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From the Wick-Dyson expansion of the exact propagator of a pion in the presence of a nucleus, an invariant
potential for crossing symmetric elastic pion-nucleus scattering is obtained in terms of a series of pion-nucleon
diagrams. The Chew-Low theory is used to develop a model in which the most important class of diagrams is
effectively summed. Included in this model is the exclusion principle restriction on the pion-bound nucleon
interaction, the effects of the binding of nucleons, a kinematic transformation of energy from the lab to the w N
center of mass frame, and the Fermi motion and recoil of the target nucleons. From a numerical study of the
effects of these processes on the m-'2C total cross section, the relative importance of each is determined. Other
processes contributing to the elastic scattering of pions not included in the present model are also discussed.

NUCLEAR REACTIONS Many-body approach to an invariant potential for

crossing symmetric, elastic pion-nucleus scattering. 2¢(x, m), E;in 3,3)

resonance region; calculated o(£) showing effects of nuclear corrections to
Chew-Low description of 7N interaction.

I. INTRODUCTION

In a recent letter' we discussed a derivation of
the pion-nucleus optical potential which proceeds
from the exact propagator of a pion in the pres-
ence of a nucleus. From the Wick-Dyson expan-
sion of the propagator and the relation between
the potential and the propagator the optical poten-
tial was identified with a series of proper self-
energy subdiagrams of the pion-nucleon inter-
action in the nuclear medium. For the subse-
quent analysis, these 7N diagrams were formally
summed into a series of direct and crossed pion-
nucleus diagrams. It could then be established
that the crossed 7-nucleus processes are not for-
mally included in the Watson multiple scattering
theory? even when a crossing symmetric pion-
nucleon amplitude is used. It was also shown how
the transformation properties of the potential,
its off-shell behavior, and the form of the scat-
tering equation determine whether the crossed
m-nucleus processes are included in the elastic
amplitude.

In the present work we construct an invariant
pion-nucleus potential which reflects many of the
physical processes so clearly defined by the dia-
grammatic expansion. After reviewing the propa-
gator approach to the optical potential in the next
section, we present in Sec. IIl a model for the
potential to determine crossing symmetric elas-
tic pion-nucleus scattering which effectively sums
the most important class of pion-nucleon dia-
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grams, the single-nucleon processes. We include
in this model a kinematic transformation of en-
ergy from the lab to the 7N center of mass frame,
and the effects of the binding of nucleons, the ex-
clusion principle restriction on the pion-bound
nucleon interaction, and the Fermi motion and re-
coil of the target nucleons. Though some of these
features have been discussed in the literature be-
fore,? we find that our approach in describing pion-
nucleus scattering in terms of a crossing symmet-
ric potential constructed from invariant pion-nu-
cleon amplitudes provides a framework for ana-
lyzing these effects which proves convenient and
which leads to new dynamical results. In partic-
ular, since we identify the pion-nucleus potential
as a term appearing in the Klein-Gordon equation
analogously to the pion rest mass, the potential
necessarily has a Lorentz invariant form which
eliminates having to confront the difficult pro-
blem* of relating off-shell amplitudes in different
frames, but, as a consequence of our particular
model for this potential, requires that we carry
out only a well-defined kinematic transformation
of energy. We are also able to show that.crossing
symmetry has a very important role in determining
the contribution of nucleon momenta to the nuclear
transition operator for terms through first order
in the ratio of pion energy to nucleon mass. The
structure of the resulting nucleon motion correc-
tion to the pion-nucleus potential significantly
differs from that obtained in previous work.5~7
From a numerical study of the effects of these
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processes on the 7-'2C total cross section, as
discussed in Sec. IV, we determine the relative
importance of each to elastic m-nucleus scatter-
ing. (The specific role played by the crossed 7-
nucleus processes has been discussed in Ref. 1.)
In Sec. V we summarize these results and discuss
some further improvements to our potential.

Il. REVIEW OF THE PROPAGATOR APPROACH TO THE
OPTICAL POTENTIAL

A. Derivation of the scattering equation

Working in the Heisenberg picture, let |¥) rep-
resent the exact wave function of the nuclear
ground state, and let af,'?%yr (¢) and a(:ﬁ.(t) be, re-
spectively, second quantized pion creation and
annihilation operators at time /, where o and 8
denote isospin components and k and k’ are three-
momenta. We define the single-pion time-or-
dered propagator by

( BK'|G(w)|ak)

- jdtefww\pmaé'?, () agr ONE), (1)
which describes the propagation of a pion with en-
ergy parameter w from the state with momentum
Kk and isospin a to the state (8, k') in the presence
of the nucleus in its ground state |¥). The sym-
bol T denotes the chronological time ordering of
the second quantized operators.

In the absence of interactions the motion of the
pion would be described by the free propagator
function, given by

(B’ |Go(w)] ak)

- fdt et (0| T(au, (0, a T onj0y , @)
where |0) represents the physical vacuum with
(0]0) =1. Let 4 be the relativistic energy oper-
ator for the pion so that, acting on a single-pion
state of momentum k, we have k|ak) =w,|ak),
w,2=k2+m 2. Then in the absence of interactions
the Heisenberg operators satisfy

a(:y), t)=e'"tagt, e it (3)

(d)

aB;:Eaﬂﬁ,(O) .

Inserting a complete set of states in the chrono-
logical product of (2), using (3), the canonical
commutation relations

[ast., alg]=(27)%6, 46k - k"),
[aBF’r aai] :[GEF', a;ﬁ] =0 )

and performing the time integration, we have

“4)

-

(BE'|Gy(w)|ak) = 645(2m)%6(K - K')(w - wy+ +i€)™. (5)

Expressing the right-hand side as the matrix
element of an operator in the single-pion Hilbert
space ¥,, we can write an operator equation de-
fining the free propagator

Gow)=(w=r+ie)™?. (6)

(Here and in the following an operator will be as-
sumed to act in ¥, unless noted otherwise.) If
the pion were moving in a potential field which
could be represented by an operator v acting in
3,, we would have h—~h'=h+v, so

Gow)=(w—-h-v+ie)?t, (7)

This suggests that a reasonable ansatz for the
pion-nucleus optical potential U(w) be given by
the operator equation

Gw)=(w—h-U(w)+ie)™*. (8)

Using (6), this can be written as an implicit equa-
tion for G(w),

G(w) =Gylw) + Gyw)U(w)G(w), 9)

which will be recognized as the Dyson equation
expressing the exact propagator in terms of the
free propagator and “mass operator” U(w).
That the operator U(w) defined by (8) is an ap-
propriate optical potential, in that it yields the
exact many-body T matrix for elastic scattering
when used in the Lippmann-Schwinger equation

T@)=UR)+UE)z-h)T(), (10)
Z=w +1€,

can be established easily. We note that to obtain
this result it is necessary to treat the target nu-
cleus as static, thus neglecting recoil.®

B. Wick-Dyson expansion

By carrying out the Wick-Dyson expansion of
the exact propagator, we obtain the diagrammatic
representation of the potential U(z) as the sum of
all proper self-energy subdiagrams of the pion-
nucleon interaction in the nuclear medium.

