained in the accompanying
caption. To apply Eq. (34) to 'He photodisintegra-
tion, we must specify H' and

I qs&, plus classify
the set of spin-isospin projections {n}.

As implied in the Introduction, 'He photodisin-
tegration is primarily an electric dipole transi-
tion. Therefore, we write the perturbative Hamil-
tonian as

(39)

I @z& = tj'o$' (40)

where the r, are the nucleon center-of-mass co-
ordinates, & is the photon polarization unit vector,
e is the electric charge, and r,"' is the third (z
component) isospin Pauli matrix for particle i.
H' operates on the ground state I%'z& which, for
'He, we take to be only the dominant spatially
symmetric component. The result of operating
with H' on

1
&' = ~ (x'q" + x"q'),

1t" = ~ (x'n' —x "q")

(43b}

(43c)

with the isospin function g' and g defined analo-
gously to y' and y", respectively, and g' is the
isospin- & function for three nucleons. Equation
(41) is the basis for working out the details of the
terms in Eq. (35), but first we must discuss the
set of spin-isospin projections.

We classify the spin-isospin projections [n) ac-
cording to total isospin I, the spin and isospin cou-
plings between particles 2 and 3 (S„and I», re-
spectively), and the spatial symmetry of particles
2 and 3. The final state can have only total spin —,

'

since the ground state is total spin —,
' and the tran-

sition operator is spin-independent. If the spatial-
spin-isospin projection function is constructed to be
antisymmetric under interchange of particles 2 and
3, we can operate with it directly in Eq. (35) to
obtain the appropriate amplitude because Eq. (35)
has been symmetrized. The six possible spatial-
spin-isospin projections are given in Table I. It
is now clear that the three quantum numbers I,
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C.',"(p,k) =- e~s &' p.,43(k p)
1

C =e2~ E''r p$

Cl /2 Cl /2
10 01

Cl /2 Cl /2
ll 00

C'"=- r2C'"01 01

C3/2 = ~C1/2
11 11

(44a)

(44b)

(44c)

(44d)

(44e)

(44f )

where p,~= —ihV~ and r„=—ikV~. Next, the same
is done for the first-rescattering term, designated
F/3 / (z, p, k), remembering that in the expression
. '23'23
in Eq. (35) the spin-isospin projections for the in-
teractions are suppressed. Since the two-nucleon
interactions are taken to be s wave only, it is suf-
ficient to denote B (z, p) by simply adding a super-
script for total isospin —8'/(z, P. Explicitly, we
derive

F'„"(z,p, k) =-'(T'(f', "(1)-f'"(l)I
Ts[ f 1 /2(1) +f1 2(1 )]]

I!1/2 T![f1/2(1) +f 1 /2(1)]

Fl /2 — 1(Ts[f1/2(l ) fl /2(1)]

+ Ts[f 1 /2(1) +f1 /2(1)]}

~1 /2 pl /2
11 00

F3 /2 — T!!f3/2 (1)
= T'f / (1)

(45a)

(45b)

(45c}

(45d)

(45e)

(45f )

where the permutation operators are defined as

T' = (23}+ (31)+ (12),
T" = —(23)+ 2[(12)+(31)],
T'= 2v 3[(31)—(12)],

(46a)

(46b)

(46c)

$23 and I23 are suff icient to specify the various
amplitude projections, i.e. , M, (z, p, k)

We begin explicitly constructing the six possible
amplitudes for three-body 'He photodisintegration
by considering the plane-wave Born term C33(p, k)
Eq. (36). Projecting with the spin-isospin functions
listed in Table 1 on H' ~4's) as given in Eq. (41),
and multiplying by ~ to account for W times the
sum over (2 in Eq. (36), we obtain [notation
C".(p, k) =-C',„„(5k)]

and

B '/'(z p)
— M

d kg"( } p' ~'( ' } (48)3P'/4+ k' —Mz

B33/2(z p) =- &2a" /2(z p) (49)

(5Oa)

(5ob)$1/2 1T [8!1/2(1}+gl/2(1)]

$1/2 — -)(Ts[81/2(1) 81 /2(1)]

+ Ts [81 /2 (1) + 81 /2 (1}]] (50c}

(50d)

