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Nonrelativistic hard-pion production and current-field algebra.
II. Reactions with composite targets*
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The theory of hard-pion production in nucleon-nucleon collision of the authors has been extended to nucleon-
nucleus collision. The theory is based on making the leachng corrections to the soft-pion limit. Thus it is an
approximate theory, but is probably superior to any perturbation theory.

NUCLEAR REACTIONS Theory, pion production, N-N collisions, soft-pion theory,
current-field algebra.

I. INTRODUCTION

In recent years an enormous amount of work has
been done on pion production in nucleon-nucleon
and nucleon-nucleus collisions. In most of these
works the pion-production operator, to be used
with nonrelativistic nuclear wave functions, have
been written down in an ad hoc manner without
sufficient justification. In fact, there is some de-
bate whether the operator should involve the pion
momentum or the pion-nucleon relative momen-
tum. A few years back we studied' the problem
of pion production in nucleon-nucleon collision
and developed the pion-production operator to be
used with a nonrelativistic nucleon-nucleon wave
function. The theory is approximate but not per-
turbative. The final-state interaction of the pion
is ignored for simplicity. Thus the theory is valid
only near the threshold. The dynamics is intro-
duced through current-field algebra which enables
us to evaluate an unambiguous soft-pion limit.
The hard-pion result is obtained by using the mass
dispersion relation and retaining the leading cuts.
Although there have been other similar works"
on pion production in N-N collision, the problem
of pion production in nucleon-nucleus collision has
not received any attention along these lines. In
this paper we extend our previous method to this
problem and derive the pion-production operator.

The transition amplitude for pion production in
the reaction i- w+f is given by

[ (P1 P )') (f I p.(0)l (1.1)

where Q'„and j~ are the pion field and current,
respectively, and a is the component of the iso-
spin. The equality is understood in the limit that
(Pq —P&)' tends toward m, '. Naively, using the
strong version of partially conserved axial-vector
current (PCAC), which relates the pion field to

the divergence of the axial-vector current ac-
cording to

the amplitude becomes

[m„' —(P~ —P;)'I(Pg —P;)„(f IA'„(0)l i& . (1.2)

An on-shell extrapolation (i.e. , all particles
other than the pion are on the mass shell) amounts
to calculating Eg. (1.2) in the limit that pz —p» —0.
This is the extrapolation method of Adler4 and Ad-
ler and Dothan. ' That the corrections to this limit
can be very large is made evident from the fact
that the result of the extrapolation differs greatly
depending on whether P» or Pz is fixed, since the
projectile-target interactions are certainly very
different at 0 and 140 MeV.

To avoid this ambiguity we have reduced an ad-
ditional particle from the amplitude in Eq. (1.1)
and written a mass dispersion relation in the style
of Fubini and Furlan. As in the previous work'
we show that by keeping only the leading cuts this
mass dispersion relation can be related to the
Lippmann-Schwinger equation of nonrelativistic
potential theory.

This program allows us to identify unambiguous-
ly the nonrelativistic potential for pion production
which must be used in a more complete calculation
including the final-state interaction of the pion with
the nuclear system. This last interaction is not
examined in the present work.

At present the production of pions from nuclear
targets has received renewed attention due largely
to the existence for several years of accurate ex-
perimental information. ' Several attempts' have
been made to explain the detailed spectroscopic
results without sufficient regard for the nature
of the production operator. The present work at-
tempts to remove this lacuna.
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A program not unrelated to the one presented
here has done much to clarify the elastic scatter-
ing and photoproduction of pions on nuclei. These
studies are described fully in the review article
of M. Ericson and M. Rho, ' which gives a capsule
account of the work of the present authors as well.

In Sec. II we derive the soft-pion limit. The
next section contains the result for the hard pion
which is the objective of this paper. In the last
section we discuss the difference between the soft-
pion and the hard-pion results.

II. SOFT-PION LIMIT

In this and in succeeding sections we follow the
method of the previous work. ' The S matrix for
the process

N(p„s) +Z"- w '(k) +f, (2.1}

in which a nucleon of four-momentum P, and spin
projection s impinges on a target nucleus Z" (with
momentum p, ) to produce a pion of isospin a (a
= 1, 2, 3) and four-momentum k and some unspeci-
fied configuration of particles f, is given by"

S = i(2s)'-6'(p~ + 0 —p, —p, )(fv'(k)lg (0)l Z")

(2.2)xu(p„s},
where j (0) is the adjoint nucleon current operator

j (x) = g(x)( iP -M-), (2.3)

with p(x) the adjoint canonical nucleon field. We
suppress generally all isospin indices for the nu-
cleon as well as the "in" and "out" specification of
the Heisenberg states. As in the previous work,
we work in the rest frame of the pion (k, =m„
k =O).