To evaluate the perturbation expansion it is
necessary to define the Hamiltonian H=H,+H,.
For the noninteracting part of the Hamiltonian
we consider

H=HO +HY +H,+C.T. (11)

H® and HY represent free-field Hamiltonians
for the pion and nucleon fields, Hy is a nucleon-
nucleus potential of the type proposed by Brandow®
to describe the interaction of any nucleon with the
residual core, and C.T. denotes counter terms.
For H, we consider

H =H, y+Hyy-Hz-C.T. (12)
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Here H,, describes the 7N interaction; we shall
assume that it is linear in the pion field, in ac-
cordance with most widely used models. H,, de-
scribes the nucleon-nucleon interaction, except
for pion exchange. By writing the Hamiltonian in
this form we shall find a significant simplification
in the nature of the diagrams which result from
the perturbation expansion. The subdiagrams
which represent conventional mass renormaliza-
tion will be cancelled by the counter terms, and
the subdiagrams which represent the renormaliza-
tion of the nucleon propagator due to the inter-
action between two or more nucleons produced by
Hyy or by H, (through second or higher order
terms) will be cancelled by the nucleon-nucleus
potential, by definition.

In translating the results of the perturbation
analysis of the propagator into diagrams, we
shall use Feynman-Goldstone diagrams as they
yield the form (8) readily in addition to conve-
niently exhibiting the roles of nuclear excitation,
pion-nucleus crossing, and other features we wish
to consider. It should be emphasized that we fully
include the antinucleon degrees of freedom in our
analysis, though for our purposes it will not be
necessary to explicitly indicate the antinucleon
states in the diagrams.

A few of the lowest order diagrams for the 7N
interaction in the nuclear medium are shown in
Fig. 1. For simplicity, diagrams involving ex-
change of bosons between the pion and a nucleon
are not exhibited. We note that for every diagram
for which the absorption vertex for the incoming
pion precedes the emission vertex for the out-
going pion there is another diagram which is
identical, except that the absorption and emission
vertices are reversed. This is the expression of
crossing in the #N interaction in terms of Feyn-
man-Goldstone diagrams.

From the relation (9) it follows by well-known
arguments!® that the optical potential U(z) has the
diagrammatic interpretation as the sum of the
proper self-energy subdiagrams of the Wick-
Dyson expansion of the propagator. Having thus
identified the series of subdiagrams which con-
stitute the potential U(z), we can exhibit them as
a sum of pion-nucleus diagrams after summing
over all possible generalized time ordering. This
process may be viewed as simply a regrouping of
the 7N diagrams. The resulting series of proper
m-nucleus diagrams are shown schematically in
Fig. 2, where the ground state nucleus is taken
as the vacuum. The open circle of Fig. 2 repre-
sents the basic set of proper diagrams in which
the nucleus in excited by the first interaction and
remains excited until the last interaction. For
every diagram in the set there is another which
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(d) (e) (f)

FIG. 1. Several low order Feynman-Goldstone dia-
grams for the TN interaction in the nuclear medium
which are generated from the Wick-Dyson expansion of
the single-pion propagator are shown. The dotted lines
represent pions; the solid lines which are directed up-
ward represent nucleons, while those directed down-
ward represent holes.

is obtained by crossing the incoming and the out-
going pion lines; thus the set is crossing symme-
tric. Its value will be represented by
(BK'|D(2)|ak). The diagrams in D can be broadly
grouped into two subsets: one containing the dia-
grams where the incoming and the outgoing pions
both interact with the same nucleon (single-nu-
cleon processes), and the other containing all re-
maining diagrams (multinucleon processes). An
example of a single-nucleon process is shown in
the diagram of Fig. 3(a); a multinucleon process
is shown in Fig. 3(b). The single-nucleon pro-
cesses represent the elementary 7-nucleon scat-
tering in the nuclear medium. The resulting
amplitude differs from the free 7N scattering
amplitude in three important aspects: (i) the ex-
clusion principle restricts the available phase
space for the interaction, (ii) the nucleons are
bound in a potential and possess a definite dis-
tribution of momenta so there exists a certain
threshold of energy to produce a particle-hole
pair, and (iii) the intermediate state pions can
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FIG. 2. Diagrams (a), (b), and (c) represent the first
three terms of the series of pion-nucleus diagrams
which constitute the pion-nucleus optical potential U(z).
Diagram (d) is an example of a diagram exhibiting cross-
ing within crossing, and is therefore not part of the
series represented by U(z).

(a) (b)

FIG. 3. An example of a single-nucleon process (a)
and a multinucleon process (b).

rescatter off the entire nucleus. These effects
must be considered in the formulation of any mod-
el description of the pion-bound nucleon inter-
action. The multinucleon processes describe in-
herently many-nucleon aspects of the interaction
which are not represented in free scattering.
Figure 2(b) represents the simplest crossed
(proper) diagram, and Fig. 2(c) represents the
second term of a series of crossed diagrams.
These diagrams describe the process where the
nucleus emits two pions and returns to its ground
state. One of the pions comes out while the other
suffers a series of D interactions and is eventually
absorbed, as is the incoming pion. We note that
diagrams such as the one shown in Fig. 2(d),
where we have crossing within crossing, are not
to be included in U. These diagrams are iter-
ations [in the context of (10)] of the series of
crossed diagrams, and would therefore be counted
twice in the elastic amplitude if also included in
U. We further note that since each of the crossed
m-nucleus diagrams has a ground state nucleus in
an intermediate state, they are not formally rep-
resented in optical potentials derived from the
Watson multiple scattering theory.? The principle
reason for this difference is that, unlike the Wat-
son formalism, here we explicitly keep track of
the facts that (i) the pion is a boson and (ii) a nu-
cleus can emit or absorb two pions (one real, one
virtual) and still remain in its ground state. In
Ref. 1 it was demonstrated that the crossed 7-nu-
cleus processes play an important role in the nu-
clear elastic scattering of low energy pions.
From the rules for evaluating n-nucleus dia-
grams given in Appendix A, and after carrying
out all possible generalized time orderings, the
optical potential U(z) is analytically expressed
in terms of the series of proper diagrams by

U(z) =D(2) +D(2)Gy(-2)D(2)
+D(2)Go(-2)D(2)Gy(=2)D(2) += « -
=D(z) - D(2)[z +h +D(2)]*D(z) (13)
or, equivalently,
U(z) =D(2) = D(2)(z +h)™'U(2) . (14)

The first term on the right of these equations rep-
resents the contribution of the direct diagram of
Fig. 2, while the remaining terms describe the
series of crossed m-nucleus diagrams. Using (14)
in (10) yields

T(z) =D(z) +D(2)(2h)*/3(z = k?)~*(20)* 2T (2).  (15)
We note that &k is a positive definite operator, so
that (22)!/? is well defined. By multiplying (15) on

the right and on the left by (2k)!/2 and defining the
operators
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T(2) = @r)?T(2)(2R) 2,

(16)
V(z) = (2h)*2D(2)(2n)/?
we have
T(2)=V(2)+ V() (2® -h2)' T(2). an)

Following the usual prescription, (17) will be
recognized as the time-independent Klein-Gordon
equation

(B[ T(w, +i€)|E) =(K| V(w08 ) (182)
where

[08)) = |K) + (w2 =2 +i€) Viwy)| %) (18b)
or

[+ Vw)]lo%) =w 2ot ) . (18¢)

Thus, to determine the amplitude for elastic
m-nucleus scattering which includes both the di-
rect and crossed 7-nucleus processes, we need
to develop a model which effectively sums the
diagrams represented by V(z), and then solve the
Klein-Gordon equation (17). We observe that the
inclusion of the crossed diagrams has led to a
potential which is Lorentz invariant. This is not
surprising when we consider that by including
the crossed diagrams we have included the nega-
tive energy states of the pions, and that relativ-
ity requires that we handle the negative and posi-
tive energy states symmetrically.

