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We present a unitary, Lorentz-invariant three-body calculation of pionMeuteron elastic scattering, based upon
the idea of quasiparticle&ominated two-body interactions. We make detailed comparisons of these results with

those of a conventional fixed-scatterer approach and find that the fixed-nucleon calculation does not
adequately reproduce the three-body results, demonstrating the importance of properly treating the three-body
kinematics (i.e., of including nucleon recoil and isobar propagation). The multiple scattering expansion
converges much more rapidly in the three-body approach than in the fixed-scatterer calculation. Intermediate
nucleon-nucleon interactions play an important role, giving contributions to the scattering amplitude of the
same order as those given by pion multiple scattering; these effects are especially significant for back-angle
scattering. Finally, we compare our results with the available experimental data for the md total and integrated
elastic cross sections and obtain good agreement. Nucleon spin is neglected in all calculations.

NUCLEAR REACTIONS H(x, x), E=8Q-240 MeV; relativistic three-body
calculation of elastic scattering.

I. INTRODUCTION

Theoretical treatments of hadron-nucleus in-
teractions are almost universally based upon the
multiple scattering picture, ' in which the projec-
tile sequentially scatters from the various nucleons
in the nucleus. For light nuclei the multiple
scattering series can be explicitly summed, while
for heavy nuclei an optical potential is introduced
which, when inserted into the projectile equation
of motion, is intended to reproduce as closely as
possible the original multiple scattering series.
However, in either case a fundamental approxi-
mation is made to reduce the original many-body
problem to a two-body projectile-nucleus problem.
For example, the nucleons can be "frozen" through
the application of closure on intermediate nuclear
states, resulting in a comparatively simple calcu-
lational scheme: one computes the projectile
scattering amplitude from a set of spatially fixed
nucleons and then averages this amplitude over
the possible target nucleon configurations (given
by the nuclear density as measured in electron
scattering). Certain simple corrections can be
applied to this picture; for example, the elemen-
tary projectile-nucleon scattering amplitude used
as input to the calculation can be" Fermi-averaged"
and/or evaluated at a shifted energy to account
crudely for nucleon binding. Nevertheless, the
fact remains that the fixed-scatterer calculations
neglect the nuclear dynamics during intermediate
stages of the scattering process and that this ap-

proximation is extremely difficult to check quan-
titatively.

The above comments apply to the description of
any hadron-nucleus interaction. However, the
standard fixed-scatterer approximation may be
particularly suspect in the very interesting case
of pion scattering at energies near the 3-3 re-
sonance. First, the energy variation of the ~N
cross section implies that the Fermi motion and
binding effects may be especially important here.
In addition, this energy variation implies that the
mN system has a long interaction time and can be
thought to propagate as a quasiparticle or isobar
before decaying back into the ~N channel. At re-
sonance, this propagation distance is on the order
of half the average internucleon separation in
nuclei. Given this situation, we can expect that
nucleon-nucleon interactions may be important in
pion-nucleus reactions, particularly in those such
as backward elastic scattering which involve large
momentum transfer. A better understanding of
the limitations of fixed-scatterer approaches is
important in view of the large amount of pion-
nucleus reaction data soon to be available.

The simplest case for which we can investigate
these questions is pion-deuteron elastic scattering.
In this paper, we present a relativistic three-
body calculation of this process and make de-
tailed comparisons with a standard fixed-nucleon
calculation. The model is that of a pion interact-
ing with an s-state deuteron via a P-wave mN re-
sonant interaction. The calculation respects two-
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and three-body unitarity and Lorentz invariance
and provides an excellent theoretical testing
ground for the reliability of the fixed-scatterer
approach. The relativistic aspect of the calcula-
tion is important both because the pion is highly
relativistic and because very large momentum
transfers are imparted to the deuteron. In most
of our calculations we neglect nucleon spin and
isospin, thereby limiting our calculation to one of
reasonable size, but at the same time precluding
a direct comparison with data; rather, we focus
upon the question of the reliability of the fixed-
scatterer results in comparison with those of the
full three-body treatment. Nevertheless, we fi-
nally do include isospin in some calculations and
compare these results with md total and integrated
elastic cross section data.

