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The effective interaction appropriate to a (2s-1d)' model space is studied for the J = 0+ states of "O.
Perturbation theory and various Pade approximants are compared with exact results obtained by solving large
shell-model problems that realistically include many 3p-1h and 4p-2h states. We analyze two cases that differ
only in the choice of the (2s-1d) single-particle energies. In one, there is a collective 4p-2h intruder state, as
well as several intruders at negative values of the coupling parameter. The perturbation theory expansion for
the effective interaction is found to diverge in this case. The other case has no intruders and the perturbation
expansion seems to converge. In both cases, third-order perturbation theory is found to be more accurate than
second order, and gives matrix elements correct to 200 keV. The intruder states do not seem to be responsible
for the fact that third-order terms are often larger than secondwrder terms. The [N+ 1, Ã] Pade
approximants of low orders are less accurate than third-order perturbation theory. However, the operator-
valued [1,2] Pade approximant is accurate to 130 keV, for reasons that are not yet understood.

NUCLEAR STRUCTURE Effective interactions; tested perturbation theory and
Pade approximerits; 0 J~ =0+ large-matrix calculations; included intruder

states.

I. INTRODUCTION

In this work we test various approximate meth-
ods for calculating the shell-model effective in-
teraction, ' by applying them to solvable test cases
with realistic features. In particular, we inves-
tigate the accuracy of finite orders of perturbation
theory (PT) as well as several related methods.
Special attention is focused on a solvable large-
matrix description of the J' =0' states of "0, in
which a collective 4p-2h 0' state appears below
the energy of the predominantly (d, ~2)2 state. The
interest in this case derives from the prediction
of Schucan and %eidenmiiller' that PT for the ef-
fective interaction will diverge whenever such a
low-lying collective "intruder" state exists.

The nuclear shell model aims to describe the
simplest states of a given nucleus in terms of a
model space, which is spanned by a few of the
simplest available low-lying configurations. In
principle, there exists an "effective" interaction'
V for use in the model space, such that '0 implic-
itly takes account of configurations outside the
model space and exactly reproduces the energies
of the simplest states of the system. In practice,
the computation of V is a difficult dynamical prob-
lem, so that approximate methods must be used.

Perturbation theory is one of the best known
and most widely used methods for discussing the
effective interaction. " It has been formulated
systematically' ' in terms of diagrams of the
Feynman-Goldstone type, which are suitable for
explicit computation of the various orders of PT.
The diagrammatic expansion also lends itself to
discussion of formal questions, such as the ex-
tent to which V is a two-body operator. However,
we are interested here in the accuracy of PT as
an approximate technique of numerical calcula-
tion.

Because the bare two-nucleon interaction typi-
cally has a strongly repulsive core, PT can be
applied only after the effects of the strong repul-
sion have been removed. The usual method is to
express the bare interaction in terms of the
Brueckner reaction matrix G' and expand the ef-
fective interaction '0 in powers of G. In principle,
the two phases of the calculation of V must be
done consistently to avoid double-counting prob-
lems. 9

Early numerical studies of the renormalization
of the t" matrix in finite nuclei were carried out
by Kuo and Brown. " They considered the effec-
tive interaction appropriate to a (2s-ld)' model
space for the states of "O. Starting from a G
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matrix calculated from a realistic (Hamada-
Johnston) two-nucleon potential, they calculated
corrections to it through second order in G.
Their resulting matrix elements have been used
with great success in nuclear structure studies
in the (2s-ld) shell.

Subsequently„Barrett and Kirson" extended the
work of Kuo and Brown through third order in G,
using the folded-diagram formulation of PT.'
Their calculations were restricted to J"=0'
states, but have since been extended by Goode"
to other J' states. The Barrett-Kirson study
indicates that the third-order contributions to 'U

are often larger than the second-order contribu-
tions. This result has stimulated the considera-
tion of convergence properties of PT for the ef-
fective interaction. '"

Conditions for mathematical convergence of PT
expansions for 'U have been investigated by
Schucan and Weidenmuller. ' They conclude that
PT should diverge whenever the perturbation is
strong enough to depress an intruder state (com-
posed mainly of configurations outside the model
space) into the energy region occupied by the
states that are predominantly in the model space.
Since a 4p-2h intruder state is known" to exist
in the 0' spectrum of "O, the ability of PT to
approximate the effective interaction in this case
is in doubt.

In response to the work of Schucan and Weiden-
muller, many authors have suggested approxima-
tion schemes to use in the presence of intruder
states. Many of these methods fall into the gen-
eral category of "infinite partial summations. ""
A potentially promising method is the use of Pads
approximants, ""which, because of their close
relation to PT, are amenable to systematic cal-
culation. Padb approximants can either be used
directly to approximate the effective interac-
tion" "or in conjunction with the Q-box formula-
tion of PT."

The various methods for approximating the ef-
fective interaction in the presence of intruder
states were all developed with the hope that they
may have larger domains of convergence than PT.
However, convergence is not a necessary condi-
tion for a method to have practical value. As
Vincent and Pittel have remarked, "the results
obtained from low orders of a given approxima-
tion scheme may be of adequate accuracy, even
though the scheme does not converge for infinite-
ly high orders. In particular, they show that low
orders of PT can sometimes provide good approx-
imations, even though PT is divergent. In the
present study, we therefore judge approximate
methods by their accuracy in low orders, and not
on the basis of mathematical convergence.

In the present paper, we study exactly solvable
models constructed by replacing the infinite
Hilbert space of the given nuclear system by a
"large" space of finite dimensionality. Each
solvable large-space problem will then corre-
spond to a large (but finite) shell-model Hamilto
nian matrix. It will be solvable only in the sense
that the large Hamiltonian matrix can be diago-
nalized numerically, and not in the sense that a
closed-form solution is known. This limits the
size of the problems that can be considered but
allows important realistic features to be incor-
porated. Thus, in our solvable description of the
0' states of "0, our large space includes not only
the 2p-Oh model-space states and some 3p-1h
core-polarization states but also a fairly large
number of 4p-2h states. The 4p-2h states gener-
ate the collectivity of the "deformed" intruder
state. The "bare" interaction for the solvable
problems is also chosen quite realistically.

In studying the accuracy of approximations,
comparison with experiment is not appropriate.
Instead, we use the "large-matrix*' problems to
generate exact results, which can be regarded as
"data." The success of approximations ("theo-
ries") is then judged by comparison with these
data. Comparison of the results for different
large-matrix problems enables us to judge the
range of validity of our conclusions.

It should be emphasized here that diagrammatic
PT calculations also involve implicitly a large
space, associated with the energy truncation of
intermediate -state sums. The large-matrix ap-
proach to effective interactions makes the space
truncation explicit, to facilitate comparison be-
tween exact and approximate results.

In Sec. II, we define the effective Hamiltonian
X that is appropriate for representing a large-
matrix problem in a model space. We also de-
scribe PT for 3C, including convergence criteria
and methods for calculating the orders of PT.
Section III discusses calculation of the effective
interaction'U from X, and extends to 'U the pre-
vious treatment of convergence criteria. Section
IV describes three different types of Pad6 approx-
imants that can be constructed for the matrix-
valued effective interaction. In Sec. V, we dis-
cuss the solvable problems for which we test the
various approximate methods. Section VI dis-
cusses the results of our calculations and obtains
conclusions w'hich are briefly summarized in Sec.
VII.