The evaluation of the scattering amplitude from
(17) has the obvious advantage over the corre-
sponding calculation based on the Lippmann-
Schwinger equation (10) that the potential V(z)
that we must determine represents a smaller
and simpler set of 7N subdiagrams than does
U(z). We now consider a model for the potential
V.

III. MODEL FOR THE INVARIANT PION-NUCLEUS
POTENTIAL

As the potential V(z) appears in the Klein-Gor-
don equation analogously to the pion rest mass,
we shall refer to it as the invariant pion-nucleus
potential. From the Dyson-Wick expansion V, by
its relation to D through (16), is identified as a
set of crossing symmetric proper self-energy suk
diagrams describing the pion-nucleon interaction

J

in the nuclear medium. Our goal is to sum this
series of diagrams.

Our previous analysis has shown that the dia-
grams represented by the invariant potential can
be grouped into two classes: the single-nucleon
and the multinucleon processes. The first class
represents pion-single nucleon scattering in the
nuclear medium. Except for modifying terms
arising from the presence of other nucleons, this
subset of diagrams is identical with the set one
obtains from a perturbation expansion of pion-
free nucleon scattering. This class of diagrams
may thus be considered analogous to the descrip-
tion of the pion-nucleus interaction which is pro-
vided by a first-order optical potential. The
multinucleon processes may correspondingly be
viewed as being analogous to the various higher-
order corrections to the potential. Consequently,
we shall develop a model for V in which a large
class of diagrams describing free 7N scattering
is effectively summed; and with corrections to
account for the presence of other nucleons, we
will take this result as an approximation to the
single-nucleon processes described by V. We
will not consider the more difficult problem of
summing the diagrams for the multinucleon pro-
cesses, though our numerical studies will indi-
cate that they are not entirely negligible.

A. Impulse approximation with Chew-Low amplitude

We first discuss a very simple model for V(z)
based on the impulse approximation. Thus we not
only neglect the multinucleon diagrams, we also
neglect the effects of the other nucleons on 7-
single nucleon scattering. As a result, the dia-
grams considered are those which represent the
free 7N scattering amplitude. In the simple mod-
el we make the further approximation of using
the Chew-Low!! theory to describe the 7N scatter-
ing amplitude. This theory is approximate in that
it only considers the p -wave interaction with the
nucleon regarded as static; i.e., the ratio w/M,
of the pion energy to the nucleon mass is con-
sidered negligibly small. However, it is crossing
symmetric, and has the virtue that it is simple
and gives a fairly good description of the p -wave
phase shifts in the resonance region.

Thus, in our model

(BE'|V(2)|ak) = (BK'| 2wy ) /2D(2) 2w, ' 2|ak) = (¥| - 4nv(k2)v(k"?) f t PO(BK, ak)h,(2)|¥)

n=1p=1

(19)



304 J. BARRY CAMMARATA AND MANOJ K. BANERJEE 13

where |¥) denotes the exact ground state nuclear
wave function, v(k?) is the form factor (cutoff) of
the mN interaction, and the sum over n represents
the sum over the A nucleons of the nucleus. [With
A=1, and |¥) replaced by a single (static) nucleon
state, (19) becomes (except for energy factors)
the 7N T-matrix element of the Chew-Low theory.]
For the nth (static) nucleon, the complete pro-
jection operators are given by

P{" (B, ok )= T{7)(8,0) (K", R)e* KT,
P (BE', ak) = T(7)(8, )3(7)(&’, R)eF-F+Ta |

P (8K, aR) = T(5)(8, )8 AR/, R FF- T
P (8K, o) =7 {7(8, ) I &', Ryt K0 7
where (20)
Tﬁ’};(ﬁ,a)=§7(e")‘f("),
7B, a)=06{% - T7{")(8,a),
gk, k)= u-k’c ‘&,

>

I (k4 k) =3k"k-9{")(K, k),

where 7, is the projection operator onto states
of total isospin I, d, is the projection operator
onto states of total angular momentum J, G, is
the spin vector of the nth nucleon, and ‘rfx’" is the
ath component of the nucleon isospin vector.

s '2C has received the most extensive experi-
mental study as the target for elastic pion scat-
tering, we shall confine our calculations to this
nucleus. The application of our procedure to
other nuclei is straightforward. The ground state
of '2C has (J®,I)=(0% 0), and thus in the nuclear
expectation value of the projection operators in
(19) only the scalar, isoscalar, even parity part
of these operators will contribute. The three nu-
cleon variables 7,, T,, and 0, present in the
P(" canbe zoupled to obtain the relevant part
using standard techniques; this is described in
detail in Appendix B. We find that

(BE'|V(w) | ak)

=-167%6,gv(k?)v(k k" kp(g) H "V (w), (21)

H® (w) = 5[ () +2hy(w) + 2 hy(w) +4 Ay (w)],

@)= [ r2ariano), q=IF-H

where p(7) is the nuclear density, which is nor-
malized to the number of nucleons. This is the
result of our simple model. It is a straightforward
exercise to show that this invariant potential gen-
erates a crossing symmetric pion-nucleus ampli-
tude from (17). For completeness we include this
calculation in Appendix C.

B. Corrections to the impulse approximation

To make the model for the invariant potential
more realistic we consider four corrections to the
impulse approximation.

1. Pauli exclusion principle

The Pauli principle restricts the states into
which a nucleon can scatter after interaction with
a pion to be those which are not occupied by the
other nucleons of the nucleus. The effects of
this blocking of the 7N interaction in the nuclear
medium have been extensively studied,?~® and
this effect is generally regarded as a necessary
(though not dominant) correction to the impulse
approximation treatment of pion-nucleus scatter-
ing. We incorporate this restriction into our mod -
el for the invariant potential by replacing the 7N
form factor v(k2) by v(k2)B(k), where B(k) is the
probability amplitude that a nucleon can change
its momentum state by K and scatter into an un-
occupied state. This change can be viewed as a
modification of the vertex function of the 7N inter-
action. The effect of this prescription is that the
entive mN amplitude appearing in the invariant
potential will now have B(k)3(k’) as a multiplica-
tive factor. Since there are higher-order dia-
grams contributing to the effective pion-nucleon
scattering amplitude in the nucleus which are
not proportional to this factor,!® our procedure
will necessarily overestimate the role of Pauli
blocking unless B(k) is constructed as an “effec-
tive” (perhaps phenomenological) function.