%'ithin the framework of the Lehmann-Symanzik-
Zimmerman (LSZ) formalism, the matrix element
appearing in Eq. (2.2} may be rewritten as

&fs'(k)l j(o)l z")u(p„s}

=i d4xe' 'CI+m„' f T P'xj 0 Z up„s

d'x e"'(CI+m, ')(f l T[D'(x)j (0}]l
Z")i/2

f.
xu(p„s) (2.4)

(2.5)

where P'(x) is the canonical pion field D'(x) is
the divergence of the axial-vector current

D'(x) = S„Aq(x), (2.6)

and f, is the pion weak-decay constant whose nu-
merical value is 0.93m„'. In passing from Eq.
(2.4) to Eq. (2.5) we have used the divergence of
the axial-vector current as an interpolating field
for the pion. On the pion mass shell, k' =m„',
this substitution is rigorous; otherwise, it may
be thought of as defining the analytic continuation
of the reaction amplitude for unphysical pion mo-
menta. The constant f, is determined by

(s lD'(o)lo) =f, .

(ln the previous work' the amplitude correspond-
ing to Eq. (2.4) was written with a retarded com-
mutator rather than with a chronological product.
However, in making the connection with the non-
relativistic theory in the succeeding sections-in
particular, in treating the left-hand cut —it will be
more convenient to retain the chronological prod-
uct. )

ln this way we generalize E(k) to a function of
an arbitrary four-momentum q, which we chose
to have always vanishing spatial components (pion
rest frame), and we define with Fubini and Fur-
lan' the quantities

M (qo) = d4x e"o'(CI+ m, ')(f l
T [Ao(x)j (0)] l Z")u(p„s },

v2
(2.'fa)

p(q ) = d~x e"0*(CI+m,')(fl[A'(x), j (0)]5(x )l Z")u(p„s),
-iV2

(2.Vb}

which satisfy for all Q', the identity

F(q,) = a(q, ) +q, M,(q, ) .

The equal-time commutator

[A;(x),j (0)]6(x.)

(2.8)

(2.9}
Equation (2.'Ib) thus becomes

has been discussed in detail in the previous work' and in references cited therein. Apart from possible
Schwinger terms, which do not contribute to Eq. (2.Vb), it was shown that

[A:(x),j(o)]6(x.) = [2MII(0) +j(o)]r.kr'6"'(x)
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R(q, ) =-i (m„'-q, ')&flj(0)lz"& ~' ~'+ y, 2r'u(p„s).

Recalling momentum conservation we rewrite A(q, ) as

R(q.) = -i (~'-q')&fl j(o)l Z"& '
y, -'T'u(p„s)..v2»» —. g P, —f +M

1
(2.10)

The structure of M,(q,) is more complicated. Inserting a complete set of states in the commutator of
Eq. (2.'la), we obtain

Mo(qo) =Ma(qo) +Mon (qa),

with

M,'(q, )= ' '
f

' ' p&flA', (0)l && I (o)lz"& (p„)E
In)

g(3)"g &fl j(0)l.&&.IA:(o) lz"&u(p„s)
f» E, —gp -E„+zE

(2.1la)

(2.11b)

It should be noted that for physical pion momen-
tum (q, =m, ) B(q,) vanishes and the physical am-
plitude F(m„) is given by M, (m») (understood as
the limiting value as q, -m, ). In the limit that the
pion four-momentum vanishes (q, =0), however,
the structure of the amplitude is much different.
In this case, B(0) is nonvanishing with

» 1 ™
(2.12)

and it is the limit of q,M,(q,) as q, -0 which con-
tributes, that is, the residue of M,(q,) at q, =0.
This may be calculated very simply. The result
is

When the expectation value of A;(0) does not van-
ish, it is proportional to the velocity of the parti-
cle. Hence, at threshold (or very near to thresh-
old) &f„IA(0») I f„') vanishes (or is very small).
(Recall that f„and f„' are degenerate in energy. )
This implies

lim q» Mo(qo) =0
ap~p

at threshold. Thus, at threshold the soft-pion
limit for the reaction amplitude is given by R(0)
alone and

