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Coherent photoproduction of m on 'He, "C, and ' 0 is studied in the energy region E„=200-400 MeV, with

particular emphasis on the questions: where is rescattering important, what structure does it have, and what

approximate scheme can be applied for calculating it? For this purpose, the second-order scattering term has

been calculated in a model which incorporates the Fresnel correction to the Glauber theory, and takes into

account the spin and the charge exchange efFects. It is noted that near the threshold the correction would be

very small. However, where rescattering is important, the spin and charge exchange efFects and also Fresnel

corrections are found to be important. This means that only in specific cases will a distorted-wave approach

or a Glauber expansion provide the correct higher-order contributions for these reactions.

NUCLEAR REACTIONS He, ' C, '60(y, ~ ); E=200-400 MeV; rescattering terms
are calculated to lowest order.

I. INTRODUCTION

Photoproduction of pions on nuclei at low ener-
gies was suggested to be a favorable reaction for
investigating nuclear structure. ' Previouslym many

authors studied the photoproduction of pions from
heavier nuclei at low energies. The effects of
higher-order correlations in the nuclear wave
functions were discussed'~ in connection with

charged pion photoproduction on "0 in the energy
region g& =170-350 MeV. However, the above
studies were made without considering the rescat-
tering of the produced pions.

Rescattering effects at low energies were studied

by some authors' in different approaches for lighter
nuclei. For heavier nuclei only Saunders' has done

calculations for the coherent photoproduction of g'

mesons. Saunders took the final state interaction
between the produced pion and the residual nucleus
into account in an optical potential model. How-

ever, his results underestimate the experimental
results very much and he ascribes this fact to the
poor knowledge of the parameters of the optical
potential used. Guy and Eisenberg' studied the re-
scattering effects in the case of the radiative pion
absorption on nuclei, which is the inverse of the

charged pion photoproduction process and which

should essentially reflect the features of the thres-
hold photoproduction. Their calculation, which is
effectively equivalent to the optical potential ap-
proach, shows that the rescattering contribution
would be about 40% for "0.

In this situation we are concerned with the ques-
tion of rescattering in view of the Glauber model,
whose applicability was ensured in the case of

pion-nucleus scattering' in the region of the (3, 3)
resonance, and to discuss the validity of the im-
pulse approximation which was taken for granted
in the previous studies concerning nuclear struc-
ture.

Photoproduction of pions is in this energy region
peaked at non-forward angles. This means that the
longitudinal momentum transfer cannot be approxi-
mated by its value in the forward direction (given
by the pion mass and the photon momentum), but

that a more realistic approximation must be used.
%e therefore consider the Fresnel correction to
the Glauber theory.

The coherent production of g on spin-zero nu-
clei is theoretically the simplest case, so we have
investigated this process. As our target nuclei we
have chosen He, ~C, "0, and we consider photon
energies in the range 200-400 MeV. For nuclei
like "C and "0 there are considerable experi-
mental difficulties in studying coherent / photo-
production. But from the experiments done re-
cently at Stanfordo it appears feasible to perform
such studies, which increases the theoretical in-
terest in these processes.

Considering the full spin and isospin dependence
of the amplitudes, the description becomes very
complex. For practical reasons, we consequently
had to limit ourselves to second-order terms.
However, in most cases considered, higher-order
terms are clearly also important.

There are two easy ways of including higher-or-
der terms, but unfortunately they will in general
both fail in the present case:
(i) A distorted-wave approach will fail, due to the
importance of spin- and charge-exchange terms.
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(ii) A Glauber summation will fail, since Fresnel
corrections are very large.

Even the calculated second-order terms are
mainly of qualitative validity, for the following
reasons.

(i) All amplitudes have been taken at their on-
shell values. Although this is probably a good ap-
proximation for not too dense nuclei, it might be
questionable for the tightly bound He nucleus.

(ii) Pion-nucleon non-spin-flip amplitudes have
been parametrized as Gaussians in the momentum
transfer. This leads to simple integrals, and is
supposed to be a good approximation since the nu-
clear form factors effectively suppress large-an-
gle scattering.