A simple model for the Pauli blocking function
was first constructed by Bethe!® by considering a
zero-temperature Fermi gas with equal densities
of protons and neutrons. For the scattering of
negative pions by nuclei, the diagram shown in
Fig. 4(a) (a part of the Born term of the Chew-
Low theory) will contribute to the scattering only
if the intermediate proton state of momentum
(@ -k') is above the Fermi sea [specified by the
Fermi momentum (pz)]. As shown by Bethe using
the diagram of Fig. 4(b), the fraction of initial
neutron states for which the intermediate state
(@ -k’ is empty is

F(k)== 1 #® B'<2
PF 1-15 P_F2> for k'<2ps

=1 for k'>2pg. (22)

We note that if B(k)=[F(k)]'/?, then B(k)~0 as k
- 0. This, however, is an unacceptable threshold
behavior for a blocking function,!® since the theo-
retical analysis of pionic atom data suggests rel-
atively small blocking as k£~ 0.

To obtain a more realistic blocking function and,
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in particular, to improve its threshold behavior,
we extend Bethe’s analysis to include the renor-
malization of the occupation numbers for nucleon
states in the Fermi sea. For simplicity we con-
sider only an average occupation number # for
such states. There are then three classes of 7N
interactions which lead to intermediate states
consistent with Fermi statistics:

(a) A nucleon is initially with the Fermi sea; at
the 7N vertex the momentum state of the nucleon
changes by k such that the nucleon enters a state
above the sea.

(o) A nucleon is initially in a state above the sea;
at the 7N vertex the momentum state of the nu-
cleon changes by k such that the nucleon remains
above the sea.

(c) A nucleon is initially within the sea; at the
mN vertex the momentum state of the nucleon
changes by k such that the nucleon enters some
unoccupied state within the sea.

The probability for process (a) is nF(k). For (b)
it is (1 —n)P,(k), where P, (k) is the probability
that the nucleon remains above the sea after
changing its momentum state by k; a reasonable
approximation is to take P,(k)=~1. Finally, the
probability for process (c) is n[1 - F(k)] (1 - n).
Combining yields the probability amplitude that

a nucleon can change its momentum state by k
and scatter into an unoccupied state,

Bk ={nF(k)+ (1 —n)+n[l —-F(R)]A -n)}*/2, (23)

It can be seen that B(k) > [F(k)]'/2 for all k, and
as k=0, B(k)~ (1 —=#?)/2, Thus our blocking func-
tion is weaker than the expression proposed by
Bethe,'® and it has a form which provides a rea-
sonable threshold behavior.

The average occupation probability can be de-
termined from the results of Brueckner-Hartree-
Fock calculations,'® though in light of our pre-
vious remarks it may ultimately be better to view
n as an effective parameter, thus making (23) a
convenient parametrization of the blocking func-
tion. When one considers that in the nuclear in-
terior the attenuation of the pion wave is very
strong near resonance,’® which implies that the
elastic scattering becomes a peripheral process
for which Pauli blocking plays a negligible role,'?
it is then clear that » must be considered an en-
ergy -dependent parameter.

2. Nuclear binding effects

As the nucleons of the target nucleus are bound
in an effective potential due to their mutual inter-
actions, we expect that this will result in a shift
from the value of the impulse approximation in

the energy at which the 7N interaction takes place.
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This point was discussed on physical grounds in
Ref. 1. Subsequently, in a study of pion-deuteron
scattering near the 7N resonance energy using a
three-body model based on Faddeev’s equations,
Myhrer and Koltun?® found clear numerical evi-
dence that the potential which binds the nucleon

to the target increases the pion energy at which
the 7N amplitudes resonate. Thus, we relate the
energy of the 7-nucleus interaction w to the energy
of the m-nucleon interaction @ by

d=w+Eyg, (24)

where E g is the average nucleon single-particle
energy (Eg<0). This represents the simplest ap-
proximation to a more careful kinematical®* and
dynamical’? treatment of nucleon binding. A sim-
ilar approach to simulate the effects of nucleon
binding has also been considered by Schmit?? and
by Kujawski and Aitkin.*' In the present usage,
(24) should be considered more an intuitive pre-
scription rather than a systematic correction to
the impulse approximation.??

3. Nucleon recoil and Fermi motion

In the simple model for the invariant potential
there were no terms in the nuclear transition op-
erator involving nucleon momenta as a conse-
quence of our use of the static approximation for
nucleons. As a result the invariant potential is
insensitive to the nucleon momentum distribution
(except as this is reflected in the nuclear form
factor) as well as the recoil effects of the bound
nucleons in their interaction with the scattering
pion. Previous theoretical work™2*25% provides
some indication that nucleon motion can have a
strong influence on pion-nucleus scattering. We
shall discuss the analysis of this effect in some
detail.

It is tempting to think that nucleon motion can
be taken into account by simply rewriting the pro-
jection operators of (20) in terms of the m-nucleon
relative momenta.?® Unfortunately, this is not a
complete solution. The dynamics of absorption
and emission produce a purely p-wave interaction
only in the static limit. In reality the crossed
processes produce interactions in other partial
waves as well. (We hasten to add that exchange
of bosons between the pion and nucleon produces
interaction in all partial waves also. But here
we are interested in an energy region where the
absorption-emission mechanism dominates.)
These effects are of first order in w/M,. Thus,
to take the effects of nucleon motion on the off-
shell 7N scattering amplitude into account fully,
one must improve upon the Chew-Low theory by
abandoning the static approximation. Fortunately,
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a limited program where we take into account only
correction terms linear in w/My can be carried
out without having to redo the Chew-Low theory.
This is possible because the recoil induced ad-
mixture of the other partial waves to the dominant
p-wave amplitude is fixed in the lowest order by
crossing symmetry.

Let us consider the scattering event shown in
Fig. 4(a), where K and kK’ are the initial and final
pion momenta and g and q’(=q — k’ +Kk) are the cor-
responding nucleon momenta. Since we are inter-
ested in effects of first order in w/M,, we ne-
glect the change in the pion energy due to recoil.
The projection operators, correct up to w/M,
are easily obtained by the replacements

(@, k't(w)lq, k)

E,-K/_M_’__wa,
T My+w (25)

FoR-Myk-od
My+w

For simplicity we confine our discussion to the
isosymmetric part of the #N scattering amplitude.
For the pion optical potential due to 2C, the tar-
get under study in this paper, this is the quantity
of interest. Retaining the same dynamical as-
sumption that the absorption-emission process
dominates over boson exchange processes, one
may be tempted to write for the isosymmetric
part of the dominant p-wave 7N amplitude

= —4mv(K2) (R 2Xs'|[A) (w)K-K’ + A (0)i 6K’ xK]|s)

= —4qo(R2)uE2Ks |[[AD ()R K +A7 ()i &K' XK = (/M) {A™ ()i [& +K)2 + (K +K") < (G+")]

where s represents the nucleon spin, and for sim-
plicity we set the nucleon at the origin of coordi-
nates. In the second line we have retained only
terms through first order in w/M,. Furthermore,
terms linear in w/My arising from the form fac-
tors have been ignored. [This is because the form
factor in the Chew-Low theory is very well rep-
resented by e*%/"? and the terms arising from it
are of the order (w/M,)k%/A%, Since A~M, these
terms are negligible. |

The reason (26) is not quite correct is that it
cannot satisfy the crossing property of the isosym-
metric part of the 7N amplitude which requires
that

<a’7 E’lt(w)lqv k> =<al, _Elt(—w)la’ —E,> . (27)

Note that the two terms inside each of the two

(@, &g, k)

= —4nv(R2)v&'2) (s {3 [A) () + AP (~w)] [k~

+A (w)io- [k’ xk-q'xq]}+<++]ls), (26)

r

square brackets behave differently under crossing.