(50e)

(50f )

Sl /2 gl /2
ll

$3/2 Ts83/2(1)
01

$3 /2 —T) 83 /2 (1)ll

with (n=s or t}

3 2

s'„"( )=s„(k,)r„(*—
sM

and

&& (f'„,"(P., z}+f'„,"(p., z)],

s", *( ) =s.(k,) .(*—~ ))'.!'(3„,),

r.'. (3,*) f's (3(='(*2) l'3')

(51)

(52)

3 /2

x7„, g — B0I g, p . (53}

Thus, the application of Eq. (35} to 'He photodis-
integration leads us to six possible amplitudes as
delineated in Table I and expressible as

(54)

through Eqs. (44)-(53).
Once the amplitudes have been obtained numeri-

cally (see Appendixes A and B for the practical
aspects of partial waves and numerical methods),
the three-body differential cross section is ob-
tained from

Finally, the third term in Eq. (35} designated
$/s / (z, P, k) yields by means of similar algebraic'23'23
manipulations the following:

$'.,"(z,p, k) = -.(T'[8' "(1)—8', "(1}]
-T-(8'"(1)+8'"(1})),

and

3p'f„'(o)=g„(k.)r„z —
4

&'„'(z,p.) (47)

4+2 1 3p2 y2 2

do= E„Q %23
4

+ —)P)k p/)
23- (55}

with (k, ~g„)
—=g„(k,). The explicit forms for the

off-shell Born amplitudes are (n =s or t)

where E„is the photon energy and p& is the density
of final states. The form of 3R, 23 depends on which
nucleon is designated particle 1. For example,
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TABLE II. parameters for the separable N-N inter-
actions.

Interaction A, (fm ) p (fm ) a (fm) ~0 (fm)

mutation of the three-body relative momentum
variables (k, /, p,). The form factors are of the
standard Yamaguchi type

g„(k) =(k'+P„') ', (60)
v,
V

V~

V~

0.391
0.148

1.418 5.397 1.747
1.150 -21.25 2.74

0.3815 1.406 5.423 1.761
0.1323 1.130 -17.0 2.84 u„(p) =C„/(I+ o.„p'+p p'+y p') . (61)

and the numerical spectator functions are parame-
trized by the analytic form

V~

V
0.3815
0.1534

1.406
1.223

5.423 1.761
-7.823 2.794

if we wish to consider the reaction 'He(y, n)2p, it
is convenient to designate the neutron as particle
1, then

9g 23= —~~M + ~1M /'

3 S231 3 S231 (56)

however, if the reaction is 'He(y, p)np or
'He(y, 2p)n, it is convenient to choose one of the
protons as particle 1, then

~323 (Ml /2 + ~iM1 /2 + )/ 2 M3 /2
)

1
23 23 3 S23 (57)

In the former case, we need only four of the six
possible amplitudes, whereas all six are needed
in the latter case.'

IV. RESULTS

qS(k I))) g(1) + q(2) + (),
(3)

where

(, ) g, (k)u, (p) +g, (k)u, (p)
3 p2+ 3 p2+gQ

(58)

(59)

and K2 =MEs . Here $(2) refers to the (ij, k) per-

In our calculations of the three-body photodisin-
tegration we have used primarily two models:
(1}Barbour and Phillips' ground-state I plus a
final state from the potentials labeled I in our
Table II; (2) our own model in which both the
ground state and the final state are generated
from the same N-N potentials labeled II in our
Table II. The ground-state wave function is writ-
ten as

The parameters of the spectator functions are list-
ed in Table III along with the normalization con-
stant N3. Because s-wave models of the type de-
scribed here are known to overbind (due in part
to an absence of the tensor force in the triplet
state), we have altered the triplet strength X, for
our model to a value of 0.354 in order to ensure
that our 'He ground state has the correct binding
energy of 7.72 MeV. A more complete discussion
of the bound states can be found in Ref. 1 along
with an analysis of their asymptotic properties.

We first checked to assure that our calculations
were consistent with those of Barbour and Phillips.
The slight differences in the singlet parameters
(they used a, =- 20.34 fm and r, = 2.7 fm) between
the two calculations are of essentially no conse-
quence. However, we should emphasize that we
have restricted the ground state to the symmetric
S component, so that a direct comparison of our
figures with theirs is not possible in most cases.