(iii) Nucleon recoil energies are neglected. This
is questionable at the highest energies and the
largest angles considered.

(iv) We consider only photon states leading to s-
and P-wave pion-nucleon states. At the highest en-
ergies considered, d waves might also be impor-
tant.
Our main concern is to determine where rescat-
tering is important and what structure it has. In
order to display its structure, we discuss explic-
itly the importance of exchange terms, and the
Fresnel corrections.

II. THEORY

The differential cross section for coherent photo-
production of g on closed shell nuclei is for unpo-
larized photons given by

do' P
Tcc exp

q'R'

in the lab system, where bar indicates the average
over photon polarizations, and R and p are the mo-
menta of the incident photon and the outgoing pion,
respectively. The exponential takes care of the
c.m. correlation, where I| is the momentum trans-
fer, R is the harmonic oscillator size parameter,
and A the nucleon number. Further,

T, (=(i fT fi). (2)

The initial state of the nucleus is denoted by (i).
Following the method indicated in Appendix A we
write

T=& (y( d'bexp(imp 5) I'(v),
ik

where

A A

rC~'r,"eZ, -Z, (4)

and

rj'=(p e)-'f d'e'e pj-it)', (iz-p))

x exp(& q'jj z, )f 'P(Q'„q'jj),

pz =(pe p) 'f Z'e'l pi e('(! (-)j-ez))

xexp(iq~j(zg) fy (q q'jj),

with 5 being the impact parameter and 4c the pro-
jection of the spatial coordinate r, of the i th nucle-
on in the nucleus onto the impact parameter plane,
and I|~ is the transverse momentum transfer. Fur-
ther (y) describes the isospin properties of the
electromagnetic current, and

~ v) is the isospinor
of the produced pion. In Eq. (4) we have assumed
that after it has been produced the pion is scatter-
ed only once before it leaves the nucleus; andwhile
production or scattering takes place on a nucleon,
the other nucleons in the nucleus sit as spectators.
Furthermore, f"f'(g~, q'jj) is the amplitude for pion
photoproduction on the ith nucleon with transverse
momentum transfer (1~ and longitudinal momentum
transfer q'jj and fpg~p q",,) is the amplitude for wfi
scattering with momentum transfers Q~ and q"„.
The 8 function ensures the scattering of the pro-
duced pion by the nucleons sitting in front of where
the production takes place.

Using Eqs. (2) to (6) we get

r„=( ('xj—j f z'ee*p('ll (j)((p 'e) ' f z'e' /exp(-il(' $)e*p((()',)fj (()')
C~1

A A

(2vi )—'—P g d'q~d'q~ exp[- i(Q', +qf) ~ 5] exp(il|' r, )fP(Q')
C=x y&C

xexp(P)' zz)fz (lj')e(zz *))ji)j ),

where |I' =q~ +kq'„and q" = qf + kq jj.
We shall further assume that all the energy goes to the pion, k = p, '+P" = g'+P', where p' is the momen-

tum of the intermediary pion and p is the pion mass. The longitudinal momentum transfers are then given
by
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qs =k -P cos8, q'„=k —(P"—qz')"*,
(8)

where 8 is the production angle.
The first term in Eq. ('t) is the impulse-approx-

imation term T zz~ and the secon(~ one is the correc-
tion term 7 (czar. The impulse-approximation term
can also be written in the following way:

Tz', = (r I &i I g exp(z4 ~ &z&ft gi & Ii& I w&

and the correction term as

T' =-— (2—wi )c) 2k 1
27 ap

This is evaluated as in Ref. 2. Similarly, we write

f = L"+i~ K (14)

where L ' and K are the spin-independent and
spin-dependent parts of the mN amplitude.

We take the representation

1 " da
8(zz —z, ) = lim . . exp[ia(zz z-z)]

2172 ~ a —26

(15)

and define

q, =q' —ak, q, =q" +ah.