II. EFFECTIVE HAM ILTONIAN

A. Definitions and the construction of the effective Hamiltonian

Let H be the Hamiltonian for a given number of
particles. We assume H to be an Hermitian oper-
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ator acting in a large space spanned by the N or-
thonormal basis vectors {Q ), where a = 1, . . . , N.
We shall discuss the reduction of this problem to
a smaller space, called the model space. The
model space is spanned by a basis containing
M &N of the states Q, chosen on physical
grounds. We follow the convention that the states

are labeled so that the first M span the model
space. We define the projection operator P onto
the model space by

P = P I y.&&a.l

=E~ for a&S

and is given by'

(4)

x = g Ix.&E.&x.l

a&S
Here x belongs to the set {x ) of vectors bior-
thonormal to the set {x„), as defined by the rela-
tion

(5)

(x Ix8& =5 8 (~ P ~ ~} . (6)

The formula (5} for 3C has been used extensively
in the literature. ' " Many other equivalent for-
mulae are also known. '

As noted above, we shall always define X so as
to reproduce the eigenvalues and eigenvectors of
the predominantly model-space states. These are

Similarly, the excluded space is defined as the
space spanned by the remaining N —M basis vec-
tors. The projection onto the excluded space is

N

q= P ly.&&y. l
=1-P.

a&N+ l

Denote the exact eigenvalues and eigenvectors
of H by {E) and {g ) and the projections of the

onto the model space by

Xa=pka ~

Of particular interest are those M wave functions

Pa which have the largest possible components in
the model space. We refer to this as the set of
predominantly model space states and we denote
this set of states by S.

In agreement with most authors, we define the
effective Hamiltonian X as that operator on the
model space whose eigenvalues and eigenvectors
are Ea and X for a ~S. This definition specifies
what is usually called the energy-independent
effective Hamiltonian, as distinct from the ener-
gy-dependent effective Hamiltonian discussed by
Bloch and Horowitz. '

The energy-independent effective Hamiltonian
X is formally defined by the model-space
Schrodinger equations

the states which the model-space Schrodinger
equation would be expected to reproduce most
faithfully. However, as pointed out by Schucan
and Weidenmuller, this definition may lead to a
discontinuous dependence of the eigenvalues F.
on the strength of the perturbation (see Sec. II B}.

8. Perturbation theory for K and its convergence properties

H(z) =Ho+z V, (8)

which depends on a coupling parameter z. Clearly

H(0) =HO

H(1}=H .
The value z =1 is referred to as the "physical"

value of z, since it gives rise to the physical
Hamiltonian H. For each real z, Eqs. (9) and (5)
define an energy-independent effective Hamilto-
nian X(z). Perturbation theory (PT) can be re-
garded as an expansion of X(z} in powers of z,

X(z) =ho+zh, +z'h, + ~ ~ ~

Although 3C(z) has physical meaning only for z = 1,
its convergence properties can conveniently be
discussed by regarding it as an operator-valued
function of a complex variable z =x+iy. Let zp

be the singularity of X(z) that is nearest the ori-
gin. Then the series (11) converges at z =1 if
lz, l

& 1 and diverges at z = 1 if lz, l
& 1. The loca-

tion of the singularities of X(z) is therefore im-
portant for convergence questions.

Schucan and Weidenmuller' state that the only
singularities of 3C(z) are branch points at those
points z, in the complex plane for which the ener-
gy of a predominantly model- space state coincides
with the energy of a predominantly excluded-space
state. If any of these branch points lie within the
unit circle, the series (11) diverges at z =1.

Because the Hamiltonian H(z) is Hermitian, the
branch points always occur in complex conjugate

We review here some results on the conver-
gence of PT for the effective Hamiltonian. Much
of this discussion follows Schucan and Weiden-
muller. '

Let H, be a zero-order Hamiltonian whose eigen-
values and eigenvectors are known. Further, let
us assume that the basis (P ) is chosen to diago-
nalize H„so that

H, Q =8 „Q (a=1, . . . , N).

We next define the perturbation

V=-H -0,
and construct an operator-valued function
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and maps each model-space representation y of
a state onto the corresponding complete state p .
Lindgren shows that the effective Hamiltonian and
the wave operator are related by

X=PHQ =PHOP+P VQ .

Thus an expansion for X in powers of z can be ob-

tained if an expansion of Q is known. Denote this
expansion by

Q(z) =v, +zu&, +z'u&, + ~ ~ ~ . (16)

Lindgren derives the following recursion relation
for the matrix elements of ru„(for n) 1) in terms
of the matrix elements of ~&, ~ ~ (d„,:

/

(4 nl Il 1 Z1h 1 II III n 1148)
( )M l3 (M)

(e.l~. l4 z) = &8 -&a

0 otherwise .
(17)

The calculation is started by setting

(do =P

and applying (17) as many times as desired. Fi-
nally, the PT expansion of X is calculated from

h4 = h~ +h~ +h4~ +h~,
where

(h~);g = ia a8 By yj

a, B,y
(e y

—e n) (z g
—z z) (f q

—e )a

(26)

(27)

ho =PHD P,
h„=P V~„, (n ) 1) .

(19) (h ) ~ V(aVaaVv V, j~ (e, -e.)(e, -~.)(z, -e.)'
I

(26)

The number of arithmetic operations required
to compute ho, . . . , h„by this method for an &-
dimensional large space and an M -dimensional
model space (with N»M} is proportional to
M N n . This rather slow dependence on n permits
quite high orders of PT to be calculated.

(h ) ~ ia aa az zg (29)
(z y

—e n)(E g
—z z")(z g

—z n)
t 1

{h ) P la az Sa aj

aI t, , (~~ -e )(z, -zz)

F. Closed forms for low orders of PT
1 1

X +
EP -6 a 6p -E 8

{30)

(h, )„=(H, );, ,

(h, ),.) = V„,

(20)

(21)

{ ) g ia nj

a

h, =h~ +h,~,
where

(23)

(eg —e a)(e y
-z z)a, 8

(24)

~ {zg
—z n)(zp -z a)a,k

(26)

In the calculation of PT for X, outlined in the
previous section, each order h„ is evaluated as a
whole, and no information is obtained about the
individual many-body diagrams that contribute to
h„. However, some information on certain classes
of diagrams can be obtained if one first derives
explicit expressions for the various orders of PT,
e.g. , from the recursion relations (17).

We use a notation in which Latin subscripts re-
fer to states in the model space and Greek sub-
scripts to states in the excluded space. The terms
of PT through fourth order are

In these relations, doubly-su'Oscripted quantities
are matrix elements between basis states corre-
sponding to the subscripts, e.g. , V;, = (Q; l Vl Q&) .

The various subterms in third and fourth orders
can be pictorially represented as in Fig. 2. In
this type of diagram, each state of the system is
represented by a point and each action of V by a
line. The arrows on these lines denote the tran-
sition of the system from each state to the next.
Each diagram of this type is said to specify a
path available to the system, in proceeding from
a given initial state i to a given final state j. In
these diagrams, all intermediate states are fully
antisymmetric.

It is interesting to relate these paths to the
usual diagrams of many-body theory, as discussed
for example by Brandow. ' The paths h», h4~, and
h4D are sums of once-folded diagrams and path
h4~ is a sum of twice-folded diagrams. All other
paths shown in Fig. 2 contain no folded diagrams.

The number of operations involved in evaluating
an nth-order path using the above equations is
greatest for "unfolded" paths, such as h~, which
involve the maximum number of excluded inter-
mediate states. The number of operations re-
quired to evaluate the unfolded nth-order path h„„
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is proportional to M'N" ' if N»M. This n de-
pendence is much more rapid than that encoun-
tered for the recursive method. The recursive
method already becomes far quicker by n =4.
Nevertheless, since we feel it is worthwhile to
know the contribution of individual paths, we cal-
culate the terms of PT through n =4 in both ways.

III. EFFECTIVE INTERACTION

A. Construction of the effective interaction

The effective Hamiltonian discussed in Sec. II
enters in any discussion of space truncation, in-
dependent of the specific nature of the problem.
The basis states (QJ and the related zero-order
Hamiltonian 00 could therefore be left unspecified.
The concept of an effective interaction, however,
requires careful consideration of the way in which
the many-body features of the nuclear system are
described in the nuclear shell model.

In what follows we will restrict our discussion
to the effective interaction between two valence
nucleons outside a closed-shell core. In princi-
ple, the effective interaction problem arises in a
discussion of any number of nucleons outside a
closed-shell core. However, if the shell model
is to provide a practical microscopic theory of
nuclear structure it is important that the effective
interaction be predominantly a two-body operator,
so that it can be calculated for the closed-shell-

plus-two-valence -nucleon system anu then applied
directly to more complex systems.