An obvious solution to this problem is to sym-
metrize (26) with the amplitude describing the
crossed process. The expression resulting from
this procedure (which we shall follow) has the
virtues that (i) it exhibits the dominance of the
p-wave interaction, (ii) it reduces to the Chew-
Low result in the static limit, (iii) it is (neces-
sarily) crossing-symmetric, and (iv) because of
the last feature it includes an s-wave 7N inter-
action term due to nucleon recoil. To understand
this last feature we recall that the crossing ma-
trix is not diagonal in orbital angular momentum,
but has off-diagonal terms of order w/M,. The
s-wave term, which is explicitly of this order, is
thus a consequence of crossing.

The prescription of crossing symmetrization
gives

K- (w/2M,)&+K) (@ +3")]

+3[A () —AC (—w)] 10+ [K' XK+ (w/My)q’ X4

— (w/2M 5[ AD) (w) = A®) (=) )& +K'P = (w0/My)3[ A7) () + A (-w)]i G- K" xK}|s) .

(28)

In the static limit, (w/M,)—~0, A®)(w) are linear combinations of the Chew-Low amplitudes, namely,
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AN () ————H® () = 3, (w) +2 hy(w) + 2 by(w) + 4 Ry ()] =H ) (- w),

w/ﬂN»o

and

AP () ———HO (w) = 5[, (0) = 7y (w) +2 By(w) = 2 A (w)] = = HO (- w). (29)

w/AlN—'O

It then follows that the combinations
AN () -AT (-w) and AN (w)+AC (- w)

must contain as a factor an odd power (>1) of w/My. Therefore, as long as our aim is to obtain the 7N
amplitude correct up to the first power of w/M,, we can neglect the last two terms in (28) and write

(@, &'w)lg, &

= — 4mo(R2) o’ 2K s"[{H O (0)[K & - (0/2M) (& +E)* @ +3)] + HO ()i G- [k XK+ (w/My)T’ X3} s) ,  (30)

where

H®(0)=5[AM (0) +AM) (- w)],

HO (0)=3[A0) (0) - A (= w)]. 31)

To interpret the new amplitude and, in particular, the quantities H®(w) and H®)(w), let us go to the
center of mass (c.m.) frame where g=-k and 4’ =-k’. We obtain

(-K, K |tw)|-& &)

= —41rv(ﬁ"’)v(f{’2)<s'I{I;((")(u.v)((.u/ZMN)(l’{2 +K'2) +[1 + (/M) [H® (WK kK+HO (w)id-k'xk]}|s) . (32)

We examine the p-wave term first. If we write the full scattering amplitude, without the static approx-

imation, in the form

(=K', BBt~ Fa) =(s'r'| - 4r0(R2)o(E™) 3 ', ()P, (6K, aR)|sT) , (33)
B =1

with T the nucleon isospin (1 =7’ for the isosym-
metric amplitude), then the unitarity relation re-
quires

Imh'u<wk)=[v(1?2)]2k3|h'u(w.)vﬁﬂw—k. (34)

The last factor is not present in the static approx-
imation. From (34) it follows that k' (w,) is re-
lated to the phase shifts 6, by

My +w, €*@) sindy(w,)

’ -
R T 0 ) O
while in the static approximation
18, ,Wwp) o}
h“(w.)=e #“r) gin §,(w,) (36)

#lo(k?)]?
Noting that
[1+(w, /MY H® (@)
= 1R’ (wp) +2R ", (w,) +2h "3 (w,) +4h"(w, )]
and
[1+(wy /MY HO (wy)
= h' (w,) = h'y(w,) +2h"5(w,) — 2R (w,)]

it then follows that we can approximately equate
H™(w) to the Chew-Low amplitudes H®*)(w), de-
fined in (29), as long as the constituent ampli-
tudes % ,(w) produce phase shifts in reasonable
agreement with experimental data.

The s-wave term which appears in (32) is by no
means the full s-wave amplitude which has con-
tributions from the boson exchange process. Even
if the boson exchange contributions are insignifi-
cant the s-wave term is still not quite right as it
cannot be unitary when the p -wave term is unitary.
But the lack of unitarity is of order (w/My). It
should also be stressed that the terms which occur
due to boson exchange are likely to have a differ-
ent functional dependence on k k', and w. Even
though we do not have a satisfactory theory of the
s-wave 7N off-shell scattering amplitude, (30)
is an improvement over the static 7N amplitude.

It is straightforward to generate the m-nucleus
optical potential using (30) and techniques similar
to those used in Appendix B. The operator A in
the nuclear space associated with the
(kK +k’)  (Q+Qq’) term is defined by the relation

(@'1Alg) = @nPo(@ +K' -3 -OE+K)-@+a"),
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and so it has the form
A=(k"+K)-{- iGe-i®R =TT _j pmickr-Tof 29

Since this operator has the property that its time-
reversed form is the negative of its adjoint, it
does not contribute to the optical potential when
the target nucleus wave function is unchanged
under time reversal. This is the situation with
a zero angular momentum target.

Finally, the optical potential for a zero angular
momentum, zero isospin target nucleus is given
by

(BR'|V(w)|ak) = —16725,, zo(k?)o(k’2)B(K)AEK)
X[k kH®(w)p(k’ - k)
- (w/MYHO (0)p (K’ -K|)],

(37)

where we have equated each H with the corre-
sponding H. The quantities p(g) and ¢ have been
defined in (21). The quantity p’(g) is given by
the expression

p'l@)= fdrjo(qr)d—d?;rz <a'i)nupnu(")'
nij

(38)

The sum runs over the occupied states,
(6L)py; =7 G +1)=1(+1)- {and

Pniy (M =27 +1)| uy,; (7). The result (38) is
specialized to the case of closed shell nuclei.
From the above it can be seen that the linear
combination of Chew-Low amplitudes H(~) results
from a spin-orbit coupling of the nucleons, an
effect which has previously been considered in
elastic electron scattering from nuclei,?” but has
not previously been considered in pion-nucleus
scattering.?® OQur result for the nucleon motion
correction to the impulse approximation differs
from other work?'?® primarily in that we do not
retain terms which are not crossing symmetric.