Further, we expand

d'5 exp iq 6

d q~d q~exp —i q&+qz) 'b 5, 10)

where

&=&(l& Ig g p(t(', (&('(i')em(t7', (
1=1 g~t

exp(iq r)=4w g ij,z(qr) Y,„(q) Y»(r),
lP

where j, is a spherical Bessel function of order E

and Y» is a spherical tensor as in Ref. 4. Writing
the nuclear wave function Ii) as an antisymmetrized
product of single-nucleon states, and doing some
angular momentum algebra, we can write 5 as fol-
lows:

Writing

xfz
(q" ) 8 (z, —z, ) I i) I w&.

8:=iim . . (S('&+8'"&),da
~~ 2mi „a-i&

(18)

f"' = Lv' + i K (12)

with L&' and K~ being the spin-independent and
spin-dependent parts of the photoproduction ampli-
tude, respectively, and & the Pauli spin matrix,
Eq. (9}becomes

A A

a=1 8=1

P'*'= —&wig Qz s(()zs (2)l &.

O=1 ~=1

(19)

(20)

T,", =(rI(iI +exp(zq r,}(Lt'+zfz ~ Kr )Ii) Iw).

(13)

Arguments 1 and 2 denote production and scatter-
ing, respectively. The above sums can be written
as

La~a) Fi "'(qz')[Yi(qz) «~ '(q')]'A, (21)

Q J'ss(2) = Q Q 0(XnA; Lsd) F~qszs (qz )[Yq(q )xi'"Zss&(q")]as (22)
8=1 Lgd'g Jlfgntg knh

Q Q 4 s(1) Js (2)=
s3t= 1 8 = 1 La ~a~ ~entre ntT XnX'n'h&

a g

0'(XnA; La~aLs~s) 0'(&'n'A' L J Ls Js)

n A'

x (-)" '" +'A'Iq' X' n' A FZsa s~(q ') Faeza((q ')

N N 0

"[[ .(qz}" Y. (qz)]w X[If~'"(q')«.""'(q")],)'.. (23)

In the above expression L, 4, M, and m are the orbital angular momentum, total angular momentum,
total angular momentum projection, and isospin projection quantum numbers of the eth nucleon. The quan-
tities 0 and 0' are given by
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Ln & La

O(AnA;L 0J0) =l(8w i '"(-) '" (J'0M0AOIJ'0M/ J L„XnA(L~O)O(IL„O) —,
' n

J. A J.
(24)

Ls~ La
0'()nA;L . J L()J~)=(-) '"' 0'(XnA;L()J()L„J )=48((i~'"(-) '" '

WJ44J&L())ln(L()0)(OIL 0) —,
'

n

JB A J~

(25)

We use A = (2A+ 1)' ' and Clebsch-Gordan coeffi-
cients, 9j symbols, and angular momentum cou-
plings as defined in Ref. 4. The form factors are
defined as below,

F~&~0~s&(q2)= R„*~ (r)j&,(qr)R„~ (r)r2dr,

I, +i (y K= i"g„K„,
n=p, 1

where

(28)

where I m) is the isospin state of a nucleon with
projection m, and K„ is defined by

(26)
0'p= ~& 0'g=0'

and

(29)

where 8„, is the radial wave function, for which
we take the harmonic oscillator one.

For both the photoproduction (yw) and the scat-
tering (ww) amplitudes, the following notation is
used:

Kp=l, K,= K.

Using the expressions for

(30)

g Y (q, ) x Y„,(q, )] x [If)' (»((l ) x K„,(2 )((l")]„),'
K„'~2)=(m0IK„I m())) (27) as given in Appendix B, we get:

for 'He:

0' '= g (yl4L)'" '(q') L ""((l')I&) F'."'(q ') F""(q ')
m ms

8:"'=—g (yl 2[L)'"'""(q')L " '(q ) -K"'""(a') K-" '(q")] I w) F""(q ') F"."(q ')
$5 mg

for "|.:
(32)