An effective interaction 'U for two nucleons out-
side a closed-shell core can be constructed from
the related effective Hamiltonian X by appropri-
ately removing the core and single-particle con-
tributions. The removal of these contributions
requires the consideration of related large-matrix
shell-model problems for the core and single-
valence-particle nuclei, in addition to the two-
valence-particle nucleus. It is important in this
regard that the core and single-particle problems
be constructed in appropriate analogy with the two-
particle problem, in the sense of using the same
many-body Hamiltonian and related basis states.
We will spell these ideas out in greater detail in
our specific examples of Sec. V.

The closed-core shell-model calculation pro-
vides as output the correlated energy F., for the
J =0' ground state. The relevant states of the
single-valence-nucleon (c +1) system have vari-
ous possible angular momenta, corresponding to
the various possible active valence orbits. For
each angular momentum j, a large-matrix shell-
model problem can be constructed, the relevant
output being the correlated energy E, „(j) of the
predominantly single-particle state of angular
momentum j. The effective single-particle energy
e ( j) for a nucleon in valence orbit j outside a cor-
related core is defined by

(0) THIRO —OROER PATHS

I j

(b) FOURTH —ORDER PATHS

has

(once - folded)

.(j) =E.-„(j)-h, .

Similarly the two-valence-nucleon (c +2) system
is described by means of several large-matrix
shell-model calculations, one for each J" value.
For each problem, the reduction from the large
space to the model space gives rise to an effective
Hamiltonian matrix (P I3CI+), obtained according
to (5).

The effective interaction matrix is defined by
the relation

(@.I& I es) =(@.I &I ea) &.8%.+~—
&j ) +e(j )),

h4, ——

I j
P

i k I j

(twice -folded)

where j, and j, denote the two occupied valence
orbits in Q~. It can be constructed from the out-
put of the large-matrix calculations using

h~c
P

k j

(once - folded) t once —folded)

FIG. 2. Pictorial representation of the third-order
and fourth-order paths that contribute to the PT series
for the effective Hamiltonian X.

+ ~.,(Z, -Z„,(j,) -Z„,(j,)). (SS)

It is useful to regard the core and single-va. —

lence-nucleon problems as effective Hamiltonian
problems, each with a one-dimensional model
space. In the closed-core problem„ the model
space consists of the state in which al1 core orbits



418 S. PITTEI, C. M. VINCENT, AND J. D. VERGADOS

are completely filled (frequently called a Op-Oh

state}. Similarly each single-valence-nucleon
problem involves a model-space state in which

the core orbits are filled and the valence nucleon
occupies a particular active orbit (called a lp-Oh

state).
Each of the large-matrix problems involves the

same many-body Hamiltonian and, consequently,
each of the quantities appearing in (33) can be re-
garded as a function of the complex parameter z,
introduced in Sec. IE. Because the quantities E&

and E'„,(j) can be viewed as effective Hamilto-
nians, the analysis of Sec. GC can be used to
discuss their analytic properties and hence the
analytic properties of V.

B. PT for the effective interaction'U

The discussion of the PT for U follows easily
from the results on PT for X. We begin by con-
sidering the expansion of the operator g in powers
of the coupling parameter z,

U(s) = vo+ viz +v28 +' ' '

From (33} and the subsequent remarks, we see
that 'U is a linear combination of the effective
Hamiltonians for problems involving zero, one
and two valence nucleons. It follows that the gth
coefficient v„ in (34) can be written as

where g~'~ and ge"~(j) are the nth-order contribu-
tions to the core and single-particle effective
Hamiltonians, respectively. We reserve the no-
tation h„ for the noah-order contribution to the

(c + 2) -particle effective Hamiltonian. Each of the

quantities h„, g„', and g„""'(j) can be computed
using the recursion techniques of Sec. GD, for
the appropriate large -matrix problem.

From (33) it also follows that O in general con-
tains all the singularities of X, E„and E'„,. En

analogy with the earlier decomposition of 3C, we

can decompose 'U in the form

(36)

The quantity 'U.„(s) contains all the singularities
of 'U within the unit circle. In most physical
cases„ the core and single-nucleon problems have
no crossing singularities within the unit circle,
so that

if the two-valence-particle problem has intruder-
state crossings within the unit circle.

Finally, we note that the contributions of indi-
vidual paths to 'U can be calculated by appropri-
ately combining the contributions of individual

paths to K, E„and E„,(j).

C. Unlinked diagrams

Several authors" "have remarked that the con-
struction of an effective interaction 'U appropriate
to a reduction from a large, but finite, space to a
smaller model space involves unlinked diagrams.
In contrast, the actual physical problem begins
with an infinite and complete Hilbert space, so
that these unlinked diagrams cancel. These re-
marks imply that "exact" effective interaction
matrix elements derived from large-matrix cal-
culations should not be compared with the partial
sums of fully linked diagrammatic PT.

Within the framework of large-matrix studies
of approximations to the effective interaction,
there are two ways to insure that comparisons
between PT results and exact results are mean-
ingful. If one wishes to retain a linked PT expan-
sion, then one must subtract the summed contri-
bution of the unlinked diagrams from the exact V.
A method for making this correction has been
given by Ellis. Alternatively one can abandon
the linked PT expansion and simply compare par-
tial sums of the full power expansion of 'U for the
finite large problem with the exact'U for the same
problem. We choose to follow the second ap-
proach, which is equally consistent.

Kirson has remarked that the method of re-
moving the unlinked diagrams from the exact 'U is
preferable to the method we use, because it per-
mits a more natural comparison with realistic
diagrammatic PT results for 'U. Because of the
truncations spelled out in Sec. V, our model is
admittedly not sufficiently realistic for a direct
comparison with realistic PT calculations. Thus,
we prefer to retain our simpler, but equally con-
sistent, approach, and we believe that our con-

(o) (b)

The convergence properties of the PT series
(34} follow immediately from these remarks about
its singularities. We would normally expect that
the PT expansion for U will diverge at z = 1 only

FIG. 3. Examples of unlinked diagrams that can con-
tribute to the effective Hamiltonian 3C but are removed
by the core and single-particle subtractions required in
the effective interaction 'Q.
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clusions regarding the applicability of approxi-
mation schemes will not be affected by this choice.

It should be noted that a large class of unlinked
diagrams that can contribute to K are removed by
the core and single-particle subtractions required
in U. For example, the core correction term F.,
serves to remove the "valence-spectator diagram"
shown in Fig. 3(a). Similarly the single-particle
correction terms E,+,(j) remove the unlinked dia-
gram of Fig. 3(b}. It is not until fourth order in

the PT expansion of 'U that unlinked diagrams
survive. "

IV. PADE APPROXIMANTS FOR'0

Pads approximants have recently been suggested
as a possible scheme for extrapolating the effec-
tive interaction beyond its nearest intruder -state
singularities. ' '" Pads approximants attempt to
simulate the singularities of a function by the poles
and zeros of a rational function.

Let F(z} be a function with power-series expan-
sion

Several fairly general conclusions about Pads
approximants have been suggested by earlier work
on the subject. For example, because they have
the correct behavior in the limit x-~, the
[N+1, N] approximants to 'U(z) are expected to
provide the best approximations. " It is also be-
lieved" that Pads approximants to 9 as an oper-
ator are preferable to Padd approximants to indi-
vidual matrix elements of 'U, particularly when

the physical point z =1 lies between strongly cou-
pled branch cuts. We shall study the validity of
these remarks within the framework of our solv-
able problems.

Besides the operator (OPADE) and matrix-ele-
ment (MPADE) Pad6 approximants, we shall con-
sider a form (TPADE) suggested by Lee and
Pittel. " In the TPADE method, Pads approxi-
mants to individual matrix elements are calculated
in a basis in which I'HP is diagonal, and then
transformed back to the original basis.

' V. DESCRIPTION OF THE LARGE-MATRIX CALCULATIONS

a„z" . A. Construction of large spaces for ' O, ' O, and 'SO

F(z}Si(z}=&z(z) (40}

subject to the normalization condition Sz(0) = l.
The interpretation of the above conditions for

Pads approximants is somewhat different for sca-
lar functions F(z} than for operator-valued func-
tions F(z}. For scalar functions, the inverse in

(39) is interpreted as an ordina. ry scalar inverse,
whereas for operator-valued functions it is inter-
preted as an operator inverse.

