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We first consider a projectile scattering from a nucleon bound in a fixed potential. A separable Galilean
invariant projectile-nucleon interaction is adopted. Without using the fixed scatterer approximation or using
closure on the intermediate target nucleon states we obtain various forms for the projectile-bound nucleon t
matrix. Effects due to intermediate target excitation and nucleon recoil are discussed. By making the further
approximations of closure and fixed scatterers we make connection with the work of previous authors. By
generalizing to projectile interaction with several bound nucleons and exam'»ng the appropriate multiple
scattering series we identify the optical potential for projectile elastic scattering from the many-body system.
Different optical potentials are obtained assuming different projectile-bound nucleon t matrices and we study
the differences predicted by these dissimilar optical potentials for elastic scattering. In a model problem, we

study pion-nucleus elastic scattering and coxnpare the predictions obtained by adopting procedures used by {1)
Landau, Phatak, and Tabakin and {2)Piepho-Walker to the predictions obtained in a less restrictive, but
computationally difficult treatment.

NUCLEAR REACTIONS Effects of different approx~m~tions on optical potentials
and calculated angular distributions. Model problem studies. Nucleon recoil.

Momentum distribution. Intermediate nuclear excitation effects.

I. INTRODUCTION

Separable interactions have a long history of ap-
plication in the study of scattering of strongly in-
teracting systems. Such interactions are, to be
sure, only an approximation to a more realistic
ener gy-dependent nonlocal strong interaction.
However, the ease of computation that the sep-
arability allows, permits model problems to be
studied more completely than would be possible
for more realistic interactions.

More recently separable interactions have been
frequently adopted in formal studies of medium
energy projectile-nucleus scattering. Foldy and
Walecka' (FW) and others" ' have employed sep-
arable potentials in their investigation of the opti-
cal potential and its "identification" from a many-
body multiple scattering series. One clarification
from such studies has been the form of the off-
energy- shell projectile-nucleon I; matrix that
enters naturally in the many-body problem and
its connection to the free projectile-nucleon t
matrix. Of course, the studies to date have made,
necessarily, approximations other than the adop-
tion of a separable microscopic potential. The
use of fixed scatterers (infinitely heavy target
constituents) and closure on the intermediate
nuclear target states (subsequent to a suppres-
sion of the intermediate nuclear state energy
dependence in the Lippmann-Schwinger equa-
tion for the system's wave function) are two

standard procedures.
One of our objectives in the present work is to

consider a model where we do not use fixed scat-
terers or ignore the intermediate state energies,
and in an approximate way incorporate some ef-
fects due to nucleon binding. In our model prob-
lems we use nonrelativistic kinematics and assume
a separable Galilean invariant potential which is
then iterated in the many-body environment to ob-
tain various forms for the projectile-bound nu-
cleon t matrix. The bound t matrices derived in
Sec. II show explicitly how the effects of the target
nucleon momentum distribution, binding and re-
coil, alter in a nontrivial manner the form of the
I; matrix from that obtained in the free case. Also
in Sec. II, adopting standard procedures, we use
our results for the projectile-bound nucleon t
matrix to derive an optical potential for a pro-
jectile scattering from a nucleus. The different
forms for the projectile-bound nucleon t matrix
lead to diverse forms for the optical potential
and, in Sec. III, we compare the results (elastic
scattering differential cross sections and total
cross sections) obtained using the different forms.
We emphasize the role of binding and the finite
mass of the target particle in our comparative
studies.

Of course, there has been considerable research
on the theory of the optical potential and on the ap-
propriateness of the standard approximations
adopted in obtaining the "first order optical poten-
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tial. " The early work of Watson' and the applica-
tion to nucleon-nucleus scattering by Kerman,
McManus, and Thaler (KMT)' are the usual starting
points for a discussion of the optical potential via
multiple scattering theory. Subsequent studies by
Feshbach and co-workers' has concentrated on the
evaluation of higher order corrections (to the
usual lowest order optical potential) that incor-
porate, for example, effects of two-nucleon cor-
relations in the nucleus. More recently there has
been considerable activity on the theory of the opti-
cal potential, as applied to pion-nucleus scattering,
in anticipation of the forthcoming data from the
new meson facilities. In particular, the rapid
energy variation of the basic pion-nucleon inter-
action, associated with the (3, 3) resonance makes
more suspect the neglect of binding effects' and
the kinetic energy (and recoil) of the struck nu-
cleon. '"" The validity of the coherent approxi-
mation has also been questioned. Since the ratio
of the pion to nucleon mass is -', , it is tempting to
treat the pion-nucleon c.m. and lab systems and
the pion-nucleus c.m. system as equivalent, there-
by avoiding the difficulties associated with the
angle transformation from the pion-nucleon c.m.
frame to the pion-nucleus c.m. frame. A con-
siderable amount of effort has gone into studies
of the pitfalls of this approximation and various
prescriptions have been given (and updated) for
handling the often needed transformation of the
pion-nucleon t matrix from the two-body to the
many-body c.m. frame xx-z7

Since the three features ( binding, " Fermi mo-
tion, and approximate treatment of kinematics)
on which we concentrate have been studied pre-
viously, we make connection with previous re-
search where appropriate. We note the investi-
gations of Schmidt' and of Kujawski and Aitken'
which contain some features similar to the present
research. These authors have adopted explicit
models for the pion-nucleon interaction which
allow one to obtain, in the model, an expression
for the pion-nucleus optical potential that is of the
form of an off-shell pion-nucleon t matrix contain-
ing the nucleon momentum variables. The off-
shell m-n t matrix is integrated over the range of
nucleon momentum variables weighted by the
nuclear ground state momentum distribution.
Free particle kinematics are not adopted and some
effects due to nuclear binding are included. Based
on this previous work"' which found that the com-
bined effects of binding, Fermi motion, and a
correct treatment of the kinematics were im-
portant to include in the optical potential for
pion-nucleus scattering even below the 3,3
resonance, we have undertaken the research
reported in this paper.

One of our goals is to compare results of mod-
els which have been used in the past to make a
broad spectrum of predictions for elastic scat-
tering with the results obtained in a more com-
plete but computational difficult approach. In our
discussion below we make a detailed model and
derivation of the bound pion-nucleon t matrix. Of
course, one could obtain the result by simply
stating that a particular approximation to the
bound t matrix of Watson or KMT was being
adopted. Hopefully, however, the detailed de-
rivation gives the reader a better feeling for the
approximations that were required to obtain the
final pion-bound nucleon t matrix and why the ap-
proximations were necessary in order to proceed.

As mentioned above, practical applications of
separable interactions have been made in medium
energy pion-nucleus scattering. """ An objective
of the present work is to compare, in a model
problem, "model correct" results for pion-nucleus
elastic scattering with results obtained using the
different approximations adopted by those groups
using a separable interaction to study medium en-
ergy pion-nucleus scattering. In particular, here
we are interested in the effects of using an ap-
proximate angle transformation and using the tp
factorization (with and without subsequent Fermi-
folding) as in the original treatment by Landau,
Phatak, and Tabakin, "and the effects of using
the fixed scatterer approximation and closure as
in the work of Piepho and Walker. " The results
of this comparison and discussion are presented
below in Sec. III.

We are motivated to present the kind of study
given here in hope that such an investigation can
aid in clarifying the validity (or range and type of
error included) of some of the standard approxi-
mations used to obtain the form of the medium
energy optical potential. If one does not have
confidence in the procedures used to derive the
optical potential from microscopic considera-
tions, then deviation of the theory from experi-
ment may be interpretable as due to a host of
sins of approximation and the underlying physics
may be difficult or impossible to distill.

In the next section we illustrate the assumptions
needed to obtain the standard results and in Sec.
III we compare predictions of the standard forms
for the optical potential with those predictions of
elastic scattering obtained adopting other less
restrictive approximations. We illustrate the
kind of results obtained when the projectile is
light compared to the target constituents (nu-
cleons) as in pion-nucleus scattering and also
when the constituent nucleon is light compared
with the projectile as in e-nucleus scattering.
Because of the details involved in the deriva-
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tions presented in Sec. II, we have included a
comprehensive summary at the end of the paper
for those not interested in the details of the for-
malisms involved.