We then proceeded to calculate the cross section
for both 3He(y, n}2p and 'He(y, p})2p using the latter
model discussed above. In Fig. 2 we break down
the cross section for T = 2 and T= 2 into Born,
Born plus first rescattering, and full calculation.
The short dashed curve is the plane-wave Born re-
sult for either isospin component of the cross sec-
tion. The long dashed curves are the plane-wave
Born plus first-rescattering results; i.e., the
first two diagrams in the photodisintegration am-
plitude sum shown in Fig. 1. The upper curve is
for the T =

& component and the lower curve is for
the T =-,' component. Note that this first rescatter-
ing greatly enhances the T= 2 cross section while
the T=—,

' cross section is lowered by about a factor
of 2. The solid curves describe the full calculation
for both components, the T = z curve again being
the upper one. For the full calculation, the T= 2

TABLE III ~ Ground-state wave function parameters.

%tave function B3 {MeV) N3 {fm )

I Barbour-phillips

II Adj usted triplet
(~~ = 0.354)

7.71

7.72

0.372

0.307

1.0
0.310

1.000
0.335

6.15 2.89 0.353 (triplet)
4.31 1.17 0.0821 (singlet)

4.93 1.92 0.133 {triplet)
3.38 0.913 0.0907 (singlet)
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FIG. 2. A decomposition of the T = a and T =$ compo-
nents of the total 3He(y, n)2p cross section. The (—-)
curve is the plane-wave Born result for either isospin.
The (——) curve is the first-rescattering result; the
upper curve is T=$, the lower curve is T =~a. The ( }
curve is the complete result; the upper curve is again
T =+&, the lower curve is T =y. The calculation is for
our model described in Sec. IV.

result is reduced from the first-rescattering curve
to a peak value approaching the plane-wave Born
result; however, the final-state rescattering has
moved the peak from about 25 MeV photon energy
to below 15 MeV, and the cross section is strongly
enhanced below 20 MeV while suppressed above
20 MeV compared to the plane-wave Born result.
The T =

& component is suppressed even further
from the plane-wave Born result; the strength of
this component of the three-body channel is lost

to the two-body breakup channel. (See Ref. 1 for
a discussion of the mechanism for this enhance-
ment of the two-body channel. ) We note that a
second-rescattering approximation to the T =

&

component of the cross section is sufficient to
come within 10/p of the final result (the upper solid
curve); by second rescattering, we mean substi-
tution of the driving term (Born term) of the inte-
gral equation in Fig. 1 for the off-shell amplitude
X „ in the third term of the sum for I, in Fig. 1.
Such is not the case for the T =

& component; in the
T =

& case the series converges slowly and the
complete solution of the integral equation is re-
quired.

In Fig. 3 we compare our complete solutions for
the two models discussed. The dashed curves are
for the Barbour and Phillips model; the solid
curves are for our model. Below 20 MeV both
our T = —,

'
(upper curve) and T = , (lower —curve) re-

sults are below the Barbour-Phillips result. As
in the two-body photodisintegration reaction, "'

this difference is due to the double-pole parame-
trization of the ground-state spectator. Such a
parametrization fitted to the rms radius of 'He ap-
pears to overemphasize the asymptotic region of
the wave function; i.e., it leads to too large a
normalization of the tail of the wave function which
is emphasized by the (a r) long wavelength limit of
the electric dipole operator. Above 20 MeV the
differences in the T =

& and T =
& isospin compon-

ents of the cross sections compensate, so that the
result for the complete cross section is essentially
the same for the two models. Note that the lower
cross section in the T =-,' channel at higher photon
energies means that our two-body cross section
will be larger than the Barbour-Phillips prediction

IO— I.O— He(y, n) 2p

E
b

0.5—

10 20
F (MeV)

E
b 05-

I

IQ

ii

30
I I

20

E„(MeV)

40

FIG. 3. Comparison of the T =y (upper two curves)
and the & =y gower two curves) total cross sections
for the Barbour-Phillips model (——) and our model
(

FIG. 4. Comparison of the total cross section for our
model ( ) and the Barbour-Phillips model ( )
with the data of the Ref. 3 (broken histogram), Ref. 4
($l, and Ref. 5 (solid histogram}.