We shall not attempt to justify the use of Pads
approximants. Much is known about the properties
of Pads approximants to scalar functions, " in-
cluding some general convergence criteria for
functions with branch cuts." Very little is known
in the case of operator-valued functions. Our pur-
pose will be simply to test the usefulness of Pads
approximants for our exactly solvable and moder-
ately realistic problems. Except for the work of
Hofmann, Starkand, and Kirson'4 and of Starkand
and Kirson, "Pads approximants to 'U have been
studied only for very simple problems.

The [K, L,] Padh approximant to F(z) is defined as
the rational function

(38)

whose power-series expansion agrees with (38)
through the term in z ' . The polynomials R& and

S~ are of degrees K and I., respectively. Their
coefficients are obtained by comparing the first
K+I, +1 powers of z in the equation

We shall consider, within the framework of the
large-matrix approach, the effective interaction
for two valence nucleons in a J"=0' state outside
an "0 core. More specifically, we shall consider
a large space which includes

(a) the three possible J'=0' states obtained by dis-
tributing two valence nucleons in the 2s -1d shell,
and

(b) all 3p-lh and 4p-2h states, subject to the re-
strictions that all holes are in the 1Py/2 orbit and
only 2k' excitations are permitted.

The model space will consist solely of the three
states of two-particle (2p-Oh) nature. The large
space generated in this way contains 171 basis
states, described in more detail in Table I ~

As discussed in Sec. II, the choice of a large
space and a model space (together with the choice
of a Hamiltonian lf) defines an effective Hamilto-
nian problem, which is solved according to (5).
The construction of an effective interaction appro-
priate to this problem requires the introduction
of auxiliary large-matrix problems for both the
"0 core nucleus and the "0 single-particle nu-
cleus. These auxiliary large-matrix problems
must be chosen consistent with the basic "0 large-
matrix problem. We now discuss how this has to
be done.

Our choice of a large space for the "0J'=0'
problem is based on the following general restric-
tions:
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(1) the active orbitals used are lp, /, (for holes)
and ld, /» 2s, /»1ds/2, lf, /Qj 2p3/2p 1f,/2, 2pg/2 (for
particles);

(2} at most two holes in the lp, /, hole orbit are
allowed;

(3) up to 2A&u excitations, relative to the model-
space states, are permitted.

We therefore subject our "0 and "0 large ma-
trices to exactly the same restrictions. In the
case of the "0J"=0' states, the model space is
the Op-Oh closed-shell state. Three "0problems
are required, corresponding to J'=-,", ~', and 2'.
In each, the model space consists of the single
1p-Oh state of that angular momentum. The large
spaces that we generate from the above restric-
tions are described in detail in Table II, for the
various auxiliary problems.

Our "0O'=0' large space is rather different
from that used by Lo Iudice, Rowe, and Wong. '
They consider all orbits from 1s», through the
1f 2P shell a-s active but restrict the basis to only
2p-Oh and 3p-1h states. Because they use a larger
set of active orbits, they are able to obtain a more
realistic description of the core-polarization type
of process than we can achieve. However, since
our principal motivation is to use the large-ma-
trix approach as a test of approximation schemes
for 'U in the presence of 4p-2h intruder states, we
have included the 4p-2h configuration in our space.
Our restriction of active orbits is unfortunately
dictated by computational limitations.

Our omission of the 1P„.,-hole orbital requires
discussion, since configurations involving two
1p, /, holes probably play a large role in building
up the collectivity that accounts for the low energy
of the physical intruder state. This has two im-
mediate consequences. First, the effective ma-
trix elements derived from our calculations can-
not be meaningfully compared either with experi-
ment or with the results of diagrammatic calcu-
lations that permit intermediate excitations out-
side our space. Furthermore, since our space is
not adequate to generate the full collectivity of the
4p-2h intruder state, it will be necessary to use
some unphysical input to simulate a realistic in-
truder state.

B. Description of the single-particle and two-body input to the

large space calculations

TABLE II. Basis states for auxiliary 60 and '70 cal-
culations.

Type

16O Jff —0+

Description Number

P space

space

Op-Oh

1p-1h 2p f/21p f/2
2p-2h (2s-1d) (1p f/2)

Having specified the configurations that enter in
the large space calculations, it merely remains
to specify

(a} the single-particle energies for all active or-
bits and
(b) a complete set of two-body matrix elements

If we make the usual assumption that the two-body
matrix elements refer to the same single-particle
wave functions as do the single-particle energies,
then the large-space shell-model calculation is
completely defined.

We can associate the single-particle energies
for all the active orbits with the eigenvalues of a
Hartree-Fock Hamiltonian H, =P,h, (i), for nu-
cleons interacting with our chosen inert "0 core.
This Hamiltonian H, is used as the zero-order
Hamiltonian in PT. In the calculations to follow,
we shall assume two different (but related) sets
of single-particle energies. The two choices are
shown in Table III.

The first choice (denoted STD) is intended to
simulate a fairly realistic set of single-particle
energies, particularly for the important 2s -1d
orbits. As a guide to choosing these energies, we
have used the experimental spectra" of nuclei
near "O. In a realistic calculation, one would
not take the input single-particle energies from
experiment, since the experimental energies in-
clude correlation effects of the kind we wish to
consider. We neglect such problems of consis-
tency, and assume that the energies in Table III
(in the column denoted STD) are the eigenvalues
of our zero-order Hamiltonian Ho.

The second choice (denoted DEG) is closely re-

Type Description

TABLE I. "O J'=0+ basis states.

Number Type

Total

f7O J1f 5+ ++ P+
2

Description

10

Number
5

+ g+ g+
2 2 2

P space 2p-Oh (2s-].d) 2

3p-1h (2s-1d) (2p-1f )1p f/2
4p-2h (2s-1d) (1pf/2)

Total

3
71
97

171

P space lp-Oh (2s 1d) 1 1 1
2p-1h (2s-1d) (1f-2p) lp f/2 38 22 36
3p-2h (2s-1d) (1P ) 92 53 S6

Totals 131 76 123
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TABLE III. Single-particle energies for the STD and DEG calculations. All energies are
given in MeV.

Cas rbital 1ps/2 1d5/2 2sy/2 id@2 1f7/2 2P3/2 1f5/2 2P f/2

STD
DEG

-10.670
-10.670

-4.105 —3.280 0.960 8.830 8.830 8.830 8.830
-2.302 -2.302 -2.302 8.830 8.830 8.830 8.830

lated to STD, except that we place the three orbits
of the 2s -1d shell degenerate at the (2j+1)-
weighted average energy of the corresponding STD
levels. This choice is motivated by the fact that
most diagrammatic calculations use degenerate
energy denominators.

Both of the single-particle spectra we use have
a major-shell gap of roughly 10 MeV. This is
somewhat smaller than the 14-MeV gap that is
usually considered appropriate for "O based on
electron-scattering data. In the discussion of re-
sults in Sec. VI, we will see that a 10-MeV gap is
needed to produce a physical intruder state. This
reduced gap can be thought of as simulating the
neglect of higher configurations (e.g. those with
two holes in the 1P „,orbit), as discussed by
Federman and Pittel ~

'
In both calculations STD and DEG, we use the

same set of two-body interaction matrix elements,
namely the bare G matrix elements of Kuo and
Lee" calculated with a starting energy of -10
MeV.

In setting up exactly solvable, but moderately
realistic, large-matrix problems, the use of bare
G matrix elements is quite natural. For purposes
of direct comparison with realistic PT calcula-
tions, we would no doubt want to choose these G
matrix elements so as to avoid double-counting
problems, perhaps by using Barrett's double-
partition approach. ' However, since for our pur-
poses we require only qualitatively realistic input,
the Kuo-Lee matrix elements seem adequate.