II. DERIVATION OF FORMULAS

A. Scattering from a nucleon bound in a fixed potential

The basic problem we consider is that of a
distinguishable projectile scattering from an in-

finitely heavy nucleus composed of finite mass
nucleons. At this stage we assume the pro-
jectile interacts with only one of the target nu-
cleons. The other nucleons only participate in-
directly in that they are the source of binding
for the interacting nucleon and they may give
rise to exclusion principl:e effects. The basic
projectile-nucleon interaction is assumed to
be a spin and isospin independent Galilean in-
variant nonlocal separable potential of the form

2

V(r~, r„r~, r', ) = — 4wk, v, (r)v, (r')Y, (0, )Y"f„(Q;.)5 (,i,~,F,—,,' —,,')),
1' = 1'p —rty

e+r ~ PPl t mpr =r —rt, p= m+mt p

where the subscript t(P) refers to the target nucleon (projectile).
It is well known that the Fourier transform of the separable form factor, defined by

(2)

can be obtained from the projectile-free nucleon phase shifts under suitable conditions by solving the in-
verse scattering problem. " In the simple situation where there are no bound states and 5(0) —5(~) =0 the
explicit relationship between the phase shift 5, (k) and v, (k) is given by

sin5&(k)
" 2P )" 5,(k')k'dk'

For simplicity we shall adopt nonrelativistic kinematics for the particles involved and shall assume a
Lippmann-Schwinger equation is appropriate for describing the various systems under consideration.

First let us consider, under the assumptions above, the scattering of a projectile from a single nucleon
bound in a ffged potential. The appropriate Lippmann-Schwinger equation for describing the system is
given by

(r r ) &lk ~ rP+ (r )
t ft ~ (rp r~)

(2s)~ E(t) —E(k)+E„—Eo —i&

(4)

where k is the incident momentum of the projectile, E(t) and E(k) are, respectively the intermediate state
energy and initial energy of the projectile, and &„and &, are the bound particle intermediate state energy
and initial state energy corresponding to the nucleon wave functions p„and p„respectively. The differen-
tial cross section and scattering amplitude (t matrix) for elastic scattering may be determined from

where

2

f(k', k)= t(k', k) = — e p''ego(r, )V(r~, r„r~', r~') g~ (r~', r,')dr~dr~'dr, dr,' .
mp w

(6)

By introducing the Fourier transform of the bound nucleon wave function, adopting the form for the po-
tential given by Eq. (I), and making the variable substitution

r=rp —r„ mp mp
m+m ' " m+mt p t p
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we can rewrite Eq. (6) in the form

t(k', k}=- drdr'dRdR'dp'e '&&~ e~' ' e '& ~'+~')
4m (2v)'@

2
x 4& "rvs &~r r' Y, 0; Yr ~ ~ & R —R'4~ r', 8,'

Now by defining qI', (k, k'+p') and v, (p }according to

(8)

(k, k'+p')= ~4w e «("" ~'"v, (r}Y~~ (A;)qid„- (r, R)drdR, (Sa)

v, (p) —= q4w i'Yf (0;)v,(p),

v(P(-=dr f j, (dr(v(r)r'dr [eee Eq. (q)],
0

(ob)

making a partial wave decomposition of the plane waves appearing in Eq. (8), and making use of the two-
particle center-of-mass 5 function, permits Eq. (8) to be written as

4n'

We obtain the following expression for qid, (k, k'+ p'} by projecting expression (Qa) out of both sides of Eq.
(4} and using 6 functions to eliminate integrations where possible

qld(~ (k, k'+p ') = vg (k —a(k +p')) po(p'+k'- k)(2v) ~

9.(k'+ p'- t}e.*(pd)
(2v} ~ 2t( ' E(t) —E(k)+E„Eo—g&-

Now in order to proceed further we apparently
need to make a model for the intermediate nuclear
states p„and the associated energies, the E„. If
we assume simple product wave functions for the
many-body nucleus composed of A nucleons, then
the intermediate states of all the nucleons nonin-
teracting with the projectile must be the same as
their initial states. If we assume that the energy
of the nucleus can be written in terms of the
single particle energies of the individual nucleons,
then since only the interacting nucleon can change
its state during the scattering, we can reduce
E„—E, to E„(interacting nucleon) —Eo (interacting
nucleon). Instead of simply assuming that one can
ignore the dependence on n of the difference E„
—E0 in the denominator and then use closure on
the intermediate states, we shall make a nuclear
matter type approximation for the intermediate
interacting target nucleon states. More specifical-
ly, we shall assume the intermediate target nucleon
states are plane waves. Thus Z„-1 dp„(2w) '
and the intermediate single state energy, E„ is
written as E(p„). We shall consider different

forms for the expression E(p„) in our discussion.
There is an interesting effect due to an approxi-
mate treatment of the exclusion principle which
puts a restriction on the intermediate state in-
tegrations. This topic is still under investigation,
and while of considerable interest, we do not at-
tempt to treat it here. The basic idea is that for
multistep processes where one uses a Fermi gas
model, the momentum transferred in a particular
step must be zero for intermediate nucleon states
below the Fermi momentum. For intermediate
state densities characterized by a momentum
above the Fermi sea no such restriction exists.
We note that it is not proper to attempt to treat
exclusion effects by simply limiting the inter-
mediate state momentum integral to momenta
above the Fermi sea. Such a procedure neglects
important forward scattering contributions oc-
curring while the nucleus (in a Fermi gas model)
stays in its ground state in the intermediate states.

Substituting plane wave states for the i((„(r,)
in Eq. (4) allows Eq. (11) to be written in the
considerably simpler form
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gj&,
' &(k, k'+ p' ) = v, ( k —a (k'+ p')) 4&0(p'+ k' —k)(2w)3 g'

«g»

dt v, ( t —a(k'+ p'))W„X,. „,(t —a (k'+ p'}) (,& (, ,) (
2tg (2w)' E(t) —E(k)+ E(p„=k'+ p'-7) —E, —i e

In order to obtain a simple closed form expression for P, without using determinants it is necessary that

I = I' and m =m'. This can be accomplished in a variety of situations (see later discussion) but certainly
not in the general case. We first consider the general solution using determinants. We can rewrite Eq.
(12) in the form

$g' ( k, k'+ p'} =
&tg ( k, k'+ p'} —Q Dg, „~(k, k'+ p') &1&g', &, ( k, k'+ p'),

lgm'

where

y, g (k, k'+p')=(2w) g v, (k —a (k'+p'))po(p'+k' —k),

(13a)

(13b)

dt vg„(t —a(p'+k'))vg»»( t-a(p'+k'))
2tg (2w)' ' E(t) —E(k)+E(p =kg+p'-t) —E —ge

(13c)

This set of inhomogeneous linear equations (13a)
can be written as a matrix equation (I, m =i)—

« =&*. Z «'« (14a)

or

Equation (14b) has the solution

(14b)

where

(15a)

(15b)

t(k', k) = P A,.g,". &(k, k'+p~),
i

where A,
&

is the integral operator

(16)

4n 2p.
dp'»gvg (pk' —np') 2",g, . (17)27r3 2

R(1+D) = 1 .
For actual numerical calculation of g ", it is our
experience that it is much quicker (computer time)
to solve the matrix equation (1+D)&1&g'& =

&t by
Gaussian elimination than to actually find the in-
verse, R. The dimension of g" depends on the
maximum value of l used in the interaction, Eq.
(1). If the maximum value of / is I, then gj&"& has
(L+1} dimensions and D is an (L+ l)~ by (L+ 1)'
matrix. Once we have g"', we can solve for
t(k', k) since from Eq. (10)

We now investigate the conditions under which

I, m = Ig, m' in Eq. (11) so that the form of t( k', k)
given by Eq. (16) greatly simplifies. The pro-
cedure is to carry out the angular integrations
over t and, for several situations, this allows
a contraction of the l', m' sum because of the
orthogonality of the spherical harmonics that
are factors in the v, 's. For our study it is
sufficient to consider the integral

r dt v, (t —a(p'+k'))vg, ~(t- a(p'+k'))
(2w) E(t) —E(k) + E(p„=k + po

—t ) —Eo —i e

(18)

The basic models that allow one to obtain various
simple closed form expressions for t(k', k) in-
corporate different assumed forms for the en-
ergy denominator and drop terms of order a
= [m~/(m~+mg)] (n, for example, is =-,' for a
pion projectile, & for a nucleon projectile, and
-', for a, 'He projectile).