F(o) =-I '
&f Ij&o) I

z"&

I im q, M,'(q, )
p, -0+hfx, ',, y, ,'r'u(p„s). —
pg g M

(2.14)

Q &f.IA'.(o) If.'&&f 'Ij (o) Iz"&u(p„s),f. I„)
(2.13a)

limqoMO (q )
~p

Noting that in Eq. (2.14)

P-}t+M P+M
I 0( »/W)

p —$ —M 2pok

we write Eq. (2.14) near threshold as

=+8 "
&f lj(0) IZ"&u(p„~)&Z" IA;(0) IZ"&,

(2.13b)

where we have written lf& = If,f, .f„. & in terms
of the stable particles composing f and have
summed implicitly over any spin or isospin de-
grees of freedom in the intermediate states.

For spinless targets the expectation value of the
axial-vector current vanishes due to the require-
ments of parity and, therefore,

lim q, M,"(q,) =0.

(2.15)

Equation (2.15) is our soft-pion result for pion
production near threshold by a spin-zero target.
It may be noted that this is a well-defined result
and does not suffer from the ambiguities of the
Adler-Dothan" type soft-pion limit. We hasten
to add that this remark is not intended to imply
that (2.15) is an acceptable result. In the next
section we derive the hard-pion result F(m), and
discuss the difference between the two results.
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III. HARD-PION AMPLITUDE

We now turn to the problem of deriving an ap-
proximate expression for the amplitude for pro-
duction of a physical pion near threshold. The
derivation follows very closel.y- the method used
in Ref. 1. Apart from using the Low expansion
of the amplitude E(q,), introduced in Eq. (2.5) and
its soft-pion limit, E(0), we will assume the exis-
tence of a nonrelativistic theory of pion production
where the pion-production operator is treated in
Born approximation.

Specifically we assume that if If) and In& are
two nuclear states (i.e. , they contain no pion}, we

may write

(»)'5'"(p) + k -p.)&f I j;(o) I n& = (+y ' ll'-'„
I
q". ),

(3.1)

where 4&
' is the exact nonrelativistic Schrodinger

wave function for If), which is the product of two

wave functions, the wave function in the c.m.
frame and a plane wave describing the motion of
the center of mass of the entire system with mo-
mentum pz and similarly for )I)„'). The superscript
(+) or (-}designates outgoing- or incoming-wave
boundary conditions for the relative motion in the
appropriate manner. We further assume that the
operator V

&
is a single-nucleon operator. Since

in the present paper we restrict our study to
pion production at threshold we disregard the
final-state interaction of the pion. Hence we imply
that the operator Vg is of the form

where the meson degrees of freedom are not ex-
plicit. The operator T measures the energy in the
absence of the interaction operator U and is the
sum of rest-mass and kinetic-energy operators.
In terms of the nucleon creation operator a~

Ix")x„x.)) = [& x,x 2 „., )-', ))Ix;,),

(3 7)

where

j' =[v, a-']
py Pz

(3.8)

and Iq z } is the target-state ket. The following
relations will be useful later:

[T, a-' ] =E,at,
Px Py

(3.9a)

The states In) of interest are composed asymp-
totically of a nucleon with momentum p, and a sys-
tem of A nucleons of total momentum p, . This
subsystem may be in the ground state of the tar-
get nucleus but in the derivation which follows we
must extend our consideration to the complete set
of states of these A nucleons. In general, only
the momentum p, of this subsystem will be written
explicitly. The equation reads

(»)'5"'(pg —p, —p.)&f I j:(0)I pA(2n)&

=(q' lp lq "(p„p.)). (3.5)

The states Iq iz'), lq i'(p„p2)), etc. , are eigen-
states of a nuclear Hamiltonian

(3 5)

x'-„=) ), fX' e '"'")x„)x)n')„,)x), (3.2) j-' Iq- ) =(ff-E —E )s-' lq- ),
Pz Pi

(3.9b)

where )})„„(x)is the nonrelativistic fermion field
and Q' is some operator. In the Schrodinger rep-

resentationn

Va ~ e-»k. q» Va, i
T o (3.3)

where the sum extends over all the nucleons pres-
ent and V-" is a single-nucleon operator. Our
object here is to obtain an expression for V„valid
at least for those states In& which asymptotically
consist of a nucleon and the target Z" in its ground
or some excited state moving towards each other.
Since we need to exploit the soft-pion result we
work in the pion rest frame and obtain an expres-
sion for V'-. From this the expression for V& may
be written down using Eq. (3.3).