0( )= g (ylI )"( )((l')I ""+)(q")
I (() [2F(,")(q ')+ 4F(,")(q ')][2F,")(q,')+ 4F(,")(q ')] (33)

((yl L w( ())(q/) L w(() )gqww) 0I 2) [2 F(00)(q 2) F(00)(q 2) 8+ (q q ) F(10)(q 2) F( )(q )

+ 4F(11)(q 2) F(ll)(q 2) + 4F (q q ) F(11)(q 2) F(11)(q 2)]

+(yI K"' "((l') K '"'(q")I&) [-2F'0"(q ')F'0"'(q, ')+8&,(q, q, )F","(q,')F',"(q.')
20 F 11(q 2) F 11(q 2) 02+

(q q ) F(11)(q 2) F(11)(q 2)

+ 4 F(11)(q 2) F(11)(q 2) + 4 F(ln(q 2) F(11)(q 2)

+ 4 (@2+ 2) F(ll)(q 2) F(ls(q 2)]

+q (yl
'"' (q') K "((l )I w)

"[8&,(q, q. ) F""(q,') F"."(q ') —4 F',"(q,') F','0'(q, ')]
-4(yl[@ K"'")((l')][Q K "")0")]l)t) F""(q ')F"."(q ')

4
(yl [q . K)'w(RS)(qt)] [q, Kww(814)((lw)]

I W) [F(11)(q 2) F(11)(q 2) 4 F(11)(q 2) F(11)(q 2)j

—~(yl [q. """((i')][q2 K '((l")] I s}[F"'(q ') F"'(q ')+ F"'(q ') F'"(q2')]}; (34)
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for MO'

rl I""' "(q'}L " '(q'}I (() [2z(~'(q ')+6&("(q ')][»p'(q ')+6&""(q '}]
AC& nls

p"'= - g (r I
[L""'"(q')L " '(q') - K""'"(q') K "'(q')]

I v)

(35)

X[2&(0 )(q,') E'0 '(q ')+ 6E'0'"(q ') E'0'"(q ') —12'',(q, q ) E'"'(q ') E',"(q ')
+ I»,(q, q, ) E'2'"(q ') F""(q ')]. (36)

In the above expressions Q=q, xq, and P, (q, q, ) is
the Legendre polynomial.

For g production the isospin decompositions are
given as below:

K& =gK

where

(45)

g g (rl K&"(" & K &"&Iv') =4K'/'(') K &'& (37)
nl8

~ye(as) .~m{8') ~0

tS~ lICg

= 2K& (+) ~ K„(' +4K& ) K„), (38)

where

K&+& = ' (K&'/'& y 2 K('/'))

K(-) —& (K(&/&) K(3/2) )n 3 n n

(39)

Upper indices —,
' and -', refer to the total isospin in

the production or scattering channel.
The photoproduction amplitudes L&" and K&' are

in the nonrelativistic case given in terms of elec-
tric and magnetic multipoles as

L & =p* ~ (k*xe) (2M i+Mal ),
K*& = e [Eo~+ cos(& (M~+ 3E,+ -M, )]

+k*(e p ) (3E„+M, -M„).

(40)

(41}

Starred quantities refer to the mN c.m. system,
and & is the photon polarization vector. The nor-
malization is as follows

(rf}/-Nv) =
k

g(IL*"I'+ IK*"'I'] (42)

We need the amplitudes in the lah system [see Eq.
(1)]. By invariance of ckr we get

(rf&/- ») = g(IL'" I'+—IK""I') (44)
unpol

it follows that

yN- N = (yN- N

(43)

and normalizing L and K with respect to the dif-
ferential cross section in the lab system by

p* k d(cos& )
p k* d(cose) (46)

Since the transversal components of p and p are
the same, the vectorial structures of I.&' and K&"

in the lab system are given by

L/"=q —p ~ (kxe) (2M, +M, ),

K& =g & ++ cos8* M,++ 3E,+ -M,

(4V)