First we consider the special model used by
Foldy and Walecka' which leads to a particularly
simple form for t(k', %). If we assume n = [mg,!
(m + g)]m= 0 and argue that the term E(p, = k'
+ p' —t) —Eo in the denominator can be ignored,
then Eq. (18}becomes

t'dtv, ~(t)
E(t) E(k) ge g, g» m, |«» (19)

This result when inserted into Eq. (17) allows one
to obtain the following expression for t(k', k),

lgg Xgvg(k)vg(k')(2l+ 1}
(k', k) =-—

doggo
(p')y, (p'+k' —k)dp 2& & I~ dy v a(t) &g(cos8~»g) ." 1+ ', —1(2w)' 2tg E(t) —E(k) —i e

(20)
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Ignoring the nuclear energy differences allows
FW to use closure on the intermediate target
states and this means one does not have to as-
sume a Fermi-gas model for these states. Of
course, we obtain the same result as FW because
once the nuclear energies in the denominator are
ignored, any complete set of states assumed for
the intermediate states will, if treated exactly,
lead to the closure result. The energy denomi-
nator in Eq. (20), E(t) —E( k), may be taken as

k't' k2k2
E(t) —E(k) =

2mp 2m p

Of course, for an infinitely heavy target con-
stituent

(21)

m pm', ~mp
m, +mp

Also, as e -0 the 6 function appearing in the
separable nonlocal interaction given in Eq. (1)
simply makes the potential nonlocal in the pro-
jectile coordinate only. Equation (20) will be
referred to in the following as the FW result.

Another variation that has been previously
discussed' is that obtained when one assumes
finite mass scatterers a +0 but still ignores the
nuclear excitation energies (so that, in earlier
treatments closure could be used on the inter-
mediate nuclear states). In this case, by making
the substitution t'= t —o.(p'+ k'), and noting

E(t) -E(It + o!(p'+k )I}

[ t"+ 2a(p'+ k') ~ t '+ a'(p'+ k')'],
2mp

(22)

one obtains for Eq. (16}

2m, dt'4wv, (t')v;(t')i" "'Y, (QI,)Y,.~i(&p)
t'+ 2a (p'+ k') t'+ n'(p'+ k')' —k' —i e

(23)

There is an angle dependence in the denominator
of expression (23) that precludes the angle integra-

@'2p2
E„(p„)= " + ( V) (independent of p„) (24a)

2m,

and where one writes the initial nuclear energy
Eo as

Eo= (T)0+ (V)o . (24b)

Now the difference E„-~,will reflect effects due
to nucleon recoil (in the kinetic energy term) and
differences in the binding potential felt by a par-
ticle in its ground state compared to some inter-
mediate excited state. The binding potential is
approximately 40 Mev deep for a particle below
the Fermi sea, above the Fermi sea it should be
considerably less. Substituting the expressions
given by Eqs. (24a) and (24b) into Eq. (18) and
making the substitution t' = t —a(p'+k' ) yields
the expression

tion over t' from yielding l = l', m =m' trivially be-
cause of the orthogonality of the Y,„'s in the
numerator. Of course, the denominator can be
shown to be independent of the (azimuthal) y in-
tegration so that one obtains m =m' from integra-
tion over the azimuthal angle. Thus if only one
I is present (a pure s wave or p wave interaction
for example) the sum can be contracted down to
a single lm and a simple closed form expression
for t(k', k) can be obtained [which, of course, in
the limit a -0 becomes identical with Eq. (20)].
In the more general case where several l's are
present, one can adopt an additional angle av-
erage" approximation which allows one to still
obtain a closed form expression for t(k', k) with-
out using determinants. This particular set of
approximations is discussed in more detail in
Ref. 2 and will not be pursued further here.

Now we wish to present a new result for a sim-
pie closed form expression for t(k', k) which
nettker uses the assumption that a = 0 (fixed
scatterers) or that the intermediate nuclear
state excitation energies can be ignored (but
treated only in some average" manner) Con-.
sider a Fermi-gas model for the intermediate
nuclear states where it is assumed

dt' v( (t')v). ~,(t') (25)

which after some manipulation may be rewritten as

dt' v(„(t')vg. .(t'}
(2v)' tt't" (P k ' —a p } —(T) P + ( V) —( V) —~c

2p 2mt

(26}
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where p=m, m~/m, +m~
There is no dependence on the angles of t' in the denominator of expression (26) so when the angular in-

tegration is carried out one obtains l = l', m =m' from the orthogonality of the spherical harmonics in the
numerator. Thus, the lm sums contract to a single sum and the following closed form expression is ob-
tained for t(k', k),

v", (Pk' —ap')v& (k- ~(k'+p'))
dT' lt i(f') I'

(2v)' 2p, 5'f"/2' —(pk' —ap')'/2', —B —if
(27)

where

B = (T)0 —(p')'/2m, + (V), —(V). (28)

bound collision matrix &(E}by the expression

r, „(E=E„+E)

S2 2

E„(p„)= " + (V}+b,P„'
mt

(29a)

+2p 2

+ (V), (29b)

If we ignore the term B in the denominator (i.e.,
the excitation effect) then Eq. (27) simply repre
sents what should probably be referred to as the
free two-body t matrix expressed in a coordinate
system with origin at the origin of the fixed bound
nucleon potential and Fermi averaged over (p')
the bound nucleon's final momentum. There are
often adopted approximations for evaluating this
expression and we compare, in the next section,
results obtained from exactly evaluating expres-
sion (27) in a model problem, with results obtained
by following approximate methods. The reason
that, in general, approximate methods have been
adopted for evaluating expression (27) is that the
three dimensional p' integration is very time con-
suming to perform [notice p' appears in the nu-
clear wave functions, in the v,„in the numerator
and in the integral over t ' in expression (27)].

Finally and briefly, note that one can allow an
energy dependence of the form

a
'" E(f) E(u)+ H—„E,—H-

(31)

where a projects onto antisymmetrized intermedi-
ate states of the target nucleus and H„ is the full
many-body nuclear Hamiltonian. In the formalism
adopted by KMT one takes matrix elements of the
operator (A —1)r(E}between initia. l and final free
projectile states and ground state initial and final
nuclear wave functions to obtain the optical poten-
tial. Our result, Eq. (27), can be obtained in the
KMT formalism by (a) representing v,„by a
Galilean invariant separable potential, (b) neglect-
ing the projection operator a, (c) using plane wave
single particle intermediate states for the nucleon
interacting with the pion, and (d) assume H„—E,
can be written as a difference of single particle
energies expressible as a difference of single
nucleon kinetic energies plus a constant binding
term. After these approximations, the compli-
cated integrals over the various momenta are
evaluated using correct kinematics assuming an
infinitely heavy nucleus.

where

1 1 2b„
2m,* 2m, (30}

thus introducing an effective mass in the problem.
The computational difficulty that such a term intro-
duces appears as an angle dependence on t' in the
denominator of Eq. (26).

