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Upper limit on a time reversal noninvariant part of Wigner's random matrix models
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The results of a Monte Carlo investigation and comparison with experimental data of Wigner's random matrix
model with differing amounts of a time reversal noninvariant part are presented. With 0, = R,, + iyI...
calculations were performed with y = 0.00, 0.05, 0.10, 0.20, 0.50, and 1.00 using 40)&40 matrices and y = 0.00,
0.05, and 0.10 with 80)(80 matrices. After unfolding the density variation of the eigenvalues the behavior of
the Dyson-Mehta 6,, statistic was examined for different values of y. The behavior of the reduced widths,
which has also been examined in a previous calculation by Rosenzweig, Monahan, and Mehta, was found to
be considerably more sensitive to small y values than the 6, statistic. Thus the reduced width data can place
a much lower limit on y than the level spacing information. A comparison of the calculations performed here
with recently collected high quality neutron resonance data gives y& 0.05 at the 99.7% confidence level. It is
also shown that the same value of the Dyson-Mehta d3 statistic results when the matrix elements of Wigner's
model are chosen from a Gaussian or flat distribution.

NUCLEAR STRUCTURE Monte Carlo calculation, Wigner's random matrix mod-
el. Effect of time reversal violation on statistical behavior of resonances. Com-

parison with experimental data.

INTRODUCTION

The statistical behavior of level spacings and re-
duced widths of compound nuclear states is well
described, in the absence of intermediate struc-
ture effects, by Wigner's orthogonal ensemble
(OE).' In this theory the Hamiltonian of a physical
system is representative of an ensemble of real
symmetric matrices which obey certain statistical
laws. Real symmetric matrices were chosen in
order to describe systems which are invariant un-
der time reversal. Other ensembles of matrices
can be defined'" which would be applicable to phys-
ical systems obeying different conservation laws;
for example, an ensemble of Hermitian matrices
[called the unitary ensemble (UE)] would represent
systems without time reversal symmetry. The OE
and UE predict significantly different behavior for
level spacings and reduced widths. ' When the
physical system being described is so complicated
that the detailed nature of the interactions is un-
important, the statistical behavior of the level
spacings and reduced widths is sensitive to the
laws of symmetry.

The main purpose of this paper is to determine
what limit can be placed on a time reversal nonin-
variant part of Wigner's random matrix model
from the high quality resonance data (mainly neu-
tron data) collected only recently' " Earlier cal-
culations" of this nature stressed the effect of a
small violation of time reversal on the statistical
behavior of the nearest neighbor spacing distribu-
tion and on the distribution of reduced widths, but
no serious comparison with experimental data was

ever made. Here the emphasis is on the long
range correlations between level spacings as well
as on the reduced widths.

CALCULATION

The OE is defined by the set of N xN real sym-
metric matrices which have matrix elements that
are statistically independent and obey Gaussian
probability distributions, centered about zero, with
the variance of the diagonal elements being twice
that of the off diagonal elements. ' The eigenvalues
of these matrices are distributed according to the
Wishart distribution":

I'(E„.. . ,E~)dE, . dE„

P = 1, a' is the variance of the nondiagonal matrix
elements, and N is the matrix dimension. This
eigenvalue distribution describes the behavior of a
single population (levels of a given nucleus char-
acterized by the same spin and parity) of resonance
energies which are observed experimentally. The
eigenvalue density is symmetric about zero and in
the limit of large matrix dimensions is described
by Wigner's semicircular law":

For the OE P =1. Since the experimental data are
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characterized by a constant level density (an ex-
ception is the proton data discussed below), either
very large matrices must be diagonalized and only
the central portion of constant density used, or a
transformation from the semicircular distribution
to a constant density must be made. For all the
calculations performed here the latter approach
was used since it was found to be a correct pro-
cedure in a previous calculation. "