It is important to keep in mind that the full
many-body Hamiltonians used in the STD and DEG
calculations are not the same. Although both make
use of the same perturbing interaction, they in-
volve different zero-order Hamiltonians.

g (MeV)

8.83

Orbit

2p-If
l2.88 MeV

—-------—IO 53 MeV

0.96
88% 4p-2h

is not the correct location for the 4p-2h intruder.
Experimentally, there is strong evidence that the
first excited 0' state at 3 ~ 63 MeV is a predomi-
nantly 4p-2h intruder state. " Nevertheless, the
present calculation does contain an intruder state
with essentially the same 4p-2h character. There-
fore it provides a suitable test of approximation
schemes in the presence of an intruder state.

In Fig. 5, we show the calculated J'=0' spec-
trum of "0 as a function of the real coupling pa-
rameter x. The physical intruder state first pen-
etrates the energy region of the model space for
x=0.65. In addition, there are several backdoor
intruder-state crossings, in particular, one at x
= —0.251. Clearly, for this calculation 'U,„,, the
singular part of the effective interaction, contains
contributions from several branch cuts within the
unit circle.

The effective interaction matrix elements cal-
culated for the STD case are shown in Table IV,
in which the notation is also described. Here, v„
represents the nth-order term in PT, and P„ is
the partial sum of the PT through nth order. The
pair of integers (i, j) represents the labels of the
basis states. The table shows the exact matrix
elements of '0 as well as the values of P„ through
ninth order. To facilitate judgments on the over-
all closeness of the approximation provided by P„,

—3.28
—4. 15

2 si~
Id

Sy&

2.9l MeV

VI. RESULTS AND DISCUSSION

A. Standard (STD) case

For the nondegenerate single-particle spectrum
[Fig. 4(a)] we obtain (for z = 1) the "O J'=0' spec-
trum shown in Fig. 4(b). The solid-line energy
levels refer to the three predominantly model-
space states. The dashed-line energy level at
10.53-MeV excitation energy is a physical intruder
state, being 88% of 4p-2h character. Clearly this

-I0.67 Ip,
2 "o x =o'/

(a) (b)

FIG. 4. The single-particle spectrum (a) and the re-
sulting 0 J~ =0+ spectrum (b) for the STD case. A
solid line in the calculated '80 spectrum refers to a
predominantly model-space state; a dashed line refers
to a predominantly excluded-space state.
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C
LLI

—40—

-50—

—60—

) —40.98

2

o —41.00
C
4J

490

Model - spoce sto te

———E x eluded - spoce sto te

FIG. 5. Calculated isO
J"=0' energy spectrum for
the STD case, as a func-
tion of the real coupling pa-
rameter ~. The scale does
not permit the noncrossing
of levels to be shown. Less
interesting portions of the
spectrum are also not
shown. The insert in the
upper left shows an expand-
ed view of the x, = -0.251
backdoor intruder crossing.

I

—l.O
I

—0.5
l

0.5

Coupling Porometer X

l

I.O l.5

we also show e„, the mean absolute discrepancy
between the exact matrix elements of U and the
nthmrder approximate matrix elements P„.

Perhaps the most dramatic feature of Table IV
is the strongly divergent behavior of v„at fairly
high orders. By ninth order, the PT contribution
to the (1, 3) matrix element of 1l is 180.352 MeV.

This divergence must be attributed to one of the
singularities within the unit circle, and its appear-
ance already provides an interesting confirmation
of Schucan and Weidenmuller's remark that PT
diverges whenever there are intruder states.

Much can be inferred about the dominant intrud-
er, by a more detailed analysis. According to

TABLE lV. Effective interaction matrix elements —STD case. Notation: P„=Q v~,
s.=~9+, , I && I P. Iil -&&

I & li) i, 1=—d&i&t, 2 =—2titt, 3=dsitt A—ll res. nits are given in MeV.

2 1 3, 1 1,2 2 2 3 2 1, 3 2 3 3 3

Vg

V2

V3

V4

V5

v6
Vv

VS

Vg

P2
Pe
P4
Ps
P6
PY

Ps
Pg

-1.346
-0.736

0.063
0.331
0.068

-0.626
1.423

-3.649
14.237

-2.082
-2.018
-1.688
-1.620
-2.246
-0.823
-4.472

9.766

-0.695
-0.199
-0.033

0.053
0.109
0.086

-0.128
0.067
0.098

-0.895
-0.928
-0.875
-0.766
-0.68Q
-0.807
-0.740
-0.642

-3.162
-0.119

0.382
0.153

-0.168
-0.032

0.007
0.341

-0.798

-3.281
-2.899
-2.746
-2.914
-2.946
-2.939
-2.598
-3.396

-0.695
-0.220
-0.016
-0.071

0.065
-0.130

0.346
-0.979

3.553

-0.915
-0.930
-1.001
-0.936
-1.067
-0.721
-1.700

1.853

-2.171
0.125
0.151
0.069

-0.039
-0.033

0.008
0.049

-0.017

-2.046
-1.895
-1.826
-1.865
-1.898
-1.890
-1.841
-1.858

-0.568
—0.033
-0.016
-0.042
-0.014

0.041
-0.020

0.056
-0.195

-0.600
—0.616
-0.658
-0.671
-0.631
-6.650
-0.595
-0.790

-3.162
-0.205

0.844
-Q.998

1.708
-4.121
11.891

-46.219
180.352

-3.367
-2 ~ 524
-3.521
-1.813
-5.935

5.956
-40.262
140.089

-0.568
-0.051
-0.092
-0.371
-0.413

0.327
-0.159
-0.248
-2.430

-0.618
-0.711
—1.081
-1.494
-1.168
-1.326
-1.574
-4.005

-Q.Q55

0.073
-0.256
-0.027
-0.197

0.351
-0.913

2.273
-9.357

0.018
-0.238
-0.265
-0.462
-0.112
-1.025

1.248
-8.109

0.213
0.054
0.198
0.260
0.514
1.272
4.877

18.811

-1.838 -Q.897 -2.916 -0.989 -1.897 -Q.652 -2.630 -0.691 -0.200
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Vincent and Pittel, "the contribution of a branch
cut corresponding to a "crossing"' at x, is well
represented by a pole at x„of the form

(41)

provided the length of the cut is much smaller
than both Ix, I and Il -x,I. At z=1, the contribu-
tion of the cut to v„ is, therefore,

v„(cut) =—
xc

(42)

From the dependence of this result on x„ it fol-
lows that the singularity with smallest Ix, I (i.e.,
the one nearest the origin) dominates v„ for suffi-
ciently large n, even if other singularities are
stronger. This makes it possible to estimate the
location of the dominant branch cut by comparing
successive orders of PT. To a good approxima-
tion, the crossing closest to the origin occurs at

v
C

vn+1
(42)

evaluated for sufficiently large n. By comparing
v, and v, we see that

x, = —0.25 . (44)

Thus, in this case, the singularity that is nearest
the origin corresponds to a backdoor intruder
state (as can also be seen from Fig. 5) and not to
a physical intruder state.

The residue p of the pole in (41) must be ma-
trix valued. For the crossing at x, = —0.251, the
matrix elements p, ;, are approximately given by

p(q= —(x ) '(vg)(q, (45)

since the cut dominates v, . The possibility of cal-
culating p by means of (45) allows us to test the
two-state model" of the residue. The Appendix
outlines the model and discusses its numerical
application to the singularity at x, = -0.251. The
results are very encouraging.

We note from Fig. 5 that there are several back-
door intruders in this calculation. All are pre-
dominantly very simple combinations of 4p-2h
states, in contrast to the highly collective physi-
cal intruder state. The low energies of the back-
door intruders are primarily the result of strong
particle-hole repulsion, which leads to large and
positive diagonal matrix elements for these 4p-2h
states. The physical intruder, in contrast, is
lowered in energy by the strong interaction be-
tween the various 4p-2h states.

One might question whether backdoor intruders
are likely to be present in more realistic calcu-
lations. Since the energies of these states are
dominated by their diagonal interaction matrix

elements, the amount by which the perturbation
depresses them (roughly 9 MeV for the lowest)
would probably not be increased much if a larger
space were used. As noted earlier, a larger-
space calculation would use a larger particle-hole
gap. By estimating the energy of the lowest ex-
cluded states that would be expected at z =-1 for a
gap of 14 MeV, we conclude that backdoor intrud-
ers are a real possibility in more realistic calcu-
lations. However, they would probably be much
further from the origin than they are in the pres-
ent calculation.