In the following discussion we relate the result
given in Eq. (27) to that obtainable from the bound
collision matrix defined by KMT.' KMT' define a

B. Optical potential

Now we consider the problem of a projectile
scattering from a nucleus composed of a system
of finite mass constituents. For simplicity we
shall treat the nucleus as infinitely heavy so that
the many-body center-of-mass and laboratory
systems coincide. The projectile- constituent
nucleon interaction is represented by a nonlocal
separable Galilean invariant potential and the fol-
lowing many-body Lippmann- Schwinger equation
is assumed appropriate for describing the scat-
tering in the laboratory system



E. R. SICILIANO AND G. E. WALKER

(+) &0 &0
(X) I. . . IXA XI&)

= O, (x', x'„)e"'*(

d t it ~ (x o-x

) )(~ () 4 ~) )(~ 0 ( I) (NI( (X -X ) ) )III(~()(~- 2) )
i=y m

&«(m~ x ~ + m, x ', ) — (m x ~ + m, x,' )m~+mi ~ ~ ' ' m+m, -

(32)

The states 4„represent a set of energy eigenstates of the A particle target satisfying

H„i4„) =Z„iC„), (33)
where E, is the energy of the initial many-body nuclear target state In .Eq. (32) all variables referring
to the projectile have a subscript p (i.e., x~ ), while variables which refer to the ith target particle have a
subscript i (i.e., x, ). Superscripts are used to distinguish between different variables referring to the
same particle. The elastic scattering amplitude f (k', k) may be written

1 2m ~y 0f(k', k) = ——, ' ' ' dx', dx'„dx'4, (x', , . . . , x')e "' *n
7r

V(xpI xgI'xp) xg)f» (x~). . . I x(, . . . , xgIxp)dxpdx ~ik
(34a)

(34b)

we observe

d(J
dn =4m, ' ~

(34c)

One procedure for obtaining the optical potential
is to first iterate Eq. (32) for (j)")and insert the
resulting series expression into Eq. (34a). This
yields a complicated series expansion for the
elastic scattering amplitude. In order to obtain
from this an expression for the optical potential
one must compare the many-body scattering am-

where V is given by Eq. (1) and appears explicitly
in Eq. (32). Defining

plitude series expansion [ Eq. 34(a)] with iteration
of Eq. (32) inserted for g" with the result ob-
tained from considering an equivalent one-body
problem, " suppressing the degrees of freedom
of the many-body nuclear target. If we consider
nonlocal optical potentials, what one wishes is
an optical potential U(r, r') which when inserted
into the one-body" (projectile) Lippmann-Schwin-
ger equation

dt it (r r')

ff (Iw)' E(() —@(I)—'~

x U( I II)y ( II)d ld II

(35)

will yield a scattering amplitude

f(k', k)= e ' ''U(r, r')g (r')drdr' (3S)

e '" 'U r, r' e'" ~d rd '

&its( r~ rs )
+ ~ ~ ~ e '"''U(r, r') U(r", r"')e'~ +",drdr'dr"dr'"+ ~ ~ '

E(k) E(t) + it ' (2w)'
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which is identical with the elastic scattering am-
plitude calculated from the series expansion in the
full-many-body problem. What is often done in
practice (see Refs. 1 and 2) is to make approxi-
mations or assumptions that simplify the series
expansion for Eq. (34a), so that a term by term
comparison with Eq. (37) is possible and one can
thus identify the expression for the optical poten-
tial. We shall adopt some of these approximations
below.

First we make the never-come-back approxima-

tion in the series expansion of the elastic scat-
tering amplitude [Eq. 34(a)]. This means that al-
though a given target nucleon may be multiply
struck (in the sense that we replace a series of
v& interactions by the ith nucleon-projectile t
matrix) that once the projectile leaves the ith
particle in the nucleus and scatters from the jth
particle (j &i), the projectile does not return to
interact again with the ith particle. This allows
the multiple scattering series to be written
symbolically as

A A
—4mT= 4, e '""r~ v, + v, GV + V,Gv, + v&Gv;Gv

f=l i j=l 3 = l

A,

,Qv, Cu, ~,GvvGvv ~,Gv, G, + )
v"" V,),34q=l i )=l =l

where G is a shorthand notation for the sum (or
integral) over a, set of intermediate states divided
by appropriate energy denominators. Earlier in
this section we obtained an expression for the t-
matrix for scattering from a particle bound in a
fixed potential. In terms of a series of v interac-
tions we may write the t matrix for scattering
from the ith particle as

tg =v3+ v]Gv]+v]GvgGvg+ (39)

Using this definition of t; we may rewrite the
multiple scattering series Eq. (38) as

e, e'"'"& t+ t Gt.

+ t,.atJGt + ~ ~ ~ e fire 4

(40)

Now we wish to make a connection between the
projectile-bound nucleon t matrix introduced
above and the t matrices obtained for a projectile
scattering from a nucleon bound in a fixed poten-
tial in Sec. IIA. To do this we must adopt a simi-
lar model for the intermediate states in both
cases. Also we must largely ignore the effects
of correlations induced, for example, by the
fact that in Eq. (38), (39), and (40) the initial,

intermediate, and final states of the nucleus
must be properly antisymmetrized many-particle
states. We assume the intermediate states ap-
pearing in Eq. (40) are simple products of single
particle orbitals.

There are two kinds of terms we need to con-
sider. First, a term involving repeated v; in-
teractions from the same (ith) particle. We will,
in general, have an expression of the form

(4„(xr x„)~e "3 ' (v3;+v;Gv, +v, Gv, Gv, +'' ~ )

x ' er'r'3~43r~(x '''x )) (41)

Assuming simple product many-body states we
see that all particles except the ith one must be
in the same state in 4„,C „.and all intermediate
states or else the expression above vanishes. If
we write the energy denominators appearing in G
in terms of sums of single particle energies this
allows the nuclear difference &„—~, to be written
as E, (ith nucleon) —E, (ith nucleon). Here t„ is
the momentum associated with the assumed in-
termediate plane wave state appearing in G for
the ith nucleon. If we actually substitute in the
separable interaction, then Eq. (41) becomes
identical with the scattering amplitude calculated
for a projectile scattering from a nucleon bound
in a fixed potential, i.e., Eq. (41) may be re-
written as

—4rrt,' ( t 3, t3) = d P r "rrv r~ (P tI, —a P r), ,3(2')

(2rr)' 'vr~(t3- a(t3+ pr))rrrr, (p'r+t3-t3)
53 ~ dt vr (t —a(pl+t3))lr, „v„~(t—or(pr'+t3))

2tr, ,~~ (2rr)3 E(t) —E(tr) + E„(T'+p' p) E —ie
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[compare Eqs. (13a)-(17)].
The other type of term we need to consider arises in Eq. (40) when one considers the intermediate states

and the associated energies contained in a G sandwiched between t matrix interactions involving two dif-
ferent particles. A sufficient example for our purposes is given by

~

~

~gl

iN r dt3 ~ i7& ~ r&~ I Ca!(x I x~)) &@a(x, ' "xg) I e ice r~~ t +i3 ~ r~ (43)

Because of the never-come-back approximation
the intermediate ket wave function ~4, ) must
have the jth target nucleon in the same state as
it is in the ground state (the final state (C,

~
) of

the nucleus. Similarly, the intermediate bra
wave function (4~

~
must have particle i in the

same state as it is in the ground state (the initial
state

~
C, ) ). This result coupled with the fact

that all the other particles (k 4i or j) must be
in the same state as in the ground state means,
4 must be identical to 4, . Thus & -&, is equal
to zero. Because of the assumption of single par-
ticle product wave functions and the never-come-
back approximation, this argument generalizes
immediately to any term t,Gt~Gt, etc. The conclu-
sion is that the only intermediate nuclear many-
body state contribution to such terms is the ground
state. It is interesting that in the simple model
the intermediate states contribution to v, Gv; can
be single particle type excitations, while the
ground state only contributes to t,Gt& type terms.
We now continue in the spirit of the FW formal-
ism. Treating the particles equivalently in the
single nucleon densities, assuming the number of
particles A» n where n is the number of itera-
tions of the t; needed to yield the cross section
to sufficient accuracy, and using the considera-
tions above allows the multiple scattering series
Eq. (40) to be written

d t t3(k', t )t3(t, k)—4vAt3(k', k)+A'
(2 )' E(k) —E( )

dt t,(k', t,}t3(t„t3)t,(t„k)(-4v)3
(2v)3 [E(k) —E(t)+ ie][E(k) —E(t) + iC]

A 3

I
3

~
II

?~II ~

~
~ t

I

~
2 k

~
2j

~

~
~

I

3
~ ~ ~ ~

~

(44)

If Eq. (44) is compared with the series expansion
for the optical potential given by Eq. (37), then the
optical potential may be identified as

U,(t „t,) =-43At, (t„t, ) (45)

with t, given by Eq. (42) [the index i appearing in

Eq. (42) is no longer needed]. Equation (45) gives
the optical potential which is the generalization of
the FW optical potential including the effects of
nucleon binding, recoil, and intermediate nuclear
excitation in the bound nucleon t matrix.