~ —,&(i j}(3E,.~ I, -M,.}I.p + (48}

=f. (0) exp(--'A") (49)

where f,„(0) is the forward amplitude and P' is the
slope parameter. The spin-dependent amplitude is
given by an expansion in terms of the derivatives
of the Legendre polynomials, so s-wave phase
shifts will not contribute. Further, since it is a
good approximation to consider only the (3, 3) re-
sonance part, we write

K = (pxq")B (50)

where B~ is a constant.
To evaluate Tkc(), we first perform the trivial in-

tegrations over b and one of the transverse mo-
mentum transfers in Eq. (10). Using also Eq. (18),
we get

Pc(& = lim
1

6'~0 2gg

d2 I (cy(D) 6:(s))
J J

(51)

Since the expressions for "C are more involved,
we shall only discuss the numerical results for He

For the spin-independent pion-nucleon scattering
amplitudes we use
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and "O.
The terms g'~ & and $' & have the following struc-

ture [compare Eqs. (31}, (32), (35), and (36}]:
i= P constP, (q, q, ) Fz&'(q, ') FP (q, ')

ever, we take them into account in the numerical
calculations, and discuss their relative importance
in the next section.

III. RESULTS AND CONCLUSIONS

x ff ~'(q') IC„ (q"), (52)

A& l(s) = lim . . a exp[- (as+a') —,'R ],~-o 2mi „a—ic

(53)

where

(54)

and R is the oscillator constant. These are evalu-
ated in Appendix C. In the limit of no longitudinal
momentum transfer q~', =q,'~'= 0 we get

A(m)(0) (55)

Before proceeding with the angular integration in

Eq. (51), we discuss polarizations. Since we con-
sider coherent production on J = 0 nuclei, only the
term L& will contribute to the impulse approxima-
tion. It is clear from Eq. (47) that L&" vanishes
for e

~ ~ p ~, i.e., only the photons polarized perpen-
dicular to the production plane will contribute.
This will also be the case for higher-order terms.
For the second-order term, which we consider
here, it follows from the angular integration in

Eq. (51) that the expression becomes odd in P, t for
e

~ ~ p~. With photon polarization perpendicular to
the ultimate (not intermediary) production plane,
the angula, r integrals in Eq. (51) are of the type

+2 7r

where the form factors are Gaussians multiplied
with polynomials in the momentum transfers. This
permits us to do the a integration in Eq. (51},writ-
ing out the expressions Eq. (51), and using Eq.
(16). We get integrals of the following type:

The expressions for the direct terms given in
Appendix D and similar (though considerably more
complicated) expressions for the exchange terms
are evaluated numerically. For L&" and K& we
use the multipole amplitudes of Berends, Donna-
chie, and Weaver. " The forward scattering am-
plitudes f,„(0) in Eq. (49) we take from the Karls-
ruhe table. " The slope parameter P' and numeri-
cal values of the constant B in Eq. (50) are taken
from Ref. 12. The harmonic oscillator parameter
A is taken to be 1.58 and 1.71 fm for 'He and "O,
respectively.

In Figs. 1-4, the differential cross sections for
'He and "0 for photon energies 260 and 380 MeV
are shown together with the impulse-approximation
results. In Fig. 5 the total cross section is shown
for 'He in the energy region ranging from 260 to
410 MeV. It is clear that calculations taking only
direct terms into account give too low values for
all the cases. The inclusion of the exchange terms

ZIQ
20

4p
dQ, i cos"Q, exp(A cosQ, ),

&0

where A. is real. They give modified Bessel func-
tions, or linear combinations thereof, according
to the relation

1
I„(A)= — d P cos(vQ) exp(A cosQ).

0
(56)

The remaining integration over q~ is performed
numerically, since the expression will contain the
partial longitudinal momentum transfers qadi and q
which are not trivially expressed by q~ and q. In
Appendix D we give the expressions for the contri-
butions to Tf& arising from the "direct" terms 5&n&

for 'He and "O. The expressions for the "ex-
change" terms become much more complicated in

appearance, so we do not write them out. How-

0
0 20 40 60 80

'~ab~ »