Previous applications of three-body theory have
been made to the problem of md scattering in the
resonance region. Myhrer and Koltun' performed
a nonrelativistic calculation and neglected spin
and isospin. Relativistic calculations have been
performed by Brayshaw' and by Mandelzweig,
Qarcilazo, and Eisenberg. ' Brayshaw applied his
boundary condition model to only one partial wave
influenced by the resonant 3-3 interaction. Man-
delzweig et al. evaluate all partial waves, includ-
ing spin and isospin, but neglect the important
NN interaction and perform nonrelativistic trans-
formations between the two- and three-body c.m.
systems. As mentioned above, our aim is to pre-
sent a fully unitary, Lorentz invariant calculation,
to compare in detail these results with those of a
standard fixed-scatterer calculation, and thereby
to test the approximations made in conventional
multiple scattering approaches. '

The relativistic three-body theory which we em-
ploy is that developed by Aaron, Amado, and

Young (AAY)' and is described in Sec. IL Basic-
ally, they assume that the two-body interactions
are dominated by a bound state or isobar (equiva-
lently, a separable interaction) and write down

linear integral equations for the scattering. ' At

this point, the Born terms and propagators which
enter the equations are not specified; only Lorentz
invariance is imposed. However, the isobar as-
sumption relates the breakup amplitude to that de-
scribing elastic scattering from the isobar, and
the imposition of unitarity then relates the discon-
tinuities of the Born terms and propagators to the
interaction parameters and mass-shell 5 functions.
Finally, the assumption that these functions have
no further discontinuities beyond those required
by unitarity allows one to write dispersion rela-
tions which fully determine the three-body equa-
tions. It is clear that these equations are not
unique; rather, they are the simplest which in-

corporate Lorentz invariance and two- and three-
body unitarity. This procedure will be recognized
as similar to that introduced by Blankenbecler
and Sugar' and leads to three-dimensional Lipp-
mann-Schwinger type equations.

The solutions to these equations for md elastic
scattering will provide a theoretical testing ground
for the standard fixed-scatterer approach. In
Sec. III, we describe briefly our multiple scatter-
ing calculation. We compute the single and double
scattering terms, including corrections due to
Fermi motion, nucleon binding, and frame trans-
formation of the n'N amplitude. Section IV contains
the numerical results and comparisons (without
nucleon spin and isospin). Our over-all conclusion
is that the fixed-nucleon calculations are not quan-
titatively successful in reproducing the elastic
scattering cross section in the vicinity of the re-
sonance. In fact, we find that even the single scat-
tering term is in appreciable error for backward
scattering, indicating the importance of properly
treating the nucleon recoil. Furthermore, effects
due to intermediate nucleon-nucleon rescattering
are quite important, and, of course, such terms
are completely outside the usual multiple scat-
tering framework.

Section V contains the numerical results includ-
ing isospin and the comparison with data. Inter-
mediate nucleon-nucleon interactions are found to
reduce even the forward cross section for ~d elas-
tic scattering by about 10k.

The implications of our results will be discussed
briefly in a concluding section.

II. RELATIVISTIC THREE-BODY CALCULATION

We start with a review of the three-body theory
developed by AAY. The essential ideas are that
the elementary two-body interactions are isobar
dominated and that the forms of the Born terms
and propagators are fixed by unitarity. These
ideas will be applied first to the two-body problem,
both to review the Blankenbecler-Sugar' technique
and to define our basic two-body interactions. The
reader is referred to AAY for a more detailed
discussion of the theory.

A. Two-body interaction

The mN and NN interactions in our model are
represented by Fig. 1; namely, the mN interaction
proceeds by P-wave coupling to the 4 isobar, while
the NN interaction is restricted to the bound state,
s-wave deuteron channel. The vertex functions
v(k) and u(k), where k is the relative momentum,
describe dissociation of the quasiparticle. There-
fore, ~N scattering is shown schematically in
Fig. 2, with the heavy circle appearing on the
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propagator in the last diagram corresponding to
the insertion of all mN "bubbles, "producing the
renormalized or dressed 4 propagator. Since the
~N channel is open, this 4 self energy produces
both a mass shift and a width corresponding rough-
ly to a Breit-Wigner shape for the dressed prop-
agator.