One can eliminate the never-come-back approxi-
mation and the»& n condition by simply requiring
that the nucleus is in its ground state between t-
matxix interactions. One simply states that part
of the definition of the first order optical potential
includes this requirement. Relaxing the never-
come-back approximation and using the ground
state requirement for intermediate states between
t matrices (but not for terms like v, Gv, Gv;) allows
the operator appearing in Eq. (40} to be written

t, + t, nuclear g.s. g nuclear g.s. t&
3=1 $ j~l

+ t, ~nuclear g.s.)g(nuclear g.s. ~ti~ nuclear g.s. )g(nuclear g.s. ~t, +''', (46)
=1 g =1 f -1

where g denotes an integral over intermediate projectile states divided by the appropriate projectile ener-

gy difference. Now treating the particles equivalently allows Eq. (44) to be rewritten

dt t3(k', t )t3(t, k)(- 4s)At3(k', k)+A(A —1)
(2 )3 E(k) Q( )

(4v)

~+g

A(A —1) ti dt3 t3(k', t~)t3(ti, t3)t3(t3, k)(- 4&) + ~ ~ ~ ~A(A 1)3 [ )( 4v)~&+ . (47)
(2s} (2v)3 [E(k) E(t,)+ ic][E(k) —E(t3)+ ic]

Now by defining a many-body scattering amplitude T' by (as in Ref. 5)

A —1
A
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w here T is defined in Eq. (34b), we obtain a series expansion for T which may be written in the form

dt U~(k', t)U~(t, k) dt, dt Uq(k', t, )Ur', (t„t2)U~(t2, k)
(2rr}~ E(k) E-(t)+i@ (2rr)' (2rr)' [E(k) -E(t,)+it][E(k) -E(t,}+i&]

where

U„'(t„ t,) =-4rr(& —1)t,(t„t,) .
(50)

where

v, (r)=e "" (51b)

This form of the first order optical potential is
that obtained in Ref. 5 and with further approxima-
tions has been used for pion-nucleus scattering
in Refs. 11 and 12. Apparently it explicitly as-
sumes the intermediate ground state require-
ment but has the advantage of allowing one to
drop the n«& requirement. In pion-nucleus
scattering near the (3, 3) resonance our experi-
ence has been that the number of iterations re-
quired of the optical potential is certainly not
small compared to A (the series frequently does
not converge). Of course, in practical calcula-
tions one does not use the series expansion but
adopts a matrix inversion technique.

In the next section we shall present results of
various calculations using the optical potential
given in Eq. (50) and adopting different forms
for t,(t„t,). The particular analytic form as-
sumed for the microscopic Galilean invariant
projectile-nucleon separable potential is given
by

S2
V(r, r') = g 4rrhv, (r)v, (r')1; (0;)Y, (A,,),

m

and p is the projectile-nucleon reduced mass.
This separable p wave potential has the Fourier
transform form factor

v, (k) —= 4rr I j,(kr)v, (r)r 'dr = 8'
dp k2+ y2 2 (52)

The particular values chosen for the constants
will be discussed in the next section. A p wave
interaction was adopted in order to allow a connec-
tion with pion-nucleus scattering in our model
problems.

Actually, the potential given in Eqs. (45) or
(50) and (42) has not been previously used in
calculations. Instead, authors""" who have
carried out practical calculations of pion-nucleus
elastic scattering have adopted further approxima-
tions. For example, Piepho and Walker (PW)"
have used a semirelativistic generalization of the
Foldy-Walecka formalism. In order to obtain a
fixed-scatterer pion-nucleon scattering amplitude,
(PW) transform the pion-nucleon data to the lab-
oratory system, then assume the laboratory data
resulted from the scattering of a pion from an in-
finitely heavy nucleon (which allows one to obtain
fixed scatterer phase shifts} and proceeded to
solve the inverse scattering problem using Eq.
(3). An optical potential is then obtained via the
FW formalism. The analogous form of the optical
potential used by PW (in our discussion here
which uses nonrelativistic kinematics and ignores
spin and isospin degrees of freedom) is given by
[see Eqs. (45), (42), and (13a)-(17)with cr =0, P
= 1, and E„E,=O]

( ) ~g O' Ar p(t, -t,)v', (t,)v', (t,)(2l+ 1)P,(caser„r, )
2m, X, d t /vrr(t)]r

(2s}' t' k' tc—- (53)

where here p is the single nucleon density defined
by

4(( -)*)=J4"((')4t.(p +( -(.)4p' (44')

The separable potential form factors v'(t) have
primes on them to remind us that they resulted
from fitting the fixed scatterer phase shifts and
so may be somewhat different than the v(t} which
fit the center-of-mass phase shifts. Equation

(53) will be adopted in the next section to obtain
the fixed scatterer PW results to be compared
with the results obtained adopting other forms
of the optical potential.

If we adopt the approximations leading to Eq.
(50) and assume that the form of the energy in-
termediate nuclear state dependence used allows
l=l' and m=m' in Eqs. (42) or (13), then the opti-
cal potential U4, may be written in the form [see
Eq. (27)]
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dp'(),*(p')('),(p' t, -t,)v,*„(pt,—n p')v, „(t, —n(t, +p'))

jism

(2)i)3 2 p g2t'2/2 p —(p7, —n p')2/2t(, —8 —i&

(55)

where B is a term that appears due to binding
related effects [see Eq. (28)]. Note that p ', the
struck nucleon final momentum, and t appear in
the denominator of Eq. (55). This makes the opti-
cal potential given by Eq. (55) considerably more
difficult to use in practical calculations. However,
by using the p wave analytic form for the pro-
jectile-nucleon separable potential (and by using
considerable computer time) we have used Eq.
(55) to obtain results (which we call the model
correct results) that are compared to other pre-
dictions in the next section.

Now we wish to consider approximations to the
optical potential, Eq. (55), which lead to simplified
forms that are analogous to ones used by authors
in practical studies of pion-nucleus scattering.
Although linked by integration variables, Eq. (55)
has the form of a single particle density multiplied
by an "off-shell" form of the projectile-nucleon
t matrix. We therefore write Eq. (55) in the more
suggestive form

U,'(t„t,)

=-«(&-()f (t„i'l)'( .)l t., i»(v, ))&i&i&'

(which coincides with the lab frame here since
we assume an infinitely heavy nucleus) to the
projectile-nucleon t matrix in the projectile-
nucleon c.m. system (thus eliminating model
ambiguities). If we denote the projectile-nucleon
t matrix and the appropriate kinematic variables
by (K'

i
T((d,) i K), then we wish to obtain a rela-

tion between t „T„p„and (o, and K', K, and
~, and we wish to find a y such that

( t „p, i
T((d,) i

t „p,+ q )= y ( K'
i
T(rd, ) i

K) . (60)

In order to find such a relationship we now make
further approximations, reduced to their non-
relativistic limits, adopted in previous practical
calculations" (for comparative purposes). [See
Ref. 11 for a more detailed discussion. j For non-
relativistic kinematics y= 1. If we use the frozen
nucleon approximation of Ref. 11 and the Galilean
invariant relative velocity between the pion pro-
jectile (p) and nucleon (n) we obtain

po= A
(frozen nucleon approximation),

(61a)

where

x 6(p +ti —p —t2) (56) so

t; po K K 1 1
(61b)

&(p', p) = v.'(p')v', (p) . (57)
and therefore

and

q=t, -t, (59a.)