FIG. i. Differential cross section for the coherent m'

photoproduction on 4He at E& -—260 MeV. The dotted curve
is the impulse approximation, the dashed curve includes
second-order direct terms, the dot-dashed curve in-
cludes also the second-order exchange terms except for
double spin flip, the solid curve includes all second-order
corrections.
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is very important. Particularly, the double spin-
flip term increases the cross section for 'He by a
factor of 2 at higher energies. The exchange terms
are responsible for the double spin-flip and since
these are smaller than the direct terms by roughly
a factor I/A, this contribution is most important
for 'He among the nuclei considered. Including all
the exchange effects, the ultimate results with
second-order corrections appear not much differ-
ent from the impulse-approximation results for
'He. However, for "0 it turns out to be very dif-
ferent.

In the case of elastic pion scattering on 'He at
pion kinetic energies of 120 MeV (corresponding
to Ez = 260 Me V) and 280 Me V (Ez= 420 MeV) it was
noted previously" that the inclusion of the second-
order terms was enough to assess the rescattering
effects. At the top of the resonance the contribu-
tion from the third-order term is around 30%. In
our case the contribution from the second order is
rather small at E&= 260 MeV and one would expect
the higher-order terms to give negligible contri-
butions, especially for smaller angles. At this en-
ergy the correction to the differential cross sec-
tions is around 15%. Again this correction de-
creases with decreasing energies. For example,
our calculations at E&= 200 MeV show that the cor-
rection would be less than 5%%uq. Therefore, in the
case of coherent photoproduction on He near
threshold one can safely use the impulse approxi-
mation.

From Fig. 2 one may be tempted to believe that
for 'He the impulse approximation is good enough
at E&=380 MeV too, for angles up to 40-50'. How-
ever, this is purely accidental; there are large
cancellations between direct and exchange terms.
Third-order terms might well be important at this
energy. This is even more so at the top of the
resonance. Further, the spin-exchange terms play
a very important role, and have to be investigated
to the third order.

For "0 the situation is very different. As noted

in the pion-scattering case, " the rescattering
series requires more terms to be included. This
will also be the case for photoproduction. How-
ever, we note that the effect of the double spin Qip
is only around 5% at higher energies (E& &350
MeV), and it will not be necessary to include the
spin terms in higher-order calculations. This will
reduce the complications to a great extent.

For "0, Fig. 3 shows little difference between the
impulse-approximation results and the corrected
ones at E = 260 MeV. But the second-order ampli-

y
tudes are not small; the phase is such that they do
not show up in the cross sections. Higher-order
calculations might change the picture. However,
our calculations at E&= 200 MeV show that at this
energy the contribution from the correction term
would be less than 1+ for "0and we expect the
impulse approximation to be good around thresh-
old.

As regards the Fresnel correction, we note that
with increasing transverse momentum transfer,
the longitudinal momentum transfer will increase,
causing the dominant form factors to decrease. In
Table I we have shown what this would mean to the
differential cross sections in the single-scattering
approximation. The second-order term will also
receive corrections due to the inclusion of the lon-
gitudinal momentum transfer. In Table II we have
shown the second-order amplitudes where the dou-
ble spin-flip terms are not included, with and with-
out the Fresnel correction. We note that the in-
clusion of the longitudinal momentum transfer
causes the amplitudes to decrease. This is true
also at smaller angles. On the other hand, the
double spin-Qip terms increase when the Fresnel
correction is introduced. In both cases, the Fres-
nel correction causes a considerable change of
phase.

Unfortunately, the general importance of ex-
change terms makes the distorted-wave approach
to higher-order terms inapplicable. This is so
since in that approach one does not treat the nu-

TABLE I. Differential cross sections in the impulse approximation in units of pb/sr. The
upper line includes the Fresnel correction, whereas the lower line does not.