In order to specify the two-body relativistic
equation corresponding to Fig. 2, we resort to
the Blankenbecler-Sugar' prescription. Assume
a linear integral equation of the Bethe-Salpeter
type

d~kT, (s)= V~+
)

V+ G (s')T,

where k is the relative momentum, V~ is a Born
term (the first diagram on the right-hand side in
Fig. 2), and G,(s) is an as yet unspecified propa-
gator for the mN system. However, two-body
unitarity requires that

G~(s') —G,(s ) = (2w)mid'(k, ' -m, m)5 (k~' -mm'),

(2)

where the subscripts 1 and 2 label the particles.
The assumption that Eq. (2) represents the only
discontinuity of the propagator in the complex s
plane then yields, through a simple dispersion
relation,

u), u&,
' 2 tv, + (u, )' —s, (3)

with u, -=(m; 2+ k')' '. This is the Blankenbecler-
Sugar' result, and reduces Eq. (1) to an integral
equation in one vector variable,

T~,(s)= V~ (s)

dk , ++,
+ (2,).2„„~pa(s)( „' ), ',+ Ta, (s)

(4)

Finally, with the interaction proceeding as in Fig.
2~ l.e. ,

p qv(P')v(q')
(6)

we have, in the two-body c.m. system,

( )
p' qv(P )v(q )

D(s)
(6a)

v(q*) =
+Q

meaning that we have three parameters (g, m ~, a )
at our disposal for describing the ~N interaction. '
We choose these parameters by fitting the phase
of D(s) to the experimental wfq scattering phase
shifts in the 3-3 partial wave. The fit obtained
with the parameters m~= 6.83 fm ', n = 1.8 fm ',
and g' jm&,' = 3.14 is shown in Fig. 3.

A similar procedure is followed in describing
the NN interaction. However, in this case we
have the additional information that the two-nucleon
propagator must have the deuteron pole at s = M,'.
This allows us to perform a subtraction at that
point, yielding the propagator

" dqq~ s '(q')
(2.)* E(4E -")(~ -I )

(6)

If we now assume that

Gs(q') =
&.. .

where D(s) ' is the dressed isobar propagator,
given by

1 " dqq' ur, + E, q'v~(q')
3, (2w)' (u,E, ((u, + E,) —s'

(6b)

Here, m~ is the bare mass of the isobar, and we
use ~ and E for the pion and nucleon energies, re-
spectively. For our calculations, we shall employ
the simple form

7r

/
/

/
/

FIG. 1. Diagr~~~~tic representation of the quasi-
particle (isobar) do~&Ft~ted two-body interactions. The
vertex functions e and u are functions of the relative
momentum k in the bvo-body ch~~Ftel.

FIG. 2. Diagra~~~tic representation of the &N scat-
tering amplitude. The circle on the isobar propagator
represents the insertion of all ~N bubble diagrams.
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then a choice of M~ and P determines the NN scat-
tering phase shift. %ith a deuteron binding energy
of 2.225 MeV, the value P = 1.3 fm ' leads to the
results shown in Fig. 4; this represents a rough
fit to the low energy 'S, phase shift. The coupling
constant G is determined from the normalization
condition on the deuteron wave function

l80'p

90'

(10)

and has the value G = 64.6 fm 3.

B. Three-body equations

Having def ined the two-body interactions we now
construct the equations for the md scattering. The
easiest approach is to consider the possible dia-
grams that can contribute to the scattering pro-
cess. Given the assumption of isobar dominance,
the interaction of the pion with the deuteron must
lead to a 4N intermediate state which subsequently
rescatters back into the md channel. This is shown
schematically in Fig. 5(a). The r N-sd has a
Born term (single nucleon exchange) and higher
order terms corresponding to multiple pion and
nucleon rescatterings. The equation for this amp-
litude is shown in Fig. 5(b}. The expression for
the md scattering equations is

Trz = BuG2T2

T~, = B2, + B22G~T2, + B2,G,T„
= B„+(B22+ BI,G,B,~)G2T2, ,

where the subscripts 1 and 2 denote the md and
AN channels, respectively. G, is the propagator
for the particle-isobar intermediate state and B

I I

0 IOO 200
T„(MeV)

FIG. 4. The NN s-wave scattering phase shift as a
function of nucleon laboratory kinetic energy Tz {data
from Ref. 11).

is a Born term (nucleon exchange for B» [Fig.
6(a}], pion exchange for B» [Fig. 6(b)]). At this
point the forms of neither the Born terms nor the
propagators have been specified. In analogy with
the two-body case, B and G are chosen to have
the simplest form consistent with Lorentz invari-
ance and two- and three-body unitarity.