Now, if one assumes that the dependence on the
nucleon's momentum p' in the two-body t matrix
(after using the 6 function to eliminate the p in-
tegration} can be replaced by some average value

p„ then one obtains

U'( t„t, ) = —4v(A —1) ( t„p i T((do) i t, po+ q) p( q),
(58)

where

K=t((p+n/A) ~ „- pt, . (61c)

The variable (do is the parametric energy ap-
propriate for the projectile-nucleon t matrix in
the many-body environment, while 90 is the total
energy available in the projectile-nucleon c.m.
when free, two-body kinematics are appropriate.
As the binding term B-0 in our model interaction,
Eq. (55), the parametric energy becomes the
same as the energy one would have identified in
the projectile-nucleon c.m. and is related to the
momentum by

)(e)=f ) ()', i' ~ ~)~i' (59b)
tf'(K')'

(do = (free, two body).
2 P' p- nucleon

(62)

Using our model for the t matrix, one can use
this optical potential without further approxima-
tion. Of course, one would like to directly relate
the two-body t matrix ( i T((o,}i), appearing in
Eq. (58) in the projectile-nucleus c.m. frame

In order to express the t matrix in the appropri-
ate variables for the many-body problem, one
must make an "angle-transformation" from the
projectile-nucleon c.m. to the projectile-nucleus
c.m. The actual procedure is to make the follow-
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ing partial wave decompositions (P, is the usual
Legendre polynomial)

I T(~,& IK& =g (21+ 1&(K Ir, IK)P,(K'K),
(63a)

In the Legendre polynomials appearing in Eq.
(64}we have both the angles in the projectile-
nucleon c.m. system (K' 'K) and the scattering
angles in the projectile-nucleus system (t, t,}.
We can eliminate the projectile-nucleon angles
by using the mathematical identity

p(t, -t.)=g p,.(t„t,)P,.(t, t.) (63b) n, (tt "it) Pe„=n,(t, 2 ), (65)

and then using Eqs. (60), (63a), and (63b) in Eq.
(58) we obtain

where, in general, the d, ~ would be a function of
the scattering angle. Using Eq. (65) and the rela-
tion

fl',(t„t,) = —4v(A —l)y

xg (2l+ l)(K
I T) IK) pl (t» t2)

xP, (K' K)P„(t, ~ t,). (64)

jil its L 2

P~( t2 ~ t,) P„(t, ' t,) = Q (2l" + 1)I2 2 le 2 2
~0 0

xP,„(g, g, )

we may rewrite Eq. (64) as

(66)

f l' l" L)I2
2( 12 2} = - «(A - 1) Q (2l" + 1) I I (2l+ 1)dl& pl ~ (t2 t2}(K Igl IK) p ( g ~ g )

l 4 tL

(68a)
or

Now, using the definitions of K' and K given
just above Eq. (60), we may write

K'- K=p(t2- t2) —a(P'-P)

A2 l (g2+t2)
P nucleon (PA+ a)2 2g g

A'

(
n 12 2 nucleus-~+A) (69)

K' —K= t, -t, —a(t, —t, +p'- p}, (68b)

since a+ p= 1.
If we obey the momentum conserving 5 function
that appears in Eq. (56), Eq. (68b) becomes

K' —K=t, -t2 (68c)

and we can relate the angles in the projectile-
nucleon c.m. to the angles in the projectile-nu-
cleus c.m. by squaring Eq. (68c) to obtain

(K')'+ (K)' —(t2)' —(t,)'
p ntlcl eon ~tE'

t,t,+ pre S p rluclcus (68d)

[To parallel the discussion in Ref. 11 more closely,
one may note that Eq. (68c) is a consequence of
the on-shell invariance of relative velocities
which is the nonrelativistic analog of the four-
vector invariance used in Ref. 11 to relate the
angles in the two different c.m. systems. ]

Making use of the frozen nucleus approxima-
tion Eq. (61), we obtain

Since we shall adopt a p wave (l = 1) separable
potential this is sufficient to determine the d»
appearing in Eq. (65). They are angle independent
using the frozen nucleon approximation and are
given by

and

A' (t, '+ t, '}
(PA+a)' ) 2t, t,

(VOa)

A'
)2

(VOb

lol'

Given t, and t, we can determine the K' and K
to be used in the t matrix appearing in Eq. (6V)

by using Eq. (61). Thus all the terms appearing
in the square brackets in Eq. (6V) are independent
of the angles of t, and t, . We may thus make a
partial wave decomposition of U, ( t „t,) such as

U'(t„t,)=g(st' ~ l)(t,
(

(t)ntt. (' t, 't), (21)..
where from Eq. (6V) we can identify

(1' l" Li'
(t I%2 lt2)=-«(A —1) p 0 0 0 I

(2l+1)d, p,.(t„t)(t,(p+alA)I v', It, (p+a/A)& .
l, ls L

(V2)
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A method for "Fermi-folding" is obtained in Ref.
11 by noting that the off-shell t matrix appearing
above in Eq. (72), (K'~t, g), can actually be
written for separable models as an on-shell /-
matrix, (Ko~t, go), multiplied by the ratio
v, (K')v, (K)/[ v, (K,)]'. The nucleon's momentum
ln the nucleus is then approximately taken into
account by doing a two-dimensional integral over
the on-shell t matrix, (K, ~t, Iff,), times a nucleon
momentum weighting function. The variable E„
appearing in the on-shell t matrix, is related to
the nucleon's momentum (p), in the projectile-

sage eQ»

nucleus c.m. by K =Pt, —ap in our nonrelativistic
analogue. The weighting function used in Ref. 11
is the Fourier transform of the radial part of the
single particle density. We use this approximate
Fermi-folding technique in some of our calcula-
tions and the results will be discussed in the next
section.

Using the decomposition of U, (t„t, ) given by
Eq. (71) results in considerable simplification
compared to performing the multidimensional
integrations involved in obtaining t„(t„t,) from
Eq. (42) and then using the optical potential given
by Eq. (55).

One has required two particularly important
approximations to obtain Eqs. (Vl) and (72). The
first is the factorization leading to Eq. (58), while
the second is the frozen nucleon approximation.
In the next section we shall compare the results
obtained using the optical potentials given by
Eqs. (V1) and (72) and Eq. (58) with the results
obtained from other optical potentials. It is im-
portant to keep in mind that the frozen nucleon ap-
proximation is actually& in general, inconsistent
with the relation K' = P t, —a p' along with the 5
function 6(t, + p' —t, —p) using in reducing equa-
tion (56).

More recently several authors have suggested
alternatives to the procedure suggested in earlier
work for treating the kinematics approximately.
Miller" notes that his suggested angle trans-
formation is currently being adopted in some

momentum space optical potential calculations
using separable pion-nucleon interactions. Recent-
ly Landau" has reported calculations that do not
assume the frozen nucleon approximation, Eq.
(61a), but uses the relation

—t( (A —1)
po= ~ +g (73)

Applied consistently, the more recent prescrip-
tions make the constants*' d„and d», Eq. (70),
functions of angle. One advantage of using Eq. (73),
is that it is consistent with the relation O'= Ply
—o.p' and the momentum conserving 6 function
6(t, +p' —t2-p). We note that our results indicate
that such calculations, based on Eq. (73), which
do an approximate Fermi-folding, are only neg-
ligibly different from our Eq. (55) wtthout inc lutiing

intermediate state excitation.