4. Energy transformation

As the potential which we use to describe pion-
nucleus scattering is a Lorentz scalar we may
directly evaluate the Klein-Gordon scattering
equation (17) for the elastic amplitude in any
frame which proves convenient. For the numer-
ical analysis presented in the following section
we choose to solve this equation with variables
referred to the pion-nucleus center of mass
frame. (Our previous remarks® imply that to a
good approximation this frame is equivalent to
the lab frame for the range of pion energies we
are considering.) However, since the argument

of the Chew-Low amplitudes used in the invariant
potential refers to the pion energy in the 7-nu-
cleon center of mass frame,?® we must carry out
the well-defined kinematic transformation of en-
ergy between these two frames. It should be
stressed that in this formalism we need not con-
front the problem of relating off-shell amplitudes
in different frames. This problem does occur in
the treatment of pion-nucleus scattering based
on the Lippmann-Schwinger equation (10). This
is critically discussed by Heller, Bohannon, and
Tabakin,* where a prescription for carrying out
a transformation appropriate to their potential
formalism is presented and where references to
other work can be found.

The necessary energy transformation is effected
using the Lorentz invariant s = (py+P .V, where
p x(p,) is the nucleon (pion) energy -momentum
four-vector. Taking the pion and nucleon to be
on their mass shells and the pion on its energy
shell, we have in the lab frame (ignoring nucleon
Fermi motion)

s=MpZ+m 2 +2Myw, , (39)
while in the 7N center of mass

s=MPZ+m 2 +2(02 —m, 2)+ 2w, M. (40)
Thus,

By = — 5 My+3[M?2 +4(My w, +m 2)]1/2,

It is apparent that we have neglected terms in
nucleon momentum in (40). Though this is some-
what inconsistent with the analysis of the previous
section, it is a necessary approximation in view
of the interpretation of the Chew-Low ampli-
tudes.?® This therefore defines a limitation of
our present model. Though the improvement of
these amplitudes to include nucleon motion terms
(of order M,™!) is possible, this will not be con-
sidered further here.

If we now include the effects of binding of the
nucleons we necessarily relinquish the previous
condition that the nucleons are on the mass shell.
Including the shift in energy due to nucleon bind-
ing, we have

W, =—sM'y+ 3 M2 +4(M'yw, +m )| /2 +Eg,
(41)
where M’y = My +Eg for |Eg/My|<1.

1V. NUMERICAL RESULTS

Given a model for the invariant potential V, the
elastic m-nucleus scattering amplitude T is ob-
tained as the solution of (17). This equation can
be conveniently solved in momentum space by
expanding in partial waves and using the methods



13 INVARIANT POTENTIAL FOR ELASTIC PION-NUCLEUS... 309

/

n(g-k'+k) /1r'(_k.')
./ '
p(g-k") 1/4\ '/2
N ®)
n(q) AN

(a) (b)

FIG. 4. (a) Interpreted as a Feynman diagram, this
is the main graph for the formation of the (3, 3) reso~
nance in the scattering of negative pions by nuclei. (b)
From these two intersecting spheres of radius pr (the
Fermi momentum), the fraction F of initial neutron
states in (a) for which the intermediate proton state is
empty can be determined from F =1 —(shaded volume)/
FT0R).

of Noyes*® and Kowalski.*

To carry out the numerical solution of (17) we
must first complete our definition of the invariant
potential by choosing expressions for the 7N form
factor v(k?) and the nuclear ground state density
p(7). For the form factor we have used a Gaussian
function with a range of the order of the nucleon
Compton wavelength

o(k2) = e~ K 19ma? (42)

This form is suggested by the Chew-Low theory,
as there the form factor is given as simply the
Fourier transform of the nucleon’s density. We
have found that our optical potential pion-nucleus
calculations are rather insensitive to the range
of this form factor; e.g., doubling the range af-
fects the calculations by an average of only a few
percent.

For the full nuclear density we have used

p(¥)=12[a®n%/2(1 +2a2/b%) " (1 + $72/b?)e 7%
(43)

which is a modification of the density predicted
by the harmonic oscillator shell model (which has
a=b). This form has been used to parametrize
electron scattering from '2C.®# The values of a
and b, with corrections for the nucleon’s spatial
extension,?? have been determined as a=1.59 fm,
b=1,66 fm.

When considering the spin-orbit correction to
the potential resulting from nuacleon Fermi mo-
tion and recoil, we also need an expression for
the density of the eight p,,, nucleons in **C. In
accordance with our use of the modified shell
model density (43), we take

- = 462 47?2
Z(a‘L),,-p,,,,-(r)=Wg-b—z—e"z/“z. (44)

nlj

We now examine the results of our numerical
study of (17) for 7 —'2C elastic scattering.

The dash-dotted curve in Fig. 5 shows the re-
sults of calculations for the total 7 —'2C cross
section with the potential of (21), which repre-
sents the impulse approximation. The data points
shown here and in subsequent figures are from the
work of Binon ef al.®® The most striking feature
of this calculation is that the peak in the cross
section occurs at the pion energy of only 85 MeV.
This should be compared with the energy of the
peak in the experimental 7 - 2C cross section at
145 MeV, and the energy of the peak in the 7N
cross section at 180 MeV.

We have found that the reason for this downward
shift in the calculated cross section lies in the en-
ergy dependence of the linear combination of
Chew-Low amplitudes H®*) which appears in V
and, in particular, the energy broadening of the
m-nucleus amplitude. In Fig. 6 we show the imag-
inary parts of H ®) (scaled by a factor of 3) and
the (3,3) Chew-Low amplitude %, (scaled by a fac-
tor of 4). We see that the peak in ImH™) occurs
approximately 17 MeV below the peak in the 7N
amplitude. When we consider the effects of nu-
clear binding it will be seen that the downward
shift in the peak of ImH™) compared to Imk, is
directly translated into a downward shift in the
7 —12C cross section compared to the 7N cross
section. Furthermore, as pointed out by Landau,
Phatak, and Tabakin,?* the presence of the nuclear
form factor in V and the higher order multiple
scattering obtained when solving the scattering

700}
600 |-
500}
a
€ 400}
-
h
© 3001 —:em:=— NO SHIFT
b
200F 0 =m=ee—— BINDING SHIFT
BINDING + KINEMATIC
100~ SHIFT
o 1 1 A 1 L
o 50 100 150 200 250

PION KINETIC ENERGY (MeV)

FIG. 5. m-!2C total cross sections as a function of
the pion lab kinetic energy showing the effects of in-
cluding corrections for nucleon binding and a kinematic
transformation applied to the energy at which the 7N
interaction in the nucleus is evaluated.
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FIG. 6. The imaginary parts of H®) (scaled by a
factor of 3) and the (3,3) Chew-Low amplitude %,
(scaled by a factor of 4) are shown as functions of the
pion energy in the 7N c.m.

equation for the m-nucleus amplitude both tend to
broaden the 7N amplitude; and this results in the
m-nucleus amplitude T having a much slower en-
ergy variation than the #N amplitude. Then, since
the total cross section is obtained from the scat-
tering amplitude by

0 (B) = - 4k—"2 @1+1)ImT,(k, k), (45)
1

the presence of the k™! factor in conjunction with
the broadened m-nucleus amplitude can be seen
to result in a substantial shift in the 7-nucleus
cross section peak.