In the pion rest frame Eq. (3.1) reads

(»)'5'"(py p.)&f I
j'.(o) In-& =(@y '

I I'-;Iq'.").
(3 4)

(q'~)ljt =-(q', 'lu-' (ff+E, -E,).
Pj Pl

(3.9c)

& (f I T[D'(x), j (0)] I p,') u(p„s).

(3.10}

This differs from Eq. (2.5) in having an arbitrary
momentum P,' for the target. By definition

px=py- 4
(3.11)

—(3f2 +P
2 )2/2

Note that 8&+m„~E, +E,', in general. The two

Our first task is to obtain an expression for
&f I

j', (0) IP„P2& in terms of F(qo) For this pu. rpose
let us generalize the definition of Eq. (2.5) in the
following manner

i&2
F(q, ) = d'xe "o*'(m,2 —q,')
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F(El+E —Eg) =-&j'
Ij'.(o) I p|,P2(fs)& (3.12)

quantities are equal when P,
' =P„ the value used

in the previous section. It is straightforward to
verify that

The right-hand side is the pion-production ampli-
tude when (pz-p, —p2) =m„*, which occurs when

p,' =p, . By writing s'/sx, ' for -qo' and working
out the derivatives of the time-ordered product
one finds that

F(qo) = (I, d'&&f I [D'(&),j (0)]5(&0)I p'&&(P„s)+ d'~&f I [D'(z), p (0)]6(zo) I p')~(P„s}
(( f.

(3.13)+i d xe''o"o 1" )' ~,j 0 P'sg „S .

In a Lagrangian field theory which does not contain derivative couplings the equal-time commutator in

the first term of the right-hand side above vanishes if we assume, in addition, that (W2/f, )D'(x) is the
canonical pion field (i.e., the strong version of PCAC). For simplicity we assume that the first term is
zero here also. We note too that as (fo -~ only the second term (the seagull term) is nonvanishing. De-
noting this term by E(~}we write

6(3& p pF(q.) =F(-)- (2v)' g &f{j:(0)Is&&sI j(0) Ip,'&E „p'Ep,",,
In&

E~+ go —E„+'LE

-p&jlj«)I && Ij:(0)lp:&, „'-E,';,, (p„s).
Im&

(3.14)

The states
I
n& have baryon number A+ 1 while the states

I
m& have baryon number A. We truncate these

sums by retaining only the states with no pions since the denominators have much larger values for the
other intermediate states. Furthermore, the denominator in the crossed term is smallest for E =E,'.
For these terms we write

6"'(p —p2)&m Ij:(0)IP2&= [m, '- (P -P2)'1&m IL)'(0}Ip,'&6"'(p. —p2&

=-i6"'(p —p,') [m, '- (E —E.')'](E —E.')&m IA:(0) Ip, &.

Since these terms are most important when E
=E,', we may replace A, by the P-decay operator
in the following way, writing

(2v)'6"'(p —p,')&m
Ij;(0) I

p', )

' (4 i(H- ')E(A'-8')I4-, ) (3.15)
ff 2

f ~g

(3.16)

and the operator p' measures the momentum of the
ith nucleon in the pion rest frame. In the above
equation we have introduced the operator 6' in the
following manner. Consider a state I4„")). If it is
a bound state then

and for a positive-energy (continuum) state con-
taining two or more particles (simple or corn

I

posite}

t)'(0"))={+(f ~A;(0)(f)){(4 ),

where the {f,)'s are the states of the asymptoti-
cally separated constituents of

~

(I(„")).
For the matrix elements &n Ij (0) P,') and

(f Ij (0) ~m) we use the nonrelativistic counterparts

(»)'5"'(p„-p.' —p, )&sIi (o)/p, &=(+„' 'Ij-' I@;.),
(»}'5"'(p,—p —p, &&fIj (o) {m& =(+,' 'Ij1 I@").

»

(3.17)

Finally, we introduce

5'(q. ) = (2v)'6"'(p, —p, —p,')F((I.),
(3.18)

6'(")= (2v)'6"'(p, —p, —p.')F(") .