III. RESULTS, COMPARISONS, AND DISCUSSION

A. Results

m.*(p')c.(p'+ t, —t,)

was

(74a)

In the previous section, using various approxi-
mations, several forms were obtained for the
optical potential. In this section, we compare the
results of calculations of elastic differential cross
sections and total cross sections using these po-
tentials. All the optical potentials were obtained
assuming a separable microscopic projectile-
nucleon interaction. As noted earlier, nonrela-
tivistic kinematics and the Lippmann-Schwinger
equation have been used. In all our calculations
we have assumed the nucleus to be composed of
16 nucleons ("0) and have adopted a single particle
harmonic oscillator model to obtain the relevant
nuclear single particle density. We have assumed
the target nucleons fill the 1s and 1p oscillator
shells and have used the value b = 1.77 fm for the
oscillator parameter. Thus the actual form taken
for

—,'y„(p')p„(p'+t, —t,)+ +Q,*~(p )4',~(p'+t, —t,) (74b)

=(5'~4v)'"e~(- (b'&2)[(p')'+ (p'+ q)'B[1+»'(p'+q) p'l, (74c)

where q=t, -t, .
The basic projectile-nucleon interaction is as-

sumed to be a separable p wave interaction as
presented in Eqs. (51) and (52). The particular
parameters chosen for the potential [ see Eqs.
(51a) and (51b)] are X= —6112 fm ' and y =3.5

fm '. These parameters have been used pre-
viously in Ref. 19 in a fit to the pion-nucleon
F33 data below the (3, 3) resonance. The total
cross section obtained from the on-shell pion-
nucleon t matrix generated by this separable
potential is shown as a solid line in Fig. 1. For
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FIG. i. A comparison of the energy dependence of the
total pion-nucleon cross section obtained using the P
wave separable potential introduced in the text and the
observed {7I+p) total cross section. The separable po-
tential is used as microscopic input in the different op-
tical potentials discussed in the text.

comparative purposes the true pion-nucleon total
cross section is shown as a dotted line in the
same figure. The model t matrix yields a total
cross section energy dependence that is similar
to that observed for the pion-nucleon system. The
model interaction total cross section peaks at about
180 MeV [ at about the (3, 3) resonance energy ]
and is broader and slightly larger than the ob-
served total cross section. The model interac-
tion provides a good fit to the observed pion-
nucleon P33 phase shifts up to 150 MeV. Beyond
this point the observed phase shift continues to
rise while the model phase shift levels off at
-80' and eventually begins to decrease above
400 MeV. Our model P wave interaction I; matrix
is only meant to be suggestive of some of the fea-
tures that would be present below the (3, 3) reso-
nance in more detailed fits to the pion-nucleon
data, as in Refs. 11 and 13.

We obtained a form for the optical potential Eq.
(55) [using single nucleon plane wave intermediate
states] that incorporates effects due to nucleon
recoil, the target nucleon momentum distribution,
and, in our model, intermediate nuclear state ex-
citation (ISE). We refer to the results using Eq.
(55) with B [given by Eq. (28)] set equal to zero
as the "model correct" results. This optical
potential (with B=0) is the one that one might
select to include rigorously nucleon recoil and
effects of the struck nucleon momentum distribu-

tion in a model incorporating the two-body off-
shell t matrix derivable from a separable poten-
tial. Our model of the intermediate states [see
Eqs. (24a) and (28)] allows B to be written as

—(p')'&2m, +A',
where

(75a)

(75b)

and where &T ),+ (V), is the energy of the initial
bound nucleon. Relative to a free nucleon of zero
momentum, if we take (T) +& V&0= —15 to —20
MeV, then A' = —20 MeV —

& V& . The symbol ( V&

is the average potential energy felt by the inter-
mediate excited plane wave states. It is con-
sistent in our model to assume &V) =0. In order
to demonstrate the effects of a 8 +0 term, we
have calculated optical potentials, elastic dif-
ferential cross sections, and total cross sections
using A' = —20 and —40 MeV. These are now com-
pared with the "model correct" result which
neglects the ISE terms. The results for the real
and imaginary parts of the optical potentials for
T, (lab energy) = 150 MeV (Ikl= Ik I} are shown
in Fig. 2. The results obtained for the energies
(T,) in the range 100-180 MeV are similar to
those shown. One effect of ISE on the momentum
space optical potential is to increase the magni-
tude of the real part and decrease the imaginary
part at forward angles. The angular distributions
obtained when these optical potentials are used
in a Lippmann-Schwinger equation to describe
the scattering are shown in Fig. 3. It is seen
that the greater the ISE term, A', the more the
differential cross section is decreased at forward
angles and enhanced at back angles. We note that,
compared to the model correct result, the dif-
ferential cross sections including the A. ' term are
significantly larger at back angles and that the
effect increases with increasing energy in the
energy range shown. A calculation of the abso-
lute square of the first order optical potential
reveals the same enhancement feature at back
angles for the potentials containing the ISE term
(compared to the model correct result}. In the
energy region 100-180 MeV, the total cross sec-
tions obtained (using the optical theorem}, em-
ploying t matrices generated by the optical poten-
tials shown in Fig. 2, become smaller as the ISE
term A' becomes more negative. In fact, ~~ ob-
tained from the model correct result is -10%
greater than 0~ obtained when &' = —20 MeV. Of
course, there may be little connection between U

and T in this energy range, but, as shown in Fig.
2, ImU(k', k) at 8 = 0 decreases as A' increases
magnitude. Of course, this is the same feature
present in ImT(k', k) at 8 = 0 yielding the general
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behavior of o~ as a function of A'.
Next we consider the effects of a tp" factoriza-

tion of the optical potential. B is set equal to zero
below. Now, instead of using Eq. (55) for the opti-
cal potential we use expression (58) with p„ the
average target nucleon momentum, set equal to
zero. This allows a factorization of the optical
potential into a product of two terms, p(q) the
Fourier transform of the struck nucleon momen-
tum distribution and ( t„p, =o~ T(u&,) ~t„p, +q=q)
the pion-nucleon t matrix. Using our analytic ex-
pression for the t matrix we can evaluate this
optical potential quite easily without further ap-
proximation. All results obtained using the opti-
cal potential given by Eq. (58) are designated by
the title, tp factorization. We also consider an
approximation where one removes t from the p'
integral and carries out the angular integrations
over p' in q*(p~)y(p'+ t, —t,) and then subsequent-
ly brings t back into the integral and integrates
over p' (the angles of p' now only appear in f).
This approximation is equivalent to not setting
po =0 but using a nucleon momentum distribution
function (form factor) having only a, radial p' de-
pendence. We call this the "radial form factor"
approximation. Comparisons of the model correct,
tp factorization, and radial form factor approxi-
mation results are shown in Figs. 4 and 5. Clear-
ly the model correct and radial form factor re-
sults are quite similar. Unfortunately, the radial

form factor approximation does not cause appre-
ciable simplification (approximately equal com-
puter time) in actual calculations. What the re-
sults indicate is that the angle dependence of the
single nuclear form factor does not play an ap-
preciable role when one is considering closed
shell nuclei, as would be expected. [Of course,
the effects do not exactly vanish. ] The situation
for the tp factorization is quite different. This
approximation results in considerable simplifica-
tion and has been adopted previously. Unfortunate-
ly, as shown in Fig. 5, there is considerable dif-
ference between the model correct and tp factor-
ization results at back angles. The tp factoriza-
tion causes the predicted back angle cross section
to be enhanced, sometimes by an order of magni-
tude. Nonnegligible deviations from the model
correct result also occur in the first order opti-
cal potential. A general conclusion from our
studies (representative results are shown in
Fig. 5) is that a complete neglect of Fermi-folding
or the nucleon momentum distribution results in
inaccuracies at back angles that are as important
as those deviations resulting from the neglect of
intermediate nuclear state excitation or, as we
shall discuss below, approximate angle trans-
formations. On the positive side, we note that
total cross sections calculated with the tp factor-
ization potential do not deviate from those obtained
using the model correct method by more than 10%%up
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considered a model problem where a 100 MeV
particle having the n particle mass scatters from
"O. We have used parameters X=100 fm ', y
= 1.5 fm ' in our P wave separable potential. The
behavior of the resulting completely fictitious
'model" O. -nucleon total cross section is shown
in Fig. 8. In Fig. 9 we compare the results of the
new model correct, tp factorization, and radial
form factor approximations. Certainly neither of
the approximate optical potential's differential
cross sections is satisfactorily close to the model
exact results. The critical point is that for fixed
incident energy in the projectile-nucleus system,
the range over which the two-body f matrix (in-
side the integral) is evaluated becomes larger as
the projectile becomes heavier. From the relation
K=P t, —n p we can evaluate the range over which
the momentum