Unitarity relates the elastic scattering amplitude
to that for breakup which in our model proceeds
via the dissociation of an isobar (or quasiparticle}.
Consequently the unitarity relation can be express-
ed solely in terms of two-body amplitudes and
isobar propagators. The procedure for choosing
the Born terms and isobar propagators so that
the proper two- and three-body discontinuities

z&90'—
6Q t' ~

1 00 200
(Mev)

I

300

FIG. 3. The &N P-wave scattering phase shift as a
function of pion laboratory kinetic energy &„(data
from Ref. 10).

FIG. 5. Schematic representation of the &d scatter-
ing equations. The s&~~ed circle represents the ~d
elastic amplitude and the shaded scgxaxe represents the
transition amplitude for ~ n d .
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property is enforced in Eq. (12); namely, the prop-
agation of the isobar is a function only of its in-
variant mass. ~

In writing down the Born terms, we must re-
member that the 6 isobar is a spin-one particle
in this model (i.e. , sltIP wave). This means, of
course, that the rN t matrix, in the two-body
c.m. system, has the form given by Eq. (6), and

the problem is to find the four-vector dot product
that reduces to k k' in the c.m. system. Labeling
the pion and nucleon four-momenta as k, and k„
respectively, the four-vector

kk2 K —kmk, K
K

(b)

with K=—k, + k„clearly reduces to the c.m. mo-
mentum in that frame, Therefore, k k' can be
replaced by the Lorentz scalar -K ~ K in all
frames. However, this is now not very convenient
for performing a partial wave decomposition and
it is easily shown' that K ~ K can be written as a
three-dimensional dot product in all frames:

I"IG. 6. The Born terms appearing in the three-body
equations: (a) m1cleon exch~age, (b) pion exc&~~~e.

k k--a ~ ~ =M M'

where the vector M is

(14)

are obtained is discussed explicitly in AAY and
we simply quote the results here.

The propagators G, (G, ) describe intermediate
propagation of the "spectator" plus quasiparticle
system s+ d(N+ n ), with total c.m. four-momen-
tum P and spectator four-momentum k. In the
AAY approach, the spectator is kept on the mass
shell and we have'

&. K
(15)

u(&u j + E-, + Ej,-, ) sM

E„,q[s —(~j+Eq+ E-„,-)'] (16)

Finally, we can write the Born term' in the three-
body c.m. frame as (see Fig. 6)

and

G, =-2 6's(k'-M')d(o, )
'

M„v (Ej + E q + |vj,q ) v M„B &uj+-[s —(Eg+ E-+ ~g -)'] (17)

G, =-2s6'(ks —p, ')D(o~) ', (12)

where p, and M are the pion and nucleon masses,
respectively, and o, —= (P -k)' is the invariant
mass squared of the quasiparticle. The clustering

Using these Born terms [Eqs. (16) and (17)] and
propagators [Eq. (12)], we write down explicitly
all the terms in Eq. (11). For example, the
single scattering approximation is just

T„(k,k', s) = B,qG+q,
dq

u(Q )(ruz+Eq+Ej, q) v(Ms)M ~ M'v(M' ) (u&7j ~ +Eq+E7j~+q)u(Q')
(2w) 2Eq Eq+q(s -[u&P+Eq+E%'+q] ) D(c, ) Ej + q(s —[raP + Eq+Eji+ q] )

where

cr, = (Ws-E, )'-j', q K

IC, (K, + /IP)

2 2-
q p-Mv= k+ 1+
2

(16)

Ko = u], + F t„+ q, K'=K '-q' (19)
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k (q+ —,k)
Q = (q+-, k) —k

(20)

with similar definitions for M' »d Q'. Up to some
kinematic factors, u(Q) [s —(~{,+ E~ +E&,-))] ' is
the deuteron wave function P transformed into the
{{dc.m. frame and, using Eq. (6), it is clear that
the single scattering approximation gives the ex-
pected form, namely J QTMM. (o, )4). The {{&I
matrix, T~ M. is fully off shell and evaluated at
an energy consistent with energy conservation and
with the fact that the spectator nucleon is on mass
shell.