Turning now to the corrections to the impulse
approximation, we first consider the effects of
nuclear binding. As discussed in Sec. III B, the
binding of the target nucleon to the residual nu-
cleus suggests that we evaluate the mN amplitudes
appearing in the potential of (21) at an energy &,
which is shifted from the energy of the m-nucleus
interaction w, according to &, =w, +E, for Eg
the nucleon binding energy. In addition, there is
also a kinematic shift which results from the fact
that in the present model the energy of the 7N
interaction must be referred to the 7N c.m. In-
cluding this transformation results in the rela-
tion between w, and @, which is given by (41).

In Fig. 5 we show the results of the calculated
m-nucleus total cross sections in which the energy
of the 7N amplitudes is the same as the energy of
the m-nucleus interaction (dash-dotted curve), is
shifted by the nucleon binding energy (dashed
curve), and is shifted by binding and includes the
kinematic transformation (solid curve). For the
binding energy we have used the value Eg
=~0.1m,;. It can be seen that by including the
effects of the nuclear binding and a kinematic

shift in the energy at which we evaluate the 7N
amplitudes, a significant improvement results

in the calculated cross section. Consequently, in
all subsequent numerical results we relate the
energy of the 7N interaction to the energy of the
7m-nucleus interaction in accordance with (41).

The restriction on the pion-bound nucleon inter-
action imposed by the exclusion principle (“Pauli
blocking”) is incorporated into our calculation by
replacing the 7N form factor v(k?) appearing in
the invariant potential by v(k2)3(k), where B(k)
is the probability amplitude that a nucleon can
change its momentum state by k and scatter into
an unoccupied state. For '2C the Fermi momen-
tum is pr=221 MeV/c, so from its defining equa-
tion (23), B(k) is completely determined once we
specify the average occupation probability of the
states in the Fermi sea, n. Because of the singu-
lar nature of the nucleon-nucleon interaction, the
ground state of a nucleus has a complicated short-
range correlation structure and, therefore, the
normally occupied single-particle orbitals are ex-
pected to be depleted with a significant probability
and, correspondingly, high-momentum continuum
orbitals become occupied. Thus, 7 is expected to
differ from one by a significant amount. In Fig.

7 we display the form of (k) for several values
of n. For use in our study of the role of Pauli
blocking in 7 —!2C scattering, we have taken n
=0.8, as this value is in approximate agreement

Cd 0
otk ,/' /
P
0.6 - /'
i o5k / ———n=0.6
/e n=0.8
a4t 7
° / — e N = |0
o3/
0.2 -I'
o.1 f
0 L 1 Ll 1 1 1 1 1 1
0O 04 08 12 16 20 24 28 32 36

k (mg)

FIG. 7. B(k), the probability amplitude that a nucleon
can change its momentum state by k and scatter into an
unoccupied state, is shown as a function of 2 for vari-
ous values of n, the average occupation probability of
states in the Fermi sea.
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with the results of various Brueckner-Hartree-
Fock calculations.!® However, from our previous
discussion it is clear that this value will result
in an overestimate of the magnitude of the block-
ing correction.

In Fig. 8 we show the effects of including the
Pauli blocking correction in the calculation of the
7 —'2C total cross section. As expected, the
greatest change occurs at lower pion energies
where the probability of the target nucleon ab-
sorbing enough momentum to enter an unoccupied
state is smallest.

(37) exhibits the invariant potential which in-
cludes a correction for the recoil and Fermi mo-
tion of the target nucleons, in addition to the above
corrections. Our procedure for introducing this
correction is based on the elimination of the static
constraint on the target nucleons in the context of
the Chew-Low theory. In Fig. 9 we show as the
dash-dotted curve the results of the calculation
of the total cross section using the invariant po-
tential given in (37). The other two curves shown
here are the same as those of Fig. 8 and are in-
cluded for comparison. We find that for energies
smaller than 75 MeV the term which is of first
order in w/M, adds in phase to the main term of
Eq. (37) and thus enhances the total cross sec-
tion. At 50 MeV, the cross section is increased
by nearly 30%. For energies larger than 75 MeV
the correction term has the opposite sign and
tends to reduce the cross section. Over the en-
ergy range 75-200 MeV the reduction is less than
1%. Since the Chew-Low theory provides a rather
poor description of amplitudes for channels other
than (3, 3), we expect that a more accurate de-
scription of these 7N amplitudes could quantita-
tively but not qualitatively modify the results of
the nucleon motion correction.

500 |- \‘(\_!

Trora, mP)

WITHOUT PAULI
------- WITH PAULI BLOCKING

1 1 1
o] 50 100 150 200 250
PION KINETIC ENERGY

FIG. 8. m-12C total cross sections showing the effects
of including a correction for Pauli blocking in the model
for the invariant potential.
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FIG. 9. m-!2C total cross sections showing the effects
of including a correction for Fermi motion in the model
for the m-nucleus invariant potential. The solid and
dashed curves are the same as the corresponding
curves in Fig. 8.

V. SUMMARY AND DISCUSSION

In this work we have presented a theoretical
model for the analysis of elastic pion-nucleus
scattering which has been developed from the
exact propagator of a pion in the presence of a
nucleus. We have demonstrated how a crossing
symmetric elastic amplitude can be generated
from a potential constructed from invariant pion-
nucleon amplitudes. This potential has been eval -
uated in the impulse approximation retaining only
single-nucleon processes. Four important cor-
rections to this treatment of the potential have
been discussed in detail and compared with pre-
vious work. Considering scattering from 2C for
the illustration of our theoretical results, we
have shown that corrections to the impulse ap-
proximation treatment of the invariant potential
for the binding and kinematic shift in the energy
of the 7N interaction have a large effect on calcu-
lated cross sections. We have presented an esti-
mate of the effects of Pauli blocking in the 7-nu-
cleus interaction, but more importantly, we have
obtained an expression for the blocking function
which possesses a reasonable low momentum be-
havior and which can be used as a convenient para-
metrization of the blocking phenomenon. And fi-
nally, we have demonstrated that crossing sym-
metry has a very important role in determining
the contribution of nucleon momenta to the nu-
clear transition operator for terms through first
order in the ratio of pion energy to nucleon mass.
The resulting correction to the invariant potential
accounting for the Fermi motion and recoil of the
target nucleons was found to be important only for
pion energies below about 75 MeV.

It is clear that still more work needs to be done
before one can claim to have a theoretically com-
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plete description of pion-nucleus scattering. In
relation to the present work we note in particular
that a better treatment of Pauli blocking is most
definitely needed. The further analysis of this
process is expected to be quite difficult since one
must include details of the single-particle struc-
ture of the nucleus as well as the energy depen-
dence of the mN interaction to obtain a better mod-
el of the blocking phenomenon. It is also clear
that there are several additional physical effects
which have not been included in our present model
but which can be important in understanding the
process of elastic pion-nucleus scattering. These
include the multinucleon processes and the elastic
nuclear rescattering of pions.