A second point to note in Table IV is that third-
order PT (P,) provides the best over-all fit to the
exact 'U, the mean absolute discrepancy being
only 0.054 MeV.

Finally, we note that the third-order contribu-
tions v, to the (2, 1), (1, 3), and (2, 3) matrix ele-
ments of '0 are significantly larger than the asso-
ciated second-order contributions v, . This same
feature was first noted in the realistic folded-dia-
gram calculations of Barrett and Kirson" and has
provided much of the motivation for studying the
convergence of 'U. Nevertheless, for all of these
matrix elements, adding in the third-order con-
tribution improves the agreement with the exact
results.

6 (MIV)

S.83

Orbit

2p-If

9 33 MIV

—2.30 2s-Id
6.60 MIV

3.09 MIV

-I0.67

(a)

Ipl

I
"o z~. o'

I

(b)

0. MIV

FEG. 6. The single-particle spectrum (a) and the
resulting 0 J~=O+ spectrum (b) for the DEQ cas
Solid and dashed energy levels in (b) have the same
meaning as in Fig. 4.

B. Degenerate (DEG) case

For the degenerate single-particle spectrum
[Fig. 6(a)], we obtain for z = 1 the '8O J'=0' spec-
trum shown in Fig. 6(b). Here, the three lowest
calculated states are predominantly model-space
states, and the spectrum exhibits no intruder. A
similar calculation at z = —1 also shows no signs
of a backdoor intruder. In the STD calculation,
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intruders occur primarily because of the large
zero-order excitation energy of the d, &,

' basis
state. In the DEG calculation, the d, &,

' state is
degenerate in zero order with the other model-
space states and, consequently, no intruders ap-
pear. Thus, in spite of the similarities of the two

calculations, the analytic structure of the associ-
ated effective interactions are very different,
since one calculation permits intruder states and

the other does not. A priori, one might guess that

PT would behave very differently in the two calcu-
lations.

The effective interaction matrix elements for
the DEG case are shown in Table V. The table
shows both the exact matrix elements of 'U and the
PT matrix elements through ninth order. Here,
we see from the mean discrepancies that the se-
ries seems to converge, though rather slowly.
About seven terms are required to stabilize the
results to a mean discrepancy of 0.014 MeV, after
which the error is slowly reduced by adding higher
orders.

While the addition of higher orders certainly
improves the over-all agreement with the exact
matrix elements, a reasonable approximation is
obtained as early as third order, for which the
mean discrepancy is 0.056 MeV.

It is instructive to note that the usual folded-
diagram calculations of 'U replace the Hartree-
Fock energy denominators by simple nhv energy de-
nominators. These calculations are therefore more
closely related to our DEG calculation than to our

STD calculation. Our results suggest that the use
of degenerate PT in realistic calculations can
dramatically change the character of the problem,
from a problem with intruder states and a diver-
gent PT expansion to one which may not have an
intruder state and may therefore have a conver-
gent PT expansion.

C. Comparison of STD and DEG cases

It is of interest to compare directly the results
of the STD and DEG calculations, to see more
clearly the influence of intruder -state singularities
within the unit circle.

The first feature that emerges from this com-
parison is that, through third order, PT exhibits
a very similar behavior in the two calculations.
In particular, the same matrix elements for which
the STD calculation predicts large third-order
contributions (i.e. , large values of v, ) are also
found to have large third-order contributions in
the DEG calculation. These results suggest that
the existence of third-order contributions that are
large compared to the associated second-order
contributions is unrelated to the intruder-state
phenomenon. It seems reasonable to conclude
that the same remarks apply to the more realistic
calculations of Barrett and Kirson, "namely, that
the large third-order contributions that they cal-
culate are also unrelated to intruder-state singu-
larities. This same conclusion has been reached
by considering the contributions of specific 4p-2h

n
TABLE V. Effective interaction matrix elements —DEG case. Notation: P„=Q v

s.=~+, , [(i I I'. lil-(il&li) (, 1:—dsy, ', 2=2&g, t, 2:—d3y, t. All results are given in MeV.

2, 1 3, 1 1, 2 2 2 3, 2 1, 3 2, 3

V(
V2

V3

V4

V5

V6

V7

V8
V ci

P2
P3
P4
P5
P6
Pv

8

Pg

-1.346
—0.679

0.044
0.415

-0.177
-0.059

0.021
0.089

-0.068

—2.025
-1.981
-1.566
-1.743
-1.803
—1.782
—1.693
-1 ~ 762

-1.736

-0.695
—0.202
-0.041

0.005
0.021

-0.010
-0.032
-0.003

0.016

-0.898
-0.939
-0.934
-0.913
-0.924
-0.956
—0 ~ 959
-0.944

-0.955

—3.162
—0.154

0.390
0.138

—0 ~ 157
—0 ~ 082

0.071
0.042

-0.043

-3.315
—2.926
—2.787
-2.944
-3.026
—2.955
-2.913
-2.956

-2.960

-0.695
-0.202

0.005
-0.054
-0.020

0.013
0.002

-0.014
0.005

-0.898
-0.893
-0.946
-0.966
-0.953
-0.951
-0.965
-0.960

-0.958

-2.171
0.126
0.141
0.068

-0.037
—0.035

0.018
0.013

-0 ~ 011

-2.045
-1.904
—1.837
-1.874
-1.909
-1.890
-1.878
-1.889

-1.889

—0.568
—0.040
—0.034
-0.048
—0.013

0.025
0.006

-0.016
-0.006

-0.608
—0.642
—0.690
-0.703
-0.677
—0.672
-0.688
-0.693

-0.685

—3.162
—0.154

0.554
-0.022
-0 ~ 146

0.060
0 ~ 095

-0.042
—0.030

—3.315
—2.761
-2.783
—2 ~ 929
-2.869
—2.774
-2.816
—2.847

—2.811

-0.568
-0.040
—0.012
—0.034

0.005
0.023
0.013
0.009
0.002

-0.608
-0.620
—0.654
-0.649
—0.626
-0.614
-0.605
-0.603

-0.599

-0 ~ 055
0.072

-0.151
-0.038

0.022
0.021
0 ~ 006
0.006

—0.006

0.017
-0.134
-0.173
—0.151
—0.129
-0.124
—0.118
—0.123

-0 ~ 120

0.183
0.056
0.063
0.034
0.033
0.014
0.014
0.010
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TABLE VI. Third-order path contributions.

2 1 3, 1 1 2 2 2 1, 3 2 3 3 3

STD case

-0.362 -0.222 -0.281 -0.275 —0.443 -0.150 -1.993 -0.521
vs 0.426 0.189 0.663 0.259 0 ~ 593 0.133 2.837 0.428
v, 0.063 —0.033 0.382 —0.016 0.151 -0.016 0.844 p.p92

DEG case

-0.304
0.048

-0.256

v~ -0.362 -0.215 -0.328 —0.215 -0.346 -0.171 -0.328 -0.171 -0.190
v~ 0.406 0.174 0.718 0.220 0.486 0.137 0.882 0.159 0.039
v

&
0.044 —0.041 0.390 0.005 0.141 —0.034 0.554 —0.012 -0.151

intermediate states to diagrammatic PT calcula-
tions. ~

To illustrate more clearly the extent to which
the two calculations STD and DEG are related
through third order, we show in Table VI the con-
tributions of the individual third-order paths v~
and v», as described in Sec. IIF. As a reminder,
the path v~ corresponds to a sum of third-order
unfolded diagrams and the path v» to a sum of
third-order folded diagrams. The tendency of
v~ and v» to cancel is very strong. For the ma-
trix elements (3, 1) and (3, 3), the behavior of v~
and v» is very similar for the STD and DEQ
cases. For the matrix element (1, 3), however,
the situation is more complicated. Although both

v~ and v» are individually much larger in the
STD case than in the DEG case, their cancellation
is still so close that the net value of v, is about
the same for the two cases.