The solution of Eq. (11}is obtained by standard
techniques. After partial wave analysis, we have
remaining a linear integral equation in one scalar
variable q, the magnitude of the three-momentum
of the intermediate spectator particle. Using the
contour rotation method of Hetherington and

Schick, " this equation is then solved along a ray
in the complex q plane. We have performed all
the requisite checks on the numerical accuracy of
our calculations and are convinced that the results
are reliable. Before presenting these results,
however, we go on to discuss the fixed-scatterer
calculation which will be used for comparison.

III. FIXED-SCATTERER CALCULATION

In this section, we describe a standard fixed-
nucleon calculation which we have performed with
the same input parameters as described above.
There is an extensive literature' on such calcula-
tions to which the reader is referred for more de-
tailed discussions. The basic idea is that the pion
scattering amplitude is computed for a fixed con-
figuration of the target nucleons and then averaged
over all possible configurations. Keeping only the
single and double scattering contributions, we
have"

)'. (RE')= ] as( )(".,(ic, i'; ),

—47{E (k k' r)=-4{{f(k,k')[e' " ' '+ e ' " "'
dp f(k, p)f(p, k')

[ {{k-p) I/z-{{p-{ ) r/z (-, }](2v)' k" —p'
(21)

Here, r is the relative coordinate between the two
nucleons and p(~} is the target ground state den-
sity; this controls the relative probability for
finding various target configurations and is de-
termined by the Yamaguchi-type interaction spec-
ified by Eq. (9).

To apply Eq. (21), we must still specify the {{N
scattering amplitude f (k, k'). First of all, we shall
use only the on-shell scattering amplitudes; this
is an approximation first employed by Brueckner"
and corresponds to there being little "overlap" be-
tween the scatterers. This is certainly a reason-
able approximation for a loosely bound target such
as the deuteron. However, there is still a prob-
lem, since the amplitudes in Eq. (21) must be
specified in the md c.m. frame. We follow the
usual procedure and first generate the amplitude
in the two-body c.m. system, using the p-wave
phase shift shown in Fig. 3. We can now relate
the pion scattering angle in the two-body c.m.
system to that in the ma c.m. system and write"

f(k, k') 3e' sin 6 {{'-k' k'
k {{' . {{' 0 - (22)

where {{(k}is the pion momentum in the two-
(three-} body c.m. system and 8 is the pion scat-
teri~ angle in the vd c.m. system (i.e. , cos {}
= k ~ k' ). In effect, an s-wave term is generated

(I/) = -[E{)+P (E{)j/()I)' ]. (23)

For a binding energy E~ = 2.225 MeV and a range
parameter P = 1.3 fm ', this effectively "shifts
the resonance" up by about 15 MeV. The Fermi-
averaging correction recognizes that the target
nucleons are not stationary but have momentum
distributions given by the ground state wave func-
tion. The correction is obtained by numerically
averaging the mN amplitude with the ground state
momentum distribution. A far more detailed dis-
cussion of such multiple scattering theories can
be found, for example, in Ref. 1. We shall pre-

by the transformation to the three-body rest
system. While this is not the most sophisticated
treatment of the frame transformation problem,
it is both simple and commonly used. "

Strictly speaking, this completes the specifica-
tion of the fixed-scatterer calculation. Neverthe-
less, two additional corrections, the binding and
Fermi-averaging corrections, are often applied
to the elementary amplitude in order to include
some effect of the nuclear dynamics. The binding
correction takes into account the fact that the tar-
get nucleons are bound, and the resulting prescrip-
tion is that we evaluate the projectile-nucleon
amplitude at a pion energy shifted from the free
value by the average NN potential energy
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IV. RESULTS AND DISCUSSION

We shall noww present the results of the three-
body and fixed-scatterer calculations

y e same input (i.e. , w A phase shift
and deuteron wave function). The c

iscussed in this section contain 'thnei er spin nor
isospin and so cannot be compar d te o any data.
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n. This is represented by
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o e elementary amplitude. Nevertheless, ex-
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total cross section (this is the aim of the binding
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IO-

l I

T~ = ISOMeV

and Fermi motion corrections), the differential
cross section would still be in appreciable error. "
In fact, the backward cross sections differ by a
factor of 3, reflecting the importance of properly
treating the three-body kinematics (i.e., nuclear
recoil and isobar propagation) in large momentum-
transfer scattering. The elastic cross sections
are considerably smaller in the three-body calcu-
lations, implying that, in the language of the fixed-
scatterer approach, the nucleon recoil and isobar
propagation effectively reduce the overlap with the
final state deuteron wave function. The important
result here is that, in a resonance-dominated
situation, it is important to retain the full (off-
shell) momentum dependence of the elementary
resonant amplitude and to retain the nucleon den-
sity matrix" rather than simply the form factor;
neither of these is done in conventional fixed-scat-
terer calculations.