An estimate of the relative importance of the
multinucleon processes has been obtained by
Eisenberg®® using a multiple scattering formula-
tion of the optical potential. He finds that at the
(3, 3) resonance energy the two-particle correla-
tion diagrams (the simplest multinucleon pro-
cess) contribute about 30% (in magnitude) of the
single-nucleon processes to the optical potential,
with higher particle correlation terms less im-
portant. We also know from the analysis of in-
termediate and high-energy elastic nucleon-nu-
cleus scattering®® that the higher order terms be-
come increasingly important at angles away from
the diffraction region. This should also be true
for the pion-nucleus problem.

The strong attractiveness of the pion-nucleus
interaction near the resonance further suggests
that the nuclear elastic rescattering of pions also
may be an important process. As the field-theo-
retic equation of Low?® provides a natural way
(i.e., through off-shell unitarity) of determining
an elastic scattering amplitude which includes the
rescattering of intermediate state pions, we have
examined the numerical solution of this equation
for m —'2C scattering. Though the details of this
work will be reported elsewhere,® we note here
that our results indicate that rescattering en-
hances the strength of the pion-nucleus inter-
action. Thus it appears that both the multinucleon
processes and the nuclear rescattering of pions
are necessary ingredients for a theoretically com-
plete description of pion-nucleus elastic scatter-
ing.

The authors express their appreciation to the
Computer Science Center, University of Maryland,
for supplying part of the computer time used for
this work.

APPENDIX A

Using the Hamiltonian defined in (11) and (12),
the set of rules which allow the expression of the
single-pion propagator { 8k’|G(z)|ak) in a series

of pion-nucleon diagrams are obtained using the
standard analysis'® based on Wick’s theorem for
time-ordered products and the basic contractions
for the pion, nucleon, and antinucleon (interaction
picture) operators. From the explicit evaluation
of a series of terms of the Wick-Dyson expansion
of the propagator we have derived, by induction,
the following rules:

1. At each vertex (nNN, 7NN, or nNN) associate
the vertex function defined by the m-nucleon inter-
action Hamiltonian H, .

2. Nucleon lines directed upward stand for parti-
cle states (above the Fermi sea) and those directed
downward stand for hole states (below the Fermi
sea). The rule for antinucleon lines is not stated
as we will not refer to such lines.

3. All internal pion lines are directed upwards.

4. The rule for associating energy with the ex-
ternal pion line requires that we establish a rule
for its direction. The required rule is as follows.
Replace the two external line segments by a single
directed line from the exit point of the external
line to the entry point. The associated energy is z.
5. Between successive interactions there is an
energy denominator equal to the sum of energies
of all downward lines (hole lines and possibly the
external line) minus the sum of energies of all
upward lines.

6. Sum over all internal line variables.

As the pion-nucleus diagrams represent a for-
mal summation of the 7N diagrams, these rules
essentially determine the analytic expression
corresponding to any pion-nucleus diagram. We
need to add only that the open circles of Fig. 2,
which constitute the basic set of 7N diagrams, are
represented by the operator D.

APPENDIX B

In relation to (21) we wish to evaluate the nu-
clear expectation value

a, =(¥| i PO (3K, aR)|¥) (B1)

for |¥) having the quantum numbers %, I)
=(0%, 0), so that only the part of the operator
shown which is an even parity scalar and iso-
scalar will contribute. We illustrate the tech-
nique by considering a,,

A - -
a, =% Z ( \If|e‘(k‘1:')"r'l M r™MG kG, k) (B2)
n=1

where (20) has been used to determine P,

As the coupling of the nucleon isospin operator
T to the position or spin vectors is not physically
defined, the only contribution from the isospin
factor will occur when a =8 so that 7@ )7 =1,
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Thus,

4y = 305K/ E 30 (W] F-F0-Ta )
n=1

A -
+§0gs 3 (U ET G R/ xRI), (B3)
n=1

where G,°k’G, ‘k=k’*k +i0, * (k' xKk) has been used.

This expression is evaluated using the expansion

T o tn 3 g7 )Y@ aP),  (BY

im

where ¢ =|k’ -k| and §=(k'-K)/g. In the first
term of (B3) the only contribution will result
from the scalar term in (B4) involving Y ,(7#,).
As there is no way to couple Y,,(",) and 7, to
form an even parity configuration space scalar,
the second term in (B3) vanishes. Therefore

4= 005K K 3 (¥ Glgr,) ¥

A
=1

=4m0,5k "k plg), (B5)
with

@)= [rarigarp ),

and where the nuclear density is normalized to
the nucleon number.

Proceeding with a similar analysis for the re-
maining terms, we find

a2=a3= %ﬂﬁaaﬁl'ﬁﬁ(q),
. (B6)
a,= w6, k" kp(g).
So,

( Bk'| V(2)| ak) = - 4nv(k?)v(k’?) 5_: a,h,(2)
pu=1

= = 16120k 2)v(k?)6, gk’ K
xp(g)H M (2), (B7)
H®) (2) = 3[h,(2) + 2h,(2) +2h4(2) +4h,(2)].

APPENDIX C

Using the model of (21) for the invariant poten-
tial, the crossing relation for the pion-nucleus

elastic amplitude can be derived. First we verify
the crossing relation for this model of the invari-
ant potential. For the crossed process we have

(@, -kl V(-w)|8 -k
- 1672553 0B E DR EP(@H (-w), (C1)

where lﬁ, -k’) is defined as a pion state of isospin
E and three-momentum -k’, Working with the
Cartesian representation of the pion isospin states
so that o, 8=(1,2,3), we have a=a, B=4.% It

is easily shown, using the crossing relation for
the Chew-Low amplitudes, that H™*)(w) is even
under crossing®; i.e., H"(w)=H™ (-w). From
(21) and (C1), the crossing relation for matrix
elements of the invariant potential is therefore

(a, k| V(-w)| B, —k’) =( BK'| V(w)|ak) . (C2)

This is a necessary condition which follows from
the nature of the diagrams represented by this
potential.

We can obtain a useful operator statement of
crossing for the invariant potential using the anti-
unitary time-reversal operator 6. Defining
6-1V(-w)8 = V(D (-w), we readily obtain for the
matrix elements of the invariant potential

(a, -k V(-w)|B, -k')=( ak|V (D) (~w)| Bk’ )*.
(C3)
Comparing this with (C2) gives
VD (~w)= V" () (C4)

as the operator statement of crossing for the in-
variant potential. The elastic amplitude 7 can
be shown to satisfy an identical relation by first
re-expressing (17) in a closed form in V

T (~w) = V(~w) + V(—w)[w? = k% = V(-w) "' V(-w).
Using 6 and (C4) gives
T (~w)= TH(w). (C5)

Repeating the analysis which led to (C3) for ma-
trix elements of T and using (C5) then yields

(@, -K| T(-w)|p, -K')=( &'| TW)|ak) .  (C6)

This is the expression of crossing symmetry in
pion-nucleus scattering.
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Science Foundation.
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