A careful comparison of Tables IV and V sug-
gests that the intruder state singularities of the
STD case might first be contributing importantly
in fourth order, as reflected in the largeness of
the (1, 3) and (3, 3) matrix elements of v, in the
STD case as compared to the DEG case. The ef-

feet shows up even more dramatically in higher
orders.

In Table VII, we show the decomposition of v4

into individual paths, for both the STD and DEG
cases. The tendency for the unfolded path v~ to
cancel the folded path v~ is striking. The paths
v4~ and v4~ are usually rather smaller and also
tend to cancel each other. In the STD case, the
(1, 3) matrix element of v, seems to be large
mainly because v~ and v4~ are both large and do
not cancel perfectly. In the DEG case, however,
both v~ and v4D are small and the total v4 is also
small.

To understand the large values for the (1, 3) ma-
trix elements of v~ and v~, we have studied the
contributions from specific sets of intermediate
states, i.e., from individual terms in (27) and

(30). We find that very few terms make sizable
contributions to v~ and v4D. All terms of impor-
tance have excluded intermediate states

o =8 = [1&,/2'(Ji = 0) lf i/2 '(~2 =0)1'='.

As noted earlier, the diagonal matrix elements
associated with such states are often large and

positive because of the strong repulsion between

TABLE VII. Fourth-order path contributions.

2, 1 3, 1 1, 2 2 2 3 2 1 3 2p 3 3 3

STD case

v4A

V~
V4C
V 4D

V4

0 ~ 016
—0.636

0.485
0.466
0.331

-0.117
-0.118

0.102
0 ~ 185
0.053

0.020
-0.046

0.050
0.130
0.153

-0.152
-0.178

0.128
0.132

-0.071

—0.024
-0.106

0.050
0.149
0.069

-0.097
-0.034

0.014
0.076

—0.042

2.341
—0.327

0.259
-3.271
-0.998

-0.869
—0.144

0.053
0.583

—0.371

-0.649
-0.153

0.218
0.557

—0.027

DEG case

v4A

vive

v4C

v4D

V4

—0.035
-0.190

0.502
0.138
0.415

-0.157
—0.059

0.099
0.121
0.005

-0.033
-0.066

0.077
0.160
0.138

-0.157
-0.069

0.099
0.072

—0.054

—0.049
—0.069

0.065
0.121
0.068

—0.106
-0.045

0.019
0.085

—0.048

-0 ~ 033
—0.079

0.076
0.014

—0.022

-0.106
—0.046

0.019
0.099

—0.034

—0.126
—0.131

0.084
0.134

-0.038
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particles and holes. These states are also low in
zero-order energy, so that the appropriate energy
denominators are small. The same large diagonal
matrix elements are also responsible for the ex-
istence of backdoor intruders. Thus, we conclude
that the large fourth-order effects in the STD cal-
culation are largely a reflection of backdoor in-
truder -state singularities.

It seems likely that the approximate cancellation
of paths exhibited in Tables VI and VII is closely
related to the approximate cancellation of dia-
grams belonging to number-conserving sets."

In both the STD and DEG calculations, the par-
tial summations of PT through third order {P3)
provide an excellent approximation to the exact 'U.

This suggests that in carrying out realistic PT
calculations, in which it is not known a priori
whether an intruder state exists, one can obtain
a reasonably good effective interaction by carry-
ing out a partial summation through third order.
Of course, we have verified this conclusion only
for the calculations reported here. In calculations
involving potential intruders near x = 1, it is pos-
sible that the convergence of 'U„„will be so slow
that P, is not adequate. Nevertheless, the possi-
bility that P, may, in general, be a useful approx-
imation to'U is very encouraging, since diagram-
matic PT calculations may never be computation-
ally feasible beyond third order. For this reason,
we are planning future calculations in which the
single-particle spectra will not lead to situations
that are as favorable for low-order PT as in the
present calculations. In particular, we would

like to study approximations to 'U under circum-
stances in which a physical crossing takes place
barely inside the unit circle and in which a poten-
tial crossing takes place just outside the unit cir-
cle. The consideration of such less-favorable
cases is essential to test the general validity of
the above conclusions, so that they can be used
reliably in full -scale realistic diagrammatic cal-
culations.

D. Pade approximants

The PT results for the STD case exhibit a strong
divergence associated with branch- cut singularities
within the unit circle. It is of interest to see
whether Padd approximants (PA) can be used to
extrapolate 'U to the physical point z = 1. Table
&III shows the [N+1,N] Padit approximants to '0

for the STD case. As noted in Sec. IV these are
expected to be the most useful Padb approximants.
We include the three classes of Pads approximants
introduced in Sec. IV, namely OPADE, MPADE,
and TPADE. The exact matrix of 'U as well as the
matrix elements of P, are included to facilitate
comparison. We use here the symbol e to denote
the mean absolute deviation of a given approxima-
tion from the exact effective-interaction matrix.

Note that all three of the calculated [2, 1] approx-
imants are in poor agreement with 'U, particularly
in comparison with P„which also includes infor-
mation through third order in PT. Several of the
higher-order [N+1,N] approximants give better
approximations to '0, most notably the [4, 3]

TAIiLE VIII. (N+1, N] pads approximants —STD case. Notation: &= zP, , [(i ~'Q,. „„,„Jj)—(i ~'0( j) [.

2, 1 3 1 1, 2 2 2 1 3 2 3 3) 3

[ 2, 1]
[3,2]
[4, 3]
[5, 4]

[2, 1]
[3, 2]
[4, 3]
[5, 4]

[2, 1]
[ 3, 2]
[4, 3]
[5,4]

-2.023
—1.752
—1.817
—1.818

—3.008
—1.852
-1~ 783
-1.732

—2.654
—1.877
—1.793
-1.951

-2.018

—1.838

-0.934
-1.335
—0.947
-0.780

0.808
-0.755
—0.792
—0.649

-0.594
—0.465
-0.524
-0.662

—0.928

-0.897

-3.190
—2 ~ 938
—2.910
-2,779

—3.489
—3.001
—2.872
—2.816

—3.085
—3.102
—2, 983
—2.525

—2.899

—2 ~ 916

—0.932
-0.978
—0.981
-0.983

0.495
—0.808
-0.974
-0 ~ 959

—0.551
—1.079
—0.754
—1.615

—0.930

—0.989

MPADE

—2.776
-1.959
—1.881
-1.863

OPADE

-3.897
—2.103
—1.858
-1.845

TPADE

—3.211
—3 ~ 745
—3.250
—1.443

-1.895

—1.897

—0.633
—0.239
—0.668
—0.646

—0.263
—0.572
-0.638
—0.632

—0 ~ 199
-0.622
—0.210
-2.719

-0.616

-0.652

—3.202
-2.759
-2.948
-2.800

—3.755
-3.207
-2.996
-3.261

-3.069
-2.985
—2.932
-3.268

—2.524

-2.630

-0
~ 506

-0.539
—0.337

5.186

0.147
—0.562
—1.264
—1.798

0.117
0.530
0.093

—0.089

—0.711

—0.691

—0.039
4.047

—0.394
-0

~ 393

—0 ~ 172
-0.077
—0.471
-0 ~ 651

-0.655
—0.907
-0.705

1.715

-0.238

—0.200

0.263
0.573
0.109
0.575

0.712
0.171
0.165
0.305

0.551
0.428
0.436
0.738

0 ~ 054
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TABLE IX. [X+1,N] Pade approximants —DEG case.