10' 20 30' 40' 500 60'

4He, 260 MeV

4He, 380 MeV

0, 260 MeV

~~O, 380 MeV

4.6
4.7

11.8
12.0
71
72

177
180

14.1
14.8
26.6
28.4

200
213
333
363

20.1
23.0
22.2
27.4

251
301
201
269

18.9
25.3
8.6

15.5
197
293

44
104

12.9
22.8
1.1
5.8

105
230

1
22

6.5
18.5
0.0
1.4

38
162

2
2
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APPENDIX A

We assume (i) the binding energy is negligible,
(ii) the nucleons are "frozen" in the nucleus, and
expand the scattering operator T in the Watson
series, keeping only the single- and double-scat-
tering terms as follows:

&yl &k I TI 0& I &&, (Al)

cleons individually, and different spin and isospin
states cannot be assigned to them. Furthermore,
the importance of Fresnel corrections makes the
summation over Glauber terms untrustworthy. The
only way we see of including higher-order terms,
is by explicit calculation, term by term. Of course,
at particular energies and angles, the simpler
methods will be useful.

Finally, the binding-energy corrections and the
Fermi motion could also be important. The bind-
ing-energy correction has been found to be impor-
tant for 'D at large angles. " However, on larger
nuclei the main production takes place at smaller
momentum transfers where the free-nucleon ap-
proximation should be better. From studies done
on elastic m 'He scattering, " the effect of Fermi
motion is to reduce the cross section by around
20-25%%uo in the forward direction at the top of the
resonance. The effect is less pronounced on lar-
ger nuclei, as one comes closer to the black-disk
limit, where there is complete independence of the
elementary amplitude. We expect similar effects
in the photoproduction case.

We acknowledge useful discussions with Dr.
FKldt, Dr. Glauber, Dr. Pilkuhn, Dr. Reitan, and
Dr. Wilkin.
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(A2)

&kl I", I
p'& =

&
f«"(k- p')e"" "",

&5'If lp&= f«(p'-p)e'"—
p

(AS)

where f«'(q') is the amplitude for pion photopro-
duction and f&"(q~) the amplitude for pion scatter-
ing.

The Green's function is given by

where
I y) and

I ««& are the isospin states of the in-
coming photon and the outgoing pion, respectively;
tf"'s are transition operators for pion photopro-
duction; and tf 's are for pion scattering. The ma-
trix elements of the transition operators are
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z, +z, ,
E» —Epi+ie' E»' E-i'+ie

2k
k -p' —p +is (A4)

(rl g g 2„. k
ff'(q')~&—,f (q")

k

i feei

xe q 'i e'q 's
I &&), (A5)

where p' is the momentum of the intermediary
pion,

where E~ and E~. are the energies of the photon and
the intermediary pion, respectively, and where in
the numerator we approximate Ef, = EI, = k.

The single-scattering term is trivial, and we
calculate it following Ref. 2.

The double-scattering term is

q'= k-p',

q = p'-p

q = q'+ q" = k —p,

(A6}

and r, and rf are the coordinates of the ith and

j th nucleons. Equation (A5) can be written as

1 1T('&= — (rl d'b e'q~' ~ ~ d'q' d'q" dq' dq" f"'(q'—)f (q") G e "~ (~ '&'}e 'q~ (~ 's'&

(2»)' I'I II pr
f&i

xe"(~'&e a(7'z 5(qg q~~
—q~&)l &I'),

where we have written the momentum transfers in
terms of transversal (zk) and longitudinal compo-
nents.

The propagator can be written as

Q=qII -C,

~2+ «qg2

2k

(A9)

G= 1
q f~

—(&»'+ q")/2k+ ie' (A8)

and we retain only the transverse components of
q', which amounts to taking the Fresnel correc-
tions into account (see Refs. 15 and 16). Defining

we write

G= 1
Q+ SE'

(A10)

The integrations over the longitudinal components
andqII are then performed as follows.