Wigner's model also describes the behavior of
the reduced widths of the resonances. Borrowing
the definition of the reduced width from R matrix
theory, "one has

r„,-y„„y„-)t X, y, ds,

where y„ is real, Q, is a channel wave function,
and X~ is one of a complete set of states defined in
the interaction region; the integration is carried
out in a 3(A —1) dimensional space (A is the num-
ber of nucleons of the compound system}. Associ-
ating X„with the eigenstates of the random matri-
ces and expressing X„ in terms of its components
a& with respect to the original basis Pz gives

y~, =g a, i S,„S (4)

Porter and Rosenzweig" showed that the a~'s obey
Gaussian distributions, centered about zero, and

applied the central limit theorem to the sum. This
implies a Gaussian distribution for the y„'s and
consequently the Porter-Thomas" (PT) distribution
for the reduced widths. In the calculations per-
formed here S,, is taken to be constant.

The extension to the time reversal noninvariant
case can be made by letting each matrix element
become complex, i.e.,

H;~ =R,.~+i yI...
where hermiticity requires R,&=R,, and I,&

=-I,, .
y is a measure of the strength of the part violating
time reversal. R,&

and I,~ are statistically inde-
pendent and the I,&'s obey Gaussian probability dis-
tributions with the same variance as the R,&'s

(ioj). The reduced widths are proportional to
y~,y„, (y„, is now complex), and S&, was again cho-
sen to be constant. When y =1.0 this becomes the
UE and Eqs. (1) and (2) apply with P =2.02

With the model above, Monte Carlo calculations
were performed wherein sets of 40 & 40 and 80 x 80
matrices were diagonalized as summarized in
Table I. For the cases y =0.0 and 1.0 analytical
solutions are known, and these serve as a check on
the calculations. For example, Fig. 1(a) shows the
eigenvalue distribution of the 40 x 40 matrices for
the cases y =0.0, 0.5, and 1.0. For y =0.0 and 1.0,
the semicircular law is applicable with I3 =1 and 2,

TABLE I. Summary of the number of matrices of a
given dimension which were diagonalized. Y is a mea-
sure of the strength of a time reversal violating part of
signer's random matrix model.

Matrix
dimension

Number of matrices
diagonalized

80
80
80
40
40
40
40
40
40
40
808

80
80

150
150
150
150
70
70
70

150
60

0.00
0.05
0.10
0.00
0.05
0.10
0.20
0.50
1.00
0.00
0.10

' Matrix elements chosen from a flat distribution
centered about zero.

P(x) dx =2xe " dx.

The variances (V = (x') —1) for these distributions
are 2.0 and 1.0, respectively. In Fig. 2 the quan-
tity V is plotted as a function of y for the 40 x 40
and 80 x 80 matrix generated widths (the error
bars reflect the uncertainty due to the finite sample
size), The values of V found here" are in good
agreement with those of Rosenzweig et al."and
confirm their conclusion about its sensitivity to
small values of y. These authors also demonstrat-
ed that the value of V is dependent on the matrix
dimension. This is implied by the y =0.1 results
of Fig. 2 where the value of V determined from the
widths generated by diagonalizing the 80 x 80 ma-
trices lies below that calculated with the 40 x 40
matrices.

respectively. As can be seen, the agreement is
good except at the extreme ends where deviations
due to the finite matrix size are expected. For
values of y intermediate between 0.0 and 1.0 the
eigenvalue distribution is believed to follow the
semicircular law. Figure l(a) indicates that, to
within statistics, the semicircular law with P =1.22
gives a good fit when y =0.5. Furthermore, it was
found that for y ~ 0.1, the semicircular law with
P =1.0 fitted the Monte Carlo results well. This is
demonstrated in Fig. 1(b}for the 80 x 80 matrices.

For the OE (y =0.0) the reduced widths for a sin-
gle channel are predicted' to follow the PT distri-
bution:

P(x)dx=(2 jv)' 'e " 'dx x=(y '/(y '))' '

(6)

while for the UE (y =1.0), the expected distribu-
tion' of widths is
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FIG. 1. The eigenvalue distribution generated by

diagonalizing (a) 40 X40 matrices with the strength of
the time reversal violating part y =0.0, 0.5, and 1.0 and
similarly for the (b) 80 &80 matrices with y =0.0 and 0.1.
The smooth curves represent Wigner's semicircular
law.