Another question of some interest regards the
convergence of the multiple scattering series,
considered as an expansion in the number of wN

scattering amplitudes. Our fixed-scatterer cal-
culations include only single and double scattering
terms. " However, Koch and Walecka" have ex-
amined this question in great detail for fixed-
nucleon calculations of md elastic scattering (no
spin or isospin), using finite range separable mN

interactions. They find (see Fig. 6 of Ref. 20)
that, with a reasonable deuteron wave function
and short-range mN interaction, the multiple scat-
tering expansion diverges. More specifically, al-
though single plus double scattering is a reason-

able approximation to the exact result in the for-
ward direction, inclusion of the triple scattering
term increases the cross section by orders of
magnitude. " While those results depend strongly
upon the particular parameters used, rapid con-
vergence of the fixed-nucleon multiple scattering
series is achieved only with extreme choices of
the interaction parameters. " The three-body cal-
culations lead to entirely different conclusions.
Figure 10 shows the 180 MeV differential cross
section (in the backward hemisphere) as an expan-
sion in the number of ~E scatterings; note that
both the pion exchange diagram, Fig. (11a), and the
NN rescattering diagram, Fig. (11b), correspond
to double scattering terms in our expansion. If
we first examine the results without the intermed-
iate NN scattering (presumably this corresponds
more closely to the conventional approach), we
see that the convergence to the full result is ex-
tremely rapid; in fact, triple scattering is already
fairly small and brings us essentially into agree-
ment with the full calculations. This again points
out the importance of retaining the three-body
kinematics, especially in situations involving
large momentum transfer. In triple scattering,
the pion must "backscatter" from one of the nu-
cleons, giving it a very large recoil momentum.

When the intermediate AN interactions are re-
tained, the results are somewhat changed. First,
the backward cross sections are reduced. This
means that, for example, since the double scat-
tering term has the opposite phase composed to
single scattering, its strength is increased with
the inclusion of NN scattering. Basically, this is
because the momentum transfer to the nucleons
can be more easily shared. By the same token,
the higher order scatterings are relatively more
important and the multiple scattering series con-
verges more slowly. Nevertheless, considering
that the backward cross section in the single scat-
tering approximation is 14 times that given by the

I I

90 I20' I 50'
c. rn.

180'

FIG. 10. Comparison of the 1.arge-angle differential
cross section including single (~ ), double (---), and
triple (---.-) scattering with the exact solution of the
three-body equations. The middle three curves are
calculated without nucleon-nucleon rescattering. In the
lower three curves nucleon-nucleon rescattering is
included.

FIG. 11. Double scattering contribution to the xd
elastic scattering amplitude: (a) pion exchange diagram,
(b) nucleon-nucleon rescattering diagram.
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full calculation, the convergence is still quite
good. This convergence is guaranteed because all
integrals over intermediate momenta are suppres-
sed at large momentum by inclusion of nucleon re-
coil and isobar propagation. This is not the case
in fixed scatterer calculations. "'

Another indication of the importance of inter-
mediate NN interactions is given in Fig. 12. There,
we show the total and integrated elastic cross sec-
tions as a function of energy in the single and
double scattering approximations. Roughly speak-
ing, the double scattering term with intermediate
A)V scattering [Fig. 11(b)] is as important as the
usual double scattering term.

Figures (13) and (14) contain more detailed com-
parisons between the fixed-scatterer and three-
body calculations. The total and integrated elastic
cross sections are shown in Figs. 13(a) and 13(b),
respectively. It is clear that the binding and Fermi
motion corrections act to shift the peak towards
higher energies, more nearly in agreement with
the three-body calculation, but that serious dif-
ferences remain with regard to normalization and
detailed shape of the curves. The normalization
is particularly bad for the integrated elastic cross
section, where the NN interaction reduces the
cross section by almost 30'$ at the peak. " Simi-
larly, the differential cross section in fixed-scat-
ter approximation is substantially different from
that resulting from the three-body calculation.
The two fixed-nucleon curves appear quite differ-
ent, but this is only because the double scattering
amplitude in the backward direction has opposite
phase to, and is larger than, the single-scattering
amplitude, causing the extra "dip" at 140'; this is
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200

no longer the case when the mN amplitude includes
the binding and Fermi-averaging correction. Com-
paring the Fermi-averaged result with that from
the full three-body calculation, we see that the
backward cross sections differ by a factor of 7.
Obviously, the nucleon-nucleon dynamics and
three-body kinematics are essential for a quan-
titative evaluation of the process.