I
K

I
in the projectile-nucleon c.m.

varies. Taking the nucleon's momentum to be the
Fermi momentum Ip I

= 1 fm ', we find for the
pion case (100 MeV pion in the pion-nucleus c.m. )
0.6 fm '&

I KI& 0.86 fm ', while for the a particle
0 &

I KI & 1.5 fm '. When one makes the fp factor-
ization, one chooses a value of

I
K

I
to evaluate

the two-body t matrix. Obviously, the larger the
range of

I
K

I
to choose from, the less likely fp

will approximate model correct. For our n par-
ticle case, the tp factorization gives a value of

I
K

I

= 0.88 fm ' or in terms of energy in the two-
body c.m. T,„=20MeV, while the range is 0& T,„
&58 MeV. By looking at the total cross section in
the two-body system (see Fig. 8) one might argue
that the 20 MeV value is representative, but the
information from o'~ is not sufficient and, for
example, the behavior of the phase shift must
also be considered. A larger range of K and K'

values means a wider band of two-body phase
shifts are important and also that the angles of
K and K' over which the two-body t matrix is

leal

evaluated for fixed k and k' in the many-body
environment is significantly broadened.

B. Summary

In what follows we summarize and briefly discuss
our results. In Sec. II we have used a separable
Galilean invariant projectile-constituent nucleon
potential, multiple scattering formalisms, and
various approximations to obtain several different
forms for the projectile-nucleus optical potential.
The use of a separable potential allowed con-
siderable analytic progress to be made in the
many-body environment which would have been
otherwise impossible. Nonrelativistic kinematics
and the validity of a Lippmann-Schwinger equation
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The separable potential is supposed to represent the
interaction between a nucleon and some ima~n~ry
particle having the mass of four nucleons.
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FIG. S. A comparison of the angular distributions
obtained using two approximate forms of Fermi-folding
and the result obtained in the model correct treatment.
All results use the microscopic separable potential dis-
cussed at the end of Sec. III. The large deviations occur
because the approximate forms of Fermi-folding become
inadequate as the mass of the projectile (4Nz) becomes
larger compared to the nucleon constituent mass ~z.
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were assumed throughout. We first considered a
projectile scattering from single nucleon in a fixed
potential. In attempting to obtain an expression
for the associated t matrix it was found necessary
to assume some model for the intermediate bound
nucleon states. The resulting bound nucleon t
matrix was found to enter naturally in a study of
projectile-nucleus scattering and a complicated
form for the optical potential was obtained. By
using plane wave intermediate states with a simple
energy momentum relationship (including a poten-
tial energy or binding term} it was possible to
study the effect of intermediate nuclear state ex-
citation on the projectile-bound nucleon t matrix.
It was found that when simple product wave func-
tions were used throughout along with the never-
come-back approximation (or the definition that
the nucleus was in its ground state between t-
matrix interactions} that single particle excita-
tions could still take place in the intermediate
states contributing to the bound nucleon t matrix
itself. This effect, which we denoted by ISE, to
our knowledge has not received serious attention
before. Such an effect cannot be taken into account
by simply using a k,«because it enters only in

v,gv, type terms and is not present in t~z terms.
By making further approximations adopted by
authors in the past, we were able to compare and
contrast the optical potentials and many-body
elastic scattering predictions such approxima-
tions yield. More specifically by using the gen-
eral approximations or procedures discussed
above in this summary we were able to obtain
the projectile-bound nucleon t matrix given by
Eq. (16) supplemented by Eqs. (13)-(15).

Subsequent approximations delineated below
resulted in more explicit and tractable forms
for the projectile-bound nucleon t matrix:

(1) The Foldy-Walecka result'. The additional
assumptions of m(projectile)/m(nucleon) -0,
neglect of the nuclear energy difference E„-+p,
and closure on the nucleon states leads to Eq.
(20). [ See also the discussion following Eq. (20}.]

(2) The result obtained in Ref. 2. The additional
assumption of closure and an angle averaging of
terms depending on the angles of t' in Eq. (23) is
required.

(3}To obtain a new result, incorporating the
effects of intermediate nuclear excitation, nu-
cleon recoil, and the nucleon momentum distribu-
tion, it was only necessary to supplement Eqs.
(13)-(16)by Eq. (24a) for the assumed inter-
mediate nuclear state energy. This leads to
Eq. (2V) for the projectile-bound nucleon f
matrix.

We then obtained various forms for the optical
potential by making further assumptions. More

specifically,
(1) To obtain the optical potential used by Piepho

and Walker" (which is essentially the Foldy-
Walecka form') we assumed @=0, P=1, the
never-come-back approximation, n»&, a
many-body C OC, function that was a simple
product of single particle densities, &„-&,
(nuclear) is ignorable, and separable poten-
tials derived from fixed scatterer phase shifts.
This optical potential is given by Eq. (53) and
results obtained from it are denoted PW in the
figures.

(2) To obtain the optical potential denoted by
model correct we simply assumed the nucleus
stays in ground state between projectile-bound
nucleon t-matrix interactions, assumed a sim-
ple product wave function for the many-body
ground state wave function and used the pro-
jectile-bound nucleon f matrix given in Eq. (27).
In that equation if binding related effects are not
neglected we obtain the optical potential incorpo-
rating intermediate nuclear state excitation (ISE).
The model correct optical potential was also used
as the starting point for further approximations to
the complicated integral over the nucleon momen-
tum distribution. Results following from the ap-
proximate treatment of the Fermi momentum are
denoted tp factorization and radial form factor in
the figures.

(3) To obtain an optical potential via a procedure
analogous to that followed in Ref. 11, we started
with Eq. (55), then adopted Eq. (58) [ in order to
reduce a three dimensional momentum integral
to a two dimensional one, used the frozen nucleon
approximation Eq. (61a)] and the on-shell in-
variance of relative velocities to obtain an approxi-
mate angle transformation where the relevant co-
efficients are given by Eqs. (70a) and (70b). The
Fermi-folding approximation used is discussed
after Eq. (72). Results obtained from this optical
potential are denoted LPT in the figures.
There is considerable interest in isolating effects
due to higher order corrections to the optical
potential. For example, it is important to identify
the signature of "two nucleon correlation" effects.
Also, effects due to isobar propagation are im-
portant to identify. One of our purposes in this
manuscript is to demonstrate the kind of errors
resulting from the usual approximations to the
first order optical potential itself (even without
considering higher order effects such as correla-
tions). These first order approximations essen-
tially result because treatments to date have not
properly included one or more of the effects of
ISE, Fermi-folding, and angle transformations.
We hope our results will be a guide to the theo-
retical "error bars" to be expected when various
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approximations to the optical potential are adopted.
Especially at medium to large angles it is im-
portant to note that LPT tended to be higher than
model correct while PW tended to be low. How-

ever, both formalisms seem to be reasonable ap-
proximation to the model correct result. (The
approximate angle transformation used by LPT
is responsible for their overshoot of model correct
at back angles. It is our understanding that this
approximation is no longer being adopted. ") The
difficulty is that model correct does not incorpo-
rate effects due to ISE excitation (which is cer-
tainly an important effect in raising the predic-
ted cross section at back angles —see Fig. 3).
Thus if the experimental data are higher at back
mgles than the predictions (as is most often the

case —see Ref. 13), then in addition to looking for
the resolution to the problem in higher order cor-
rections to the optical potential, ISE effects should
be more carefully studied.

Unfortunately, we have found in this study that
the tp factorization is frequently a poor approxi-
mation for 8&90 (see Figs. 5 and 9). This im-
plies, if one is not using the FW formalism, that
studies of pion-nucleus elastic scattering should
at least carry out the two dimensional Fermi-
folding integral discussed in Sec. II and adopted
by LPT.
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