THREE-BODY PHOTODISINTEGRATION OF 'He 485

at these energies as was indeed found to be the
case in Ref. 1.

In Fig. 4 we compare the cross sections for the
two models (symmetric S state only) and the avail-
able data. Our model result peaks some 15% be-
low the Barbour-Phillips result-a feature that was
also true in the two-body photodisintegration reac-
tion. ' Our calculation peaks about 10% higher than
the data would appear to indicate; such a discre-
pancy is likely due to our neglect of the tensor
force although a complete treatment of the S' state
and Coulomb effects should improve the fit also.
Note that we confirm the strong enhancement of
the cross section at low energies (where the cross
section is dominated by T = $) found by Barbour
and Phillips but absent in the work of Fabre and
Levinger. Without this strong rescattering en-
hancement, the fit to the data at low photon ener-
gies would be very poor, since the T =

& plane-
wave Born result very much underestimates the
cross section below 15 MeV.

In addition to the total cross section, we have
calculated both the neutron and proton energy spec-
tra from 'He. In Figs. 5 and 6 we compare our re-
sults with the data of Gorbunov' in the photon en-
ergy region 12-16 MeV. In Fig. 5 we compare the
neutron energy spectra. The neutron is the odd
particle, so that one sees the very strong p-p
final-state interaction near E„/E =1.0. Note
also the region around EgE =0 2; Barbou. r and
Phillips have previously pointed out the enhance-
ment of the spectra in this region (due to n pre-
scattering). Because Gorbunov does not quote ab-
solute normalization we have conveniently normal-
ized our two curves for E,=12.5 and 15.5 MeV;
however, the relative normalization of the two
curves is correct. The fact that the peak in the
data near E„/E =1.0 is shifted relative to both
curves is probably a reflection of our neglect of

the Coulomb interaction.
In Fig. 6 we compare our spectra from the

'He(y, p)np reaction with the data of Gorbunov. '
The qualitative features are again correct. The
n p-interaction enhancement near EJE = 1.0 is
much weaker than that of the p-p in the previous
spectrum. The largest enhancement occurs near
E~/E =0.2 where the p-p rescattering is strong.
Again the relative normalization of our curves for
photon energies of 12.5 and 15.5 MeV is correct,
but there is no absolute normalization for the
curves or the data.

As pointed out above, we have neglected the
Coulomb interaction between the two protons. In
order to investigate qualitatively the effect of in-
cluding the Coulomb repulsion, we have used in

the final state the singlet potential labeled III in

Table II. By so doing we approximate the effect
of the long-range electromagnetic interaction of the
strong p-p interaction as a weakening of the short-
range attractive N-N potential. Such an approxi-
mation is clearly not theoretically correct in a
proper treatment of the scattering problem; how-

ever, it will permit us to examine qualitative fea-
tures, and the bound state wave function does cut
off the matrix element integral short of the asymp-
totic region for the scattering state. Since we
have seen above that strong final-state interactions
enhance the T = 2 and suppress the T =-,' compo-
nents of the total cross section below 20 MeV, the
use of a slightly weaker singlet potential such as
III in Table II reduces both of these effects, and
the compensating changes leave the total cross
section essentially unchanged below E„=20 MeV.
Similarly the cross section is increased slightly
(&5%) above 20 MeV. The effect is, of course,
much larger in the proton and neutron spectra.

I
I

I

E =12-16 MeV

E&=12-16 MeV
C

0.2—
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~ &01b QJ
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b LLj
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IJJ
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I i I i I

0.2 0.4 0.6

n max
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FIG. 5. Comparison of the shape of the experimental
spectrum from Ref. 5 with our theoretical spectra at
E =12.5 MeV (——) and E =15.5 MeV ( ) for the re-y. 3 y
action He(y, n)2p.