FIG. 2. Plot of the variance (V= (x2) -1) of the Monte
Carlo generated reduced widths for the 40 x40 and 80
X80 matrices as a function of y. The errors are due to
the finite sample size.

d.E
h~ = Min [N(E) AE 8] dE. --

A, B ++ 0
(8)

N(E) is the number of levels between zero and en-
ergy E [a graph of N(E) vs E resembles a stair-
case]. Using Dyson's circular orthogonal ensem-
ble theory" (this is equivalent to Wigner's OE)
where the eigenvalues have a constant density, Dy-
son and Mehta'~ calculated the expected behavior
of &, and its standard deviation (SD). For a single
population of levels they found

(9)

SD of &3=0.11.
The logarithmic dependence of (&,) on the number

A sensitive test of the long range correlations
between level spacings is the Dyson-Mehta &3
statistic. '4 This statistic is a measure of the mean
square deviation of a staircase plot of a sequence
of n levels from a best fitting straight line; i.e.,

of levels reflects the long range correlations be-
tween level spacings. For level spacings which
are uncorrelated the average value of &3 has a
linear dependence on n (n» l)P" In evaluating &,
from the Monte Carlo generated sets of eigenval-
ues, the following procedure was used. First, two
eigenvalues from each end of the eigenvalue dis-
tribution were discarded and the transformation
P (g) dg =P(u) du was made with P(u) set equal to a
constant. P (g) is the semicircular law with an
appropriate value of N and P. The resulting sets of
constant density eigenvalues were then used to
evaluate the &, statistic. Table II lists the values
of &3 and SD of &3 determined from the 40 x 40 and
80 x 80 matrices for y =0.0 and 0.1 along with the
values predicted by Eq. (9). The agreement of the
y =0.0 results with Eq. (9) is good.

Some time ago Rosenzweig" demonstrated,
through Monte Carlo calculations, that OE matri-
ces with matrix elements obeying flat (instead of
Gaussian) distributions centered about zero re-
sulted in a nearest neighbor spacing distribution
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TABLF Q. Behavior of the + statistic and SD of A3 from the Monte Carlo generated
eigenvalues for y= 0.0 and 0.1 and for matrix elements chosen from flat and Gaussian distri-
butions. The OE predictions are also given.

Matrix
dimension

Eigenvalues
used SD of 6& SD of 43

40
80
40
80
80 ~

0.0
0.0
0.0
0.10
0.10

36
76
36
76
76

0.359+0.008
0.423 + 0.012
0.371 + 0.009
0.377 + 0.009
0.380 + 0.012

0.09
0.11.
0.11
0.11
0.09

0.356
0.432
O.356

O. i 1

0.11
0.11

Matrix elements chosen from a flat distribution centered about zero.

in good agreement with the OE spacing law sug-
gested by Wigner. (Wigner's law has a simple
analytical form and differs little from the exact
OE nearept neighbor spacing distribution found by
Gaudin"; the difference cannot be distinguished
experimentally. ) It is not known how matrix ele-
ments drawn from a flat distribution would affect
the long range correlations between level spacings.
Results of a calculation performed here with ma-
trix elements obeying a flat distribution for the
case y =0.0 are presented in the third row of Table
II. As can be seen, no significant difference be-
tween the values of &, and SD of &, for the Gaus-
sian and flat matrix element distribution is evi-
dent. It is worth noting that the flat distribution,
like the Gaussian distribution, leads to a joint
probability distribution for the matrix elements
which is invariant under a change of basis vectors.