Finally, we show in Fig. (15) the s-, P-, and
d wa-ve Argand plots for kf, (k) = (q, e' ' —1)/2i.
It is striking that higher order multiple scatterings
and intermediate nucleon-nucleon scatterings aff ect
strongly only the xd P-wave amplitude. In our
model, this is the only partial wave which contains
the 6 isobar and "spectator" nucleon in a relative
s wave. The NN interaction makes the P wave
considerably more absorptive and is necessary to
satisfy unitarity at the lower energies. Phase shift
analyses of wd elastic scattering data would be ex-
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FIG. 12. Comparison of total and integrated elastic
cross sections inclu~~ng single scattering (- ~ — -),
double scattering with pion exc&~ge only (—-), and
double scattering with both pion excb~~ge and nucleon
rescattering (—)

FIG. 13. Comparison of (a) total and (b) integrated
elastic cross section in fixed-scatter approximation
with the three-body results. The curves ——and -"- ~

show the fixed-scatterer results with and without Fermi
averaging. The curves and — — gives the result of
the three-body calculation with and without nucleon re-
scattering.
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tremely helpful in furthering our understanding of
multiple scattering theories.

V. COMPARISON WITH DATA

The results presented so far have included
neither nucleon spin nor isospin, and we concen-
trated upon questions involving the quantitative
reliability of multiple scattering calculations. Un-
fortunately, incorporation of spin and isospin into
the full three-body calculations would tremendously
increase the magnitude of the computations. 4

Therefore, in order to compare with data and to
examine the role of intermediate nucleon-nucleon
interactions in "true" md elastic scattering, we
shall follow a much less ambitious course and do
only the minimum required for a reasonable com-
parison.

Spin effects are known to be very important for
describing large angle elastic scattering. " How-
ever, we shall compare only to total cross section
and to integrated elastic cross section data. The
first of these is, of course, given by the forward
elastic amplitude, while most of the contribution
to a,&

comes from fairly small angles. Therefore,
we shall continue to neglect spin effects in this
section. On the other hand, isospin must be taken
into account at least approximately. That is,

charge exchange processes will not be included,
but we do include the proper statistical weighing
factors to give the correct pion-proton and pion-
neutron cross section (t.e. , at resonance, o„&
= c, „=210 mb and o „„=a, ~ = 70 mb). Note
that the charged pion has an especially strong
interaction with only one of the nucleons, so that
the importance of multiple scattering will be much
less now than in the model problem discussed so
far. This is also why any reasonable calculation
should be in at least semiquantitative agreement
with md elastic data. Finally, we will not solve
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FIG. 14. Comparison of the c.m. differential cross
section in fixed-scatterer approximation with the three-
body results. Different approximations are indicated
as in Fig. 13.

FIG. 15. Argand plot of s-, P-, and d-wave md

partial wave amplitudes. The solid curve gives the
three-beefy result including nucleon rescattering while
the dashed-dot curve gives the three-body result with-
out nucleon rescattering. The dashed curve shows the
partial wave amplitude including single and double scat-
tering without nucleon rescattering. For s and d waves,
the dot-dash and solid curves are indistinguishable. The
numbers along the trajectories label the pion kinetic
energy.
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the full set of three-body equations [analogous to
Eq. (11)], but instead evaluate only the first three
orders of multiple scattering (including HN inter-
actions and the full three-body kinematics). It
is expected that the convergence of the series will
be extremely rapid in this case, and this is in
fact borne out by the calculations.