~i(I(gi -cf) 1el»a(el(ag ) g d f&' (~l,ql )f aa(aq» q qf )e+ i&a & II J x& II ll

We shall assume that all factors except the expo-
nential and the propagator depend only weakly on
qI'I. This means that we take them outside the in-
tegral, evaluating them at the value of q,'I corre-
sponding to a = 0, where the dominant contribution
comes. Using Eq. (15), the double-scattering term
becomes

r('&=-'—&rl
~

d'be'q. ~
2'

x g g r)"rpe(z, -z,.) I »), (A11)

1 lt g 0rFa d»q»e-&q~'(a-s&)ega»g&f pqaagt»)
2~~p t. u

(A13)

with qf =q&& —(q&. —q») /2k.

APPENDIX B

We tabulate here the relevant values of the
expression

where

r&"= I dQ'e 'q»'(~ '&&e"~~'sf&"(q'.q')
mi

(A12)

with q~1
= (»'+ q")/2k and

X[(u.') lq(ss') X]

=[[1'.(q. ) x 1'"(q.)]e[&.(q'}xSC„(q')] &'.

X[(00) 0 (00) 0] = L(q') L (q ), —1

X[(00)0 (11)0] = — K(q') ~ K(q ),
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X[(11)0 (00& 0] = ——P,(q q, ) L (q') I, (q~),

X[(11)0(11)0] = —P, (q, q2)[K(q') ~ Kr&I )],

X[(11}1(11)1]= —Q ~ [Kr&I')x Kr&I )],

X[ (22) 0 (00) 0] = —P,(q, q, ) L r&I') I. r&I ),

x[(22) 0 (ll) 0] = -W$ —P2(q, q2) [Kr&I') K(q )],

X[(22) 1 (11) I]= — P,(q, q2) Q [K(q') x K(q~)],

X[(22) 2 (11)2] = — (2 [Kr&I') ~ &!)][K((P) Q]

+-*,gK(q'} q, ][K(q") q, ]

+[Kr&I') q, ][Kr&I~).q, ]j
-l(Q --:}[Krq} Krq')]),

X[(20) 2 (11)2]

Writing

1 1
1im . = P + i—s5(a )

OQ —if 0

we see that

ReA& l(s) = —,'5~,
1

ImA& &(s}=— P—daa™1 exp[ —(as+a ) sR ],2r

where P denotes the principal value part. For
m&0 this integral becomes

SC

ImA& ' l(s)=— 1

Vw WaR

H

where H, are Hermite polynomials. ImA&'&(s)

cannot be written in closed form, but the following
expansion is rapidly convergent:

ImA'(s) =~—», exp —1(0) 1 sR 8 ' s'8'

= —Cq, Kr&I')][q, K(&P)]-s K(q') Kr&I )}.

APPENDIX C

We give here the integrals defined by Eq. (53):

A& l(s)= lim . . a exp[ —(as+a ) sRs].da
0 2mi „a—ie

1
2 I 8 (I ~ —,')(!~ 1)!!I

APPENDIX D

We give below the contribution to T c from the
"direct" terms, i.e. , taking only 0 & in E&I. (51):

for 4He:

(c,a) 16 +) (+) (, &IL max
= pg( g', +I,' )f;s}(0)exp( ——,'Rs'q') dq~q~'exp[--, 'R'q" —,'Rs'(q" —2q„—q~~)]

0
x A"'(s) I,(-'Rs'q q', );

for 0'

T ' = (2M&+ +M" )f + (0) exp( —'R q )
256

I

~&max
dq' q" exp[- —,'R'q" ——,'-Rs'(q" —2q~~q, '~ )]

0

where

x[([I——.'R'&q'+ 2q" —2qsq(, )+mR'q "(q'+q" —2q ~q, )]A&'&(s)

+{-lR's+ mR'[2qllq"-2qll (q'+q" —2qllqll }])A'"(s)

+[——,'R'+ ~R'(q'+2q" —2q~~qt, —4q(~q(()]A'(s)+JR'sA '(s)+ ~R'A'(s))1, (2'Rs'q q')

+ [(4R'q ~q~ —~R'q "q ~q ~)A' (s) + JR'q(~q ~q ~A '(s) —~R'q q' A '(s))

"s[ 0(2 s'q. qD+I2(sRs'qiqi)]]
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