Using E(ls. (3.5), (3.15), and (3.17) we obtain

im 'v2 H E'$(,)=5:( ) (4 - {v~ . j I4'. , ) ' (O'-'Iji ', . (A'-8')I+p. ).
o Eg+go —H+iC» 2 f, ~» H+qo —E2+i&

(3.1S)
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(3.20)

The unknown quantity F(~) may be eliminated with the help of the known soft-pion limit. From Eqs. (2.8)
and (2.Vb} and from the vanishing of q /if, (q, ) in the limit that q, -0, we obtain with some rearrangement

F«) =-' ' Nfl[a(0), &'] l~'}- &fir(0}l&'»zzv'~(Ey- E.-E'».u(p. s).

Note that

—t(t)r, -'r'= fz'xt(i, t)rr, r'tax, t), t(t) (3.21)

The nonrelativistic form for the Hermitian operator in the commutator is A jg„. Ignoring the difference
between g„and 1 we write

(»)'5"'(py —p, —p.')F (0) = &(0),

zm~a=— (3.22)

Eliminating F(~) with the help of F(0) we get

im2 2t(t.)=t(tt-(tr' 'Ir-'. (z, z,, -z z . )i It;,)-
&

( ttl rt,'r, zz, ,„,(z'-z')Iit;, )
t

(3.23)

At this stage we use Eqs. (3.12) and (3.5) and find that

im 'v2
t

= (~,' '
I I';-lq'"(p. , p')).

Using Eq. (3.7) for the initial state wave function we have

(3.24)

(3.25)

comparing the two expressions we obtain

(3.26)

Using Eqs. (3.9b} and (3.9c) to re-express the current operators in terms of creation operators we have

2

(e' '~V' . I ~+-.)- ' (+' '(A'-8') -'(q, ).
OE —H+ia zq z'z f, ~ pz zzf

(3.2V)

This relation is true for arbitrary ~4; }. Since
a& ~q;. ) form a complete set of states (though not
necessarily an orthonormal basis) we conclude
that

(e,'-iiv i+i (p„p,})

t (4r(-&~Atty(+)(p p }) (3 29)

(e,'-'~V. =- ' (e,'-I ~(A e')(E, H).
0

Finally, for the production amplitude we find

(3.28)
Explicitly,

(3.30)
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and the physical amplitude is given to first order
in V-' by

T'(m, ) = (Q' '
I
V'

I
Q". ) (3.31)

where Q,
"and Q&

' are the relative wave functions
for the initial and final (A+ 1)-nucleon systems,
respectively, satisfying the appropriate boundary
conditions.

For arbitrary pion momenta we have after apply-
ing a Gallilean transformation

m2
V-'=- " ' ~ e "'~o (- ' ' k) 'r' -(3 32)

IV. DISCUSSION

The corrections to the soft-pion limit contained
in equation (3.31) have a simple description. We
write

&(x„ lo -~'Iz„),
(4.3)

which is just the nonrelativistic limit of Eq. (2.15)
above. Thus, to the extent that we ignore pion re-
scattering the soft- and "hard"-pion limits differ
by the inclusion of the initial-state interaction and
of the emission of pions by the target. Naturally
these are very important mechanisms and must be
included.

The form of the pion-production potential is also
not surprising. If we substitute for the ratio g„/f,
the corresponding quantity given by the Goldberger-
Treiman relation

f, = 92Mm, 'g„/g„

we obtain

' (e,' 'I« lxp.).
Neglecting the emission of pions by the target,
this becomes

(4.2)

+ (4y
'

I
V&(Z,. If)14'I'~)) (4 I)

since at threshold K commutes with V-' by explicit
construction. If one ignores the initial- state dis-
tortion and replaces Q,

"by X~/„ in the above equa-
tion where y~ is a plane-wave state for the relative
motion and Q„ is the target ground state, the sec-
ond term vanishes, leaving

r'(m, ) = —(@,
'-'

I
VVI lq, y„)(-)

V'-„=—~g„g e '""ia,.(-™V,. k)

which is just the potential which would be given by
the pseudovector pion-nucleon coupling. This was
not totally unexpected, certainly, since the sub-
stitution of the divergence of the axial-vector cur-
rent for the pion field necessarily results in an
effective pseudovector coupling. It is interesting,
and this is an important result of the present work,
that the form of this coupling is not altered by the
dispersive corrections.
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