Figure (16) shows the data" "and the results
of the calculations both with and without NlV scat-
tering. Also shown are the fixed-nucleon results
both with and without the binding and Fermi-aver-
aging corrections. The rapid convergence of the
multiple scattering expansion for the three-body
calculation with intermediate hW interaction can
be seen by examining Table I (recall from the dis-
cussion of Sec. IV that the convergence is slower
in this case), and we are confident that higher
order terms are essentially negligible. The data
are of generally poor quality. and we note that the
142 MeV m data of Pewitt et a/. "is low with re-
spect to both the calculations and the total cross
section data of Ashkin et al. 24 (the "crosses"). In
any case, several conclusions can be drawn from
Fig. (16) (besides the obvious one that more and
better data are needed). First, inclusion of the
binding and Fermi-averaging corrections in the
fixed-nucleon calculations is essential for getting
rough agreement with the data. Nevertheless, this
calculation is still about 20-25 mb larger at the
peak than the three-body results, with approximate-
ly 10 mb of the difference coming from the inter-
mediate NN scattering. The three-body calcula-
tion itself is in fairly good agreement with the
data, but it must be remembered that a more com-
plete calculation would include several improve-
ments (spin- and isospin-flip, absorption, a better
deuteron wave function, and additional m N partial

waves). Nevertheless, it is clear that the correct
three-body kinematics and NN scattering must be
taken into account for a quantitatively accurate
description of md elastic scattering.

VI. SUMMARY AND CONCLUDING REMARKS

TABLE I. Multiple scattering expansion (including +N
rescattering) of the total and integrated elastic cross
sections. SS, DS, and TS include terms through single,
double, and triple scattering, respectively.

Tr
(MeV) ss

0.
& (mb)

DS TS
a el (mb)

SS DS TS

%e have performed a unitary, Lorentz-invariant
three-body calculation of md elastic scattering and
have presented detailed comparisons of these re-
sults with those of a standard fixed-scatterer cal-
culation. Application of the binding and Fermi
motion corrections in the fixed-scatterer calcu-
lation did improve agreement with the shape of
the total and integrated elastic cross sections but
an appreciable quantitative difference remained.
This difference became especially serious for
large angle elastic scattering. In fact, even the
single scattering approximations were significantly
different in the two calculations, demonstrating
the importance of properly treating nucleon recoil
and isobar propagation (both of which are neglected
in the usual fixed-nucleon approach). One impli-
cation of this result for the treatment of pion scat-
tering from heavier nuclei is that the factorized
form of the lowest order optical potential (i.e.,
nuclear form factor times wN t matrix) may not be
sufficiently accurate to allow meaningful state-
ments about higher order terms; rather, this sim-
ple optical potential should be replaced by a folding
of the t matrix with the nuclear single particle
density matrix [similar to Eq. (18)J.

When the multiple scattering expansion is eval-
uated using the full three-body kinematics, the
series converges much more rapidly than in the
fixed-nucleon case. This may be important for
computing pion scattering from few-nucleon sys-
tems. That is, it may be better to evaluate only
the first few terms in the multiple scattering ex-
pansion, retaining the correct kinematics, spin
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FIG. 16. Total and integrated elastic cross sections
with isospin. Curves are the same as those in Fig. 13.
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and isospin effects, and nucleon-nucleon inter-
action, than to sum the entire series in fixed-scat-
terer approximation.

The effects of intermediate NN scattering were
extremely important. A rough characterization of
these effects is that they are as important as the
multiple scattering contributions, significantly de-
creasing the total and integrated elastic cross sec-
tions at the resonances and even more strongly af-
fecting the back-angle scattering. Of course, the
HN interactions must be included to guarantee a
unitary calculation, as demonstrated by the P wave
Argand diagram (Fig. 15). This figure also shows
that the rd p wave is the only partial wave strongly
affected by the SN rescattering and points out the
importance of a ~d phase shift analysis for our de-
tailed understanding of this process; hopefully,
high resolution pion beams will soon make this
possible. In any case, theoretical descriptions of

pion-nucleus interactions obviously must treat the
intermediate nuclear dynamics in order to achieve
quantitative success.

Finally, with the inclusion of isospin, the three-
body calculation is in reasonable agreement with
the available, rather poor quality data on the total
and integrated elastic cross sections. Inclusion
b«& of the proper three-body kinematics and of thei' interaction serve to decrease the cross section
appreciably (2 in o„)from the fixed-scatterer
values. Comparison with large angle data is pre-
cluded primarily because of our neglect of nucleon
spin. Including spin in our calculations presents
no problems in principle but increases enormously
the computational difficulties. Nevertheless, it is
clear that, when high quality ~d scattering data
become available, such calculations will be es-
sential for our understanding this basic pion-
nucleus interaction.
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