Plotted in Fig. 3 is ~, as a function of y calcu-
lated for 36 levels using both the 40 x 40 and 80 x 80
matrix results. The point at y =0.0 was calculated
using Eq. (9). In comparing Fig. 3 with Fig. 2 it is
clear that &, does not decrease as rapidly as V for
small values of y. Therefore, the behavior of the
reduced widths will be a more sensitive test for
setting an upper limit on the value of y. The values
of &, plotted in Fig. 3 for y =0.1 indicate a depen-
dence on the matrix dimension similar to that ob-
served for V. As a result only the 80 F80 matrix
results were used for comparison with the experi-
mental data. Figure 4 shows &, as a function of n,
the number of levels, for y =0.00, 0.05, and 0.10.
[The y =0.00 curve was generated using Eq. (9).j
In order to increase the statistical accuracy of &3
evaluated for n=14 and 36, different sections of the
80 x 80 eigenvalue sets were used. It was found
that for n = 36 good agreement for &, was obtained
using eigenvalues 3-38, 22-57, or 40-75. Similar
results were found for the n =14 case, indicating
that the transformation of the eigenvalues to a con-
stant density, as described above, is a valid pro-
cedure.

In the last two rows of Table II are given &, and
SD of &, found for the 80 & 80 matrices with y = 0.1
when the matrix elements are chosen from Gaus-
sian and flat distributions. Again, as for the y
=0.0 case, there is no significant difference be-
tween the two results.

0.4-
~ —40&40 IATIIN
x—So~ So Ial&r

03-

0.2
0.5 1.0

FIG. 3. The average value of the Dyson-Mehta 43
statistic evaluated (after unfolding the density variation
of the eigenvalues) for 36 levels from the 40 x40 and
80 &80 matrix results for different values of y. The
point at y =0.0 was deter~i~ed from Eq. (9).

COMPARISON WITH EXPERIMENT

A sequence of levels characterized by the same
spin and parity (a single population of levels) rep-
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FIG. 4. The behavior of 43 for y=0.00, 0.05, and
0.10 as a function of n, the number of levels. The un-
certainty of 43 for y =0.05 and 0.10 results from the
Qnite number of sets of eigenvalues. Equation (9) was
used to determine the y =0.0 curve.

resents the best data for placing a limit on a time
reversal noninvariant part of Wigner's random ma-
trix model. For neutron data the most satisfactory
target nuclei are the even-even isotopes in the rare
earth region of the periodic table. These nuclei
have zero spin and always form J= &, even parity
states with s-wave neutrons. For the rare earth
nuclei the ratio of the P-wave to s-wave strength
function is generally less than one, leading to a
cleaner separation between small s levels and

large p levels, i.e., there will be a better chance
of detecting all the weak E =0 levels without de-
tecting any P levels. Furthermore, these nuclei
contain a statistically significant number of levels
in the energy range where current experimental
resolution is capable of detecting "all" the s-wave
resonances. I =0 neutrons incident upon odd A tar-
get nuclei (IW0) will form resonances with J=I+—,',
I- & giving a sequence of levels which is a random
mixture of two single populations. The spacing
distribution of a two-spin population contains less
information, and the absence of the "Wigner repul-

o 2 o ~ (10)

The sum is over the number of sets of levels and

each &, is evaluated for the appropriate number of
levels. The experimental value of & for the 16 ele-
ments in Table III is 5.V8, while the average val-
ues of & for the cases y =0.0 and 0.1 (determined
using the y =0.1 curve of Fig. 4) are 5.79 and 5.04,
respectively. For y ~0.1 the behavior of & is well
described by a Gaussian distribution with o'~ =0.44,
and the probability of finding & —&, is easily cal-
culated and found to be, respectively, 0.50 and
0.05. The agreement with the OE is excellent,
while the disagreement with the y =0.1 case is
significant enough to claim y ~ 0.1.

Neutron widths are available only for the target
nuclei in the first eight rows of Table ID, i.e.,"Sm through '~W. It is desirable to combine the
reduced width information of these eight nuclei in-

sion" between levels with different spin increases
the probability of missing small / =0 levels. Thus
the distribution of the reduced widths of the two-
spin population will tend to be less reliable than the
single population case. All the neutron data' "e""
examined here was taken on target nuclei in the
rare earth region of the Periodic Table. The inci-
dent neutron energy varied typically from zero to
several keV. Consequently, the level densities and
average reduced widths are, to a good approxima-
tion, constant.