2, 1 3 1 1 2 2, 2 3 2 1, 3 2 3 3y 3

[2, 1]
[3,2]
[4, 3]
[5,4]

[2, 1]
[ 3, 2]
[4, 3]
[5,4]

[2, ll
[ 3, 2]
[4, 3]
[5, 4]

-1.984
-1.787
-1.759

1 ~ 712

0.700
-1.971
-1.740
-1.744

-1.933
-1.825
—1.739
-1.882

-1.981

-1.736

-0.950
-1.035
-0.931
-0.925

-4.219
-0.732
-0.933
-0.940

-0.692
-0.835
-0.928
-1.001

-0.939

-0.955

-3.205
-2.958
—2.987
-2.951

-2.303
—3.023
-2.946
-2.949

-3.382
—2.971
—2.961
—3.076

-2.926

-2.960

-0.893
-1.050
-0.955
-0.959

-4.096
-0 ~ 721
-0.949
-0.951

-0.663
-0.829
—0.972
-1.013

-0.893

-0.958

MPADE

-3.195
-1.991
-1.881
—1.888

OPADE

2 ~ 384
—2.112
-1.877
-1.890

TPADE

—2.630
-2.118
—l.884
-1.907

—l.904

-1.889

-0.836
-6.798
-0.692
-0.685

-l.787
—0.579
—0.686
—0.685

—0.446
-0.597
-0.659
-0.686

-0.642

-0.685

—3.195
-2.885
-2.908
-2.817

-2.353
-2.939
-2.873
-2.856

-3.207
-2.908
—2.852
—2.756

-2.761

-2.811

-0.625
—0.711
-0.630
-0.616

-1.725
-0.570
-0.636
-0.603

—0.418
-0.575
-0.638
-0.608

—0.620

-0 ~ 599

-0.032
-0.144
—0.129
-0.115

0.272
-0.168
—0.138
-0.121

0.143
—0.158
-0.152
-0.082

-0.134

-0.120

0.280
0.739
0.025
0.010

1.872
0.144
0.020
0.010

0.333
0.092
0.021
0.054

0.056

MPADE and OPADE.
Further information is obtained by studying the

dependence of the Pads approximants on the real
coupling parameter x. Rapid variations with x are
associated with PA poles on the real axis. In
these calculations, the locations of the PA poles
seem to change from order to order and have no
obvious connection with intruder -state singulari-
ties. Rather generally, we find that a PA will not
be good whenever it has a pole near z = 1. For
example, the [2, 2] and [5, 4] MPADE approximants
and the [2, 1] and [5, 4] OPADE approximants all
have poles fairly near z = 1 and, consequently,
provide poor approximations to 'U. If we disregard
those orders for which poles are known to occur
near z = 1, the [N+1,N] OPADE and MPADE ap-
proximants seem to be converging, albeit rather
slowly.

In Table IX, we show the [N + I,N] Padd approx-
imants calculated for the DEG case. As in the
STD case, the [2, 1] approximants are in poor
agreement with'U. This is not surprising, since
the PT results for the two cases are very similar

through third order. The higher-order PA provide
good over-all reproduction of 'U, although usually
not quite as good as the partial sum of PT through
the same order as is used to generate the approx-
im ant.

We have calculated other [N, M] Padd approxi-
mants to '0 for the two cases under discussion.
In general, the [N + I,N] approximants provide
the best over-all agreement with 'U, with one dra-
matic exception. The exception is the [1,2] ap-
proximant, for which we show the OPADE results
for the STD and DEG cases in Table X. In both
cases, the results are in remarkable agreement
with 'U, the mean absolute discrepancies being
only 0.040 and 0.045 MeV, respectively. These
mean discrepancies are even smaller than those
associated with P, for the two calculations. The
[1, 2] MPADE approximant also provides an ex-
cellent fit to 'U (e =0.03'I MeV) in the DEG case,
but a noticeably worse fit to 'U (e =0.076 MeV) in
the STD case. We do not yet understand why the
[1,2] operator Padd approximant works so well.

In general, our Pads calculations support the

TABLE X. [1,2] OPADE results —STD and DEG cases.

2 1 3, 1 1, 2 2 2 1, 3

STD -1.812 —0.899 —2.966 —0.865 -1.935 -0.617 -2.683 -0 ~ 670 -0.206 0.040
DEG —1.822 -0.898 -2.970 -0.855 -1.938 —0.631 —2.834 -0.609 —0.131 0.045
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conclusions recently reported by Hofmann,
Starkand, and Kirson. '4 To obtain satisfactory
accuracy with the [N+1,N] approximants requires
about seven orders of PT. A similar level of ac-
curacy can be obtained, at least for the calcula-
tions reported here, by summing PT through third
order. Even if the presence of strong potential
intruders in more realistic calculations should
destroy the usefulness of P„ it is doubtful that
the PT calculations can ever by carried out to
sufficiently high order to make the [N+ 1,N] Pads
approximants a viable alternative. The [1,2]
operator Pads approximant, however, requires
only three orders of PT for its construction.
Thus, if this Pads approximant can be shown to
remain reliable in the presence of strong poten-
tial intruders, it could perhaps be a particularly
useful means of approximating the effective inter-
action.

VII. CONCLUSIONS

We summarize here the principal conclusions
that we have drawn from this study.

(1) The singularities of the realistic effective
interaction are not restricted to physical intruder-
state singularities. Backdoor intruder states are
also a real possibility.

(2) Even when intruder states are present, the
PT series for 'U seems to have a quasiasymptotic
property, third order (P,) providing the best ap-
proximation.

(3) The third order of PT is often larger than
the second order. This does not seem to be due
to intruders. In general, the inclusion of these
large third-order contributions improves the ap-
proximation.

(4) The [N+1,N] Pads approximants do not reli-
ably provide better approximations to 9 than PT
if only low orders are available.

(5) The [1, 2] operator Pads approximant pro-
vides the best approximation to 'U if only informa-
tion through third order in PT is available. The
excellence of this approximation warrants further
understanding.

(8) The Vincent-Pittel two-state method (when
extended to a multidimensional model space}
seems to be quite successful in estimating the
strengths of crossing singularities.

(7) Diagrammatic calculations of 'U that use de-
generate (n~~) energy denominators may lead to
an effective interaction with a very different ana-
lytic structure than the "true" effective interaction.

(8) The best accuracy attainable with the approx-
imations we have tested is probably about 200 keV.
This may be adequate for some purposes, but mill

probably impose limitations on the applicability of
'U to more complex systems far from closed shells.
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APPENDIX

An extended form of the Vincent-Pittel two-
state model of the residue p. of a branch cut sug-
gests that p. is a separable operator. For the
trace of p. , the extended two-state model predicts
the form

m'x. '
try. = (A 1)

which is the same as the scalar residue given by
the original two-state model. " In this equation,
pn is the matrix element of V between the eigen-
vectors of PHP and QHQ that correspond to the
levels that "cross" at x„and d is the relative x
derivative of these two energies at x, (and of the
same sign as x,}.

The separable operator p. that results from the
extended two-state model is either positive or
negative semidefinite, so that (try, ) (Al) gives an

upper bound on its single nonzero eigenvalue
(which is real). However, p is not Hermitian and
may have matrix elements that are larger than all
its eigenvalues.

For the singularity at x, = -0.251, discussed in
Sec. VIA, we find by applying (45) to the matrix
elements of e, in Table IV that

try, = -4.76 x 10 6 MeV . (A2)

The following values of mx, and d are obtained by
diagonalizing 0 in the neighborhood of z = —0.251:

mx, = —0.0082 MeV,

d =-10 MeV.
(A3)
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tive Interactions and Operators held at the Univer-
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ence participants with whom we had the opportu-
nity to discuss effective interactions, particularly
Michael Kirson, Bruce Barrett, Nicola Lo Iudice,
and S. Y. Lee.

We would like to thank Joe McQrory for supply-
ing us with a version of the Oak Ridge-Rochester
shell-model code and Tom Kuo for sending us the
two-body matrix elements used in this investiga-
tion. One of the authors (S.P.) would also like to
acknowledge several helpful discussions with
Harry Lee. We also wish to thank Michael Kirson
for pointing out several errors in Tables VIII and
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Inserting these values into (A1), we obtain

try. = —6.72x 10 MeV, (A4)

in good qualitative agreement with (A2).
%e have also investigated the prediction for the

minimum separation Eg p between the crossing
levels for real x. From the insert in Fig. 5, we
find

Eg p 0 0142 MeV

The two-state model predicts

E„,= ~2mx, ( =0.0164 MeV (A6)

which agrees well with (A5).
Thus the two-state model seems to be very suc-

cessful in estimating the properties of crossing
singularities, at least in this particular case.
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