FIG. 6. Comparison of the shape of the experimental
spectrum from Ref. 5 with our theoretical spectra at
E&=12.5 MeV (——) and E&=15.5 MeV ( ) for
the reaction SHe(y, P)nP.
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The P-P interaction is weakened, so that in the
'He(y, n)2p spectra, for example, the sharp peak
near E„/E = 1.0 is broadened and reduced in
magnitude. This is displayed explicitly in Fig. 7,
where we show the curves from Fig. 5 and the
corresponding curves in the region of the p-P final-
state interaction calculated with the Coulomb
weakened singlet potential III from Table II. (Be-
cause the n-p singlet interaction is actually strong-
er than the singlet potential II of Table III, we have
not shown the spectra for potential III in the region
where the n-p final-state interaction dominates. )
It is clear from the figure that including Coulomb
effects, even in this approximation, moves the
calculation in the right direction: the P-P peak is
lowered, broadened, and shifted to lower energy,
although the shift is not enough to agree with the
data.

V. CONCLUSIONS

In summary, the primary conclusions to be
drawn from this work are as follows: (1) The peak
value of the total cross section is about 1 mb, in
reasonable agreement with the data. (2) Differ-
ences between our theoretical results and the data
arise from neglect of the tensor nature of the trip-
let force, the S' component of the 'He wave func-
tion, and the pure Coulomb repulsion in the p-P
interaction. (3)Our total cross section is some 15%
below that of the Barbour-Phillips model in the
region of the peak, the difference being due pri-
marily to the double-pole analytic form assumed
for the ground-state spectator function in their
model. (4) For the T= —,

' isospin channel the sec-
ond-rescattering approximation comes within 10%
of the complete answer, a fact that may be useful

for reactions such as 'H(w, y)3n where there is
only a T = z component in the final state. (5}Al-
most all of the T= —,

' cross section is lost to the
'H(y, d)p channel; the mechanism for this is dis-
cussed in detail in Ref. 1. (8} The shapes of the
experimental 'He(y, n}2p and 'He(y, p)np spectra
are reproduced qualitatively showing the effects of
the strong final-state p-p interaction. (7) The po-
sition and shape of the main peak in the 'He(y, n}2p
spectra were improved by inclusion of Coulomb
effects on the P-P strong interaction in the final
state in a very approximate manner, but a sub-
stantial quantitative discrepancy remains.
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APPENDIX A: PARTIAL WAVES

The practical problem of computing the ampli-
tude (p ~X„„.(z)

~

p') for Eq. (53) is handled by par-
tial-wave decomposition. This is done in the
same manner as described in Sec. III of Ref. 1.
The only difference is that, in addition to the iso-
spin-2 equations given there, we now have to con-
sider the isospin-2 continuum equation. There is
a single equation of the form given by Eq. (48)
(Ref. 1) with all subscripts being singlet. The in-
homogeneous term is

~ (2z(, .
)

1 ' P~(&)g,(Q')Z, (V")

c 0.2 E&= l2-l6 MeV

(Al)

where P~(z) is the Legendre function for angular
momentum J and

Ã
O

O. l

b

9' = 4.P +P +PP &~

9' =P + P +PP&.

Then Eq. (53) can be written as

(A2)

(A3)

00 0.2 0.4 0.6
Il max

Q.s I.O

FIG. 7. Comparison of the experimental spectrum
from Ref. 5 and our theoretical spectra at 12.5 MeV
{ j and 15.5 MeV { ) without Coulomb effects
as shown in Fig. 5 with theoretical spectra including
some Coulomb effects {the partial curves) in the approxi-
mation discussed in Sec. IV.

with B'„~(z, p) = e P'„(z, P) .

APPENDIX 8: NUMERICAL METHODS

There are two situations for which it is worth-
while to expain our numerical methods.
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The first situation involves the off-shell Born
amplitudes when evaluated on shell as in the first-
rescattering terms. Take, as an example, the
following

Zm p'

(z = 3p~/4M+ k'/M+ iq):

eM, ,g,(k')[e p,~g;(k, p)]
Rep

(Bl)

Such integrals are rewritten as the sum of a pole
contribution plus a principal-value integral. The
principal-value integral is then evaluated by stan-
dard numerical methods, after utilizing the fact
that

dk'
k' —k0

to subtract

(B2)

dkP k„k,k'g, (k)
0

dQ~, z p,~g;'(kk', p) =0.