In addition to neutron data, proton data of Wilson,
Bilpuch, and Mitchel" were also used. The re-
duced width information of the proton data was not
utilized because the measurements were carried
out in the region of analog resonances, which
causes the average reduced width to change rapidly.
The incident proton energy spanned the range 1.5
to 3.0 MeV and, as a result, the data reflected the
increase in level density with increasing excitation
energy. In order to make a comparison with OE
theory Wilson et al."unfolded the level density
variation using a procedure exactly paralleling that
used above for the eigenvalues of the random ma-
trices.

Table III lists the experimental values of &, found
for different target nuclei along with the average
value (&,) predicted by OE theory for a single pop-
ulation of levels. For the Hf data the resonance
spins were determined experimentally and single
populations constructed. " For the proton data,
given in the last three rows of Table IG, the spins
and parities of the resonances were also deter-
mined experimentally. "

In order to compare the Monte Carlo results
with this experimental data the following statistic
is used:
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TABLE III. Tabulated values of Q found experimentally for single populations of levels
along with the OE predictions. The neutron data is given in the first i3 rows.

Target nucl eus

f 52sxn

"4Sm

1 54Gd

158Gd

166Er
f 72yb

f 82~

184~

1560d

1 ZZHf

1?7Hf

1 ZSHf

1?8Hf

'4Ca 8

44( a

48T

J'of levels

2

1
+

2

f +

2

1+
2

1+
2

1+
2

2

1+
2

5+

1+
2

Y
f+
2

Number of levels

70

47

i09

55

30

20

25

22

52

~EXP

0.4i

0.38

0.22

0.29

0.46

0.4i

0.26

0.47

0.30

0.32

0.34

0.30

0.39

0.34

0.39

0.5i

0.42

0.32

0.28

0.38

0,47

0.40

0.37

0.34

0.40

0.30

0.3i

0.32

0.3i

0.36

0.39

0.42

Ref.

io

i0

io

io

~ Proton data.

to a single histogram in order to obtain increased
statistical precision. This was done in the follow-
ing way: The '70 reduced neutron widths, I'„'s, of
'"Sm determined the average width (&'„)=

(1/N) peal'Oz associated with '~Sm (N = VO). Then a
set of 70 normalized widths y~= 1"o~/(I'0) was con-
structed for '~Sm. The same. procedure was used
for the 2'7 levels of '~Sm, etc. Since the statisti-
cal behavior of each set of X~'s is expected to be
the same (i.e., the same first moment, second mo-
ment, etc.), the X~ values for all the nuclei
('~Sm-'~W) were combined into a single histo-
gram. These experimental data consisting of a
total of 398 normalized widths are represented by
the solid histogram of Fig. 5.

The distribution of normalized widths when a 5'
time reversal violating part was introduced into the
random matrix model w'as obtained a,s follows: for
each 80 x 80 matrix diagonalized (with y =0.05) a
set of 80 normalized reduced x„,= ly„, l /( ly, l )
((Iy. l') =(1/N)~~l». l'~ N =80) was determmed. "
Then the 80 sets of y„,'s (total number of widths
= 6400) were combined into a single histogramyfrom
which probabilities for finding X„between X„,and

X„,+&X„,could be calculated. In this manner the
dashed histogram of Fig. 5 giving the expected be-
havior for 398 widths was found. The smooth curve
of Fig. 5 is the Porter-Thomas distribution. As a
measure of how well the dashed histogram and the

EVEIHVEN TARCET DATA (3OS WIDTHS) —EXPERIMENTAL DATA

— —— MONTE CARLO OENERATED

Rf DUCED WIDTHS WITH 7=D.OS

PORTER.THOMAS bISTRIDUTIOH

50

3.02.0

~r~z-r"-
1.0

FIG. 5. The solid histogram gives the distribution of
the combined normalized reduced neutron widths of the
even-even target nuclei 2' Sm 5 ' 5 Gd,
and 182.184~ The dashed histogram is the expected re-
duced width distribution if a 5 gj time reversal violating
part is introduced into Wigner's random matrix model.
The smooth curve is the Porter- Thomas distribution.