(B3)

Case I: 0&p ~v'Mz,

Case II: v'Mz&p ~2&Mz/3 .

Case I

(B4)

(B5)

Investigation of the integral equation for
X„„',(p, p'; z) indicates that the only constraint from
this source is

tan@ & min
~ 2P„P„'

p'p
r„,(z - 3p'2/4M) and B„~(z,p') introduce no con-
straints provided Bo~(z, p') is handled as B„(z,p')

The second situation concerns evaluation of the
integrals in Eq. (53), or equivalently, Eq. (A2).
After studying the singularities of the integrand,
which includes the problem of solving for
X„„',(p, p'; z), it becomes apparent that rotating the
P' integration path into the fourth quadrant would

be an appropriate method, i.e., p'-P'e '~. This
requires consideration of two cases:

FIG. 8. Integration contour for the integral in Eq. (53)
when' &p 2 v'Mz/3. The values of p~ and p~ are
given by p = 2p-(Mz —3p /4) and p~ =e '~(p —Mz)

was in Ref. 1. This requires breaking Bo,(z, p')
into two parts: that which requires only a k inte-
gration and that which requires both a k integra-
tion and an angular integration. When p' -p'e '~,
the part which does not require an angular inte-
gration is computed by rotating k -ke " ', while
the part with an angular integration is done with k
rotated the same as p', i.e., k-ke 'o. (Note: In
the second part, the variables must be changed to
make the spectator function argument simply k. )
The rotation angle Q is chosen to be half its maxi-
mum allowed value given by Eq. (B6).

Case II

In order to rotate p'-p'8 '~ for this range of p,
we must account for the cut structure of

X„~(p,p';z), or equivalently, of Z~~(p, p';z) [see
the partial-wave form of Eq. (37)]. The cut of in-
terest arises from the energy denominator p"

+pp'x+p' —z = 0 of Z„~(p,p';z) and we display it in
Fig. 8." We also show in this figure how the con-
tour is distorted around the cut (taking into account
that z has a small positive imaginary part, i.e.,
z+ i@). It is evident from Fig. 8 that the integral
in Eq. (53) or Eq. (A2) will break into the following
pieces:

f00 r2

p "dp'X.'~(p, p'; z)r~ ~—
0

second " fir st -i2it oI+

where c„+ are the coefficients from Z ', defined in Ref. 1:
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~1/2
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j. /2
SS

1/2 1/2-
tt ts

3
I

3-
3/2

4

The first term comes from the integration A-p -A' expressed as an integral from 0 to p over the dis-
continuity across the cut. This discontinuity is calculated utilizing the fact that the discontinuity of
X„'„,(p, p'; z) across the cut is equal to the discontinuity of Zl„', (p, p'; z) across the cut. The second term
must be done carefully, since from A' to B Xl~(p, p'e 'o; z) is to be evaluated on the second sheet (dashed
line). This requires that we solve the following modified equations for Xl~(p, p'e '~; z):
0- P' -Pze' = (P —Mz}' (second sheet):

X„'„',(p, p'e ";z)=Z", (p, p'e ";z),.„„,„...
3p' '/-''t

+ g„~ Mz p ~g c'„„p"dp"Z„,„.(p'e ",p";z)

3p"' I' 3p"' /'-l Mz —p2 —p"'x r„„z— g„„i Ifz — . . )&,M "
k & ]

+4m
second " first

p~2dplge 3yigll (pse i4 p e-ic ~ z}-sheet, t & sheet

3 II2
p -i2s Xll (p p && i+ z)4M nn~ (B&)

p e'i' ~p'&~ (first sheet): the k integration which also includes an angular in-
tegral is chosen as

+[same as Eq. (B&)j. (B9)

The only other stipulation entering the calcula-
tions for this case is from B„.(z, p') for 0 —p™p
The angle-independent k integral is still rotated
45' into the fourth quadrant, but the rotation for

pi

lpga

(B10}

where the unsubscripted P is the smallest P ap-
pearing in the g„(k) of the ground-state wave func-
tion. For all other regions, Bol(z, p') is handled
as in case I.
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