Porter- Thomas distribution of Fig. 5 fitted the ex-
perimental data, a X' (chi-square) test was made.
X'a» =Q,(e, —o,)'/e;, where e, and o, are the ex-
pected (dashed histogram or PT curve) and ob-
served (solid histogram) number of "counts" in a
histogram interval. The sum w'as carried out over
the first seven histogram intervals. It was found
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TABLE IV. Values of 43 found experimentally from two population neutron data. The OE
predicted 63 values for two randomly mixed single populations are given.

Target nucleus Number of levels EXP Ref.

'"Sm
163Dy
i 6?Er
175Lu
i ZZHf

'"Au

64
30
30
53
42

112

0.54
0.50
0.29
0.48
0.39
0.78

0.69
0.53
0.53
0.65
0.60
0.79

12
13

6
1.4
15
16

ODD A TARCET DATA (331 WIDTRS )

100

PORnR-THOMAS DiSTRishiiOh

50

1.0 2.0 3.0

FIG. 6. Distribution of reduced neutron widths for the
odd A target nuclei Sm Dy Er, SLu, 77Hf, and

Au. The smooth curve is the Porter- Thomas distri-
bution.

that the probability I' for finding y' —X'gxp was
0.997 and 0.90, respectively, when the dashed
histogram or the PT curve represented the expect-
ed neutron width distribution. The statistical be-
havior of the experimental data indicates any time
reversal violating part of the random matrix mod-
el is &5%. The value of P for the PT distribution
is on the high side but still within acceptable limits.

Table IV lists odd A target nuclei for which &3"
~ (&,) predicted by OE theory for two randomly
mixed populations. " The aim here is to choose odd
A target data with values of &, not larger than the
expected value in order to help insure the data is of
reasonable quality, i.e., few missing weak levels.
Then the data can be used with some confidence to
examine the distribution of reduced neutron widths.
Smaller values of &, tend to reflect data of higher
quality. If a small s level is missed or aP-wave
level included in an otherwise pure sequence of
levels the tendency is for ~, to increase. It should
be noted, however, that for two randomly mixed
single populations the effect of imperfect data on &,
is less dramatic than the single population case.
The normalized reduced widths (total =331) for the
nuclei in Table IV are plotted in Fig. 6. The lack

of agreement between the expected number of
small widths, as suggested by the PT distribution,
and that found experimentally is striking. Except
for '"Au, all the nuclei in Table IV show, with re-
spect to the PT distribution, a lack of weak levels
in the first histogram box followed by an excess in
the next. The effect is greatest for the '"Sm data.
The obvious explanation for the discrepancy is that
many weak levels were not detected. However, it
is difficult to reconcile the small values of &, found
for these nuclei with so many missed levels. In
plotting the data of Fig. 6 it has been assumed that
(gi'„)+ = (gi"„)—,where + and —refer to I+ 2 and
I- &, respectively, I being the spin of the target
nucleus. If this assumption were incorrect it would
not result in an absence of levels in the first histo-
gram box. For example, if (gFn')+ differed great
ly from (gi'n') —the first few histogram boxes
would show an "excess" of levels.

SUMMARY

The results of the Monte Carlo calculations per-
formed here show that for a given amount of a time
reversal noninvariant part of Wigner's OE the be-
havior of the reduced widths is affected much more
than the long range correlations between level
spacings. Consequently, it seems best to use the
OE theory predictions of ~, as a guide to the qual-
ity of the data and then use the distribution of the
reduced widths to set an upper limit on any time
reversal noninvariant part. The high quality even-
even target neutron resonance data examined here
implies y &0.05 at the 99.7% confidence level. It
was found that odd A target reduced width data was
in sharp disagreement with the PT distribution
even though the &, values of this data are in ex-
cellent agreement with OE theory.

It was also demonstrated that if the matrix ele-
ments of Wigner's model are selected from a flat
distribution, symmetric about zero, the calculated
values of &, are the same as those found for
Gaussian distributed matrix elements. Also, it is
noted that the semicircular law gives good fits to
the eigenvalue density for matrices intermediate
between the OE and VE.
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