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Collective effects on mass asymmetry in fission*
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The development of the mass asymmetry vibrations in the final stages of the fission process is studied with an

approximate treatment of the coupling to relative motion. A parametrized friction is introduced and its

effects are studied. Numerical results are presented for ' U, together with estimates for the kinetic energy of
the fragments.
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Even though the calculation of potential energy
surfaces based on the shell-correction method'
has been very successful in explaining the basic
properties of fissioning nuclei, ' it has been argued
that a knowledge of the potential energy surface
alone is not sufficient to predict the dynamical be-
havior of the system. ' Thus, it was shown that
extremely varying mass parameters can produce
effects similar to those of a secondary minimum
in the potential and distort the wave functions in
practically any respect. ' It seems of great im-
portance to investigate the magnitude of the effects
which may be caused not by an arbitrary mass
parameter with rather extreme properties, but by
one which may reasonably be expected for collec-
tive motion during the fission process. Such mass
parameters may be obtained from the cranking
model' using the wave functions of a phenomeno-
logical two-center shell model which also gives
the potential energy surface. This approach wi11
be followed in this paper.

Mass parameters obtained in this way have been
calculated for a variety of two-center models, "
and, in general, they show rather large oscilla-
tions due to the varying shell and pairing struc-
tures as a function of the collective parameters.
Peak-to-valley ratios of more than 10 to 1 are not
infrequent. Since the computation of the mass
parameters tends to be quite laborious, however,
one has to be content with relatively few points,
so that the resulting functions must be interpolated
with a considerable degree of uncertainty.

Knowing the collective potential energy and the
mass parameters, in principle, allows the cal-
culation of all dynamical properties of the system—
aside from certain possible ambiguities in the
quantization. Because of the large amount of com-
putation involved and the nonexistence of readily

usable codes for that purpose, computations have
been carried out by reducing the problem to one
collective coordinate only' or computing the one-
dimensional WEB penetration probability through
the fission barrier along any path in a multidimen-
sional potential energy surface. ' The penetration
probability is then given by

P =exp
2 F —V B„„x]x~ dt, 1

with x, =x,(t) as parametrization of a path in the
space of N collective coordinates x, . By varying
the path, one may search for that one which has
highest probability and take that probability as the
real multidimensional one. Although this method
is only an approximation to a real multidimen-
sional %KB theory, ' it already yields some inter-
esting results, showing, e.g. , that the mostfavor-
able path need not even pass close to the saddle
point of the static potential energy surface, which
had until then been considered to be of such emi-
nent importance in fission theory. This shows
again that the potential energy surface alone does
not give reliable information on the fission pro-
cess.

A different type of calculation was carried out
in Ref. 8. There the dynamical behavior of one
particular collective coordinate, viz. the mass
asymmetry, was studied in a one-dimensional
approximation, i.e., neglecting all effects due to
coupling with other collective degrees of freedom.
It was shown that the zero-point vibrations in this
degree of freedom occurring during the post-tun-
neling stage of fission between saddle point and
scission are qualitatively similar to the observed
mass distributions. The approximations were
certainly too restrictive to expect more quantita-
tive results, but several important character-
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istics emerged. It could be seen that the potential
energy surface still seemed to determine the main
behavior of the wave functions, with the strongly
oscillating mass parameter influencing the de-
tails such as peak-to-valley ratio, spread, and
fine structure. Since the behavior of mass asym-
metry did not vary negligibly with the position on
the fission path, however, a one-dimensional
treatment did not seem completely adequate.

These two problems will be investigated in a
more detailed manner in the present paper.

We have extended the calculations described in
Ref. 7 to take the relative motion of the nascent
fragments and its interactions with the mass
asymmetry vibrations into account, following
the dynamical evolution of the latter for some
part of the descent from saddle point to scission.
In this way the development of the asymmetry
vibrations can be studied more realistically and
the results should also shed some light on the
general problem of the influence of variable col-
lective mass parameters in fission.

For the calculations we utilized the asymmetric
two-center shell model. ' Of its five independent
shape parameters, only the two of interest in this
context were retained, namely the mass asym-
metry

A, —A2

A, +A, ' (2}

with the fragment masses A, and A, related to the
geometric size of the nascent fragments, and the
elongation X, which is defined as the total length
of the deformed nucleus in units of the diameter
of a. spherical nucleus of equal mass. A speci-
men shape is shown in Fig. 1. The remaining col-
lective parameters were determined by requiring
minimum potential energy for a given pair (h, t'}.
As mentioned, the potential energy is calculated
by the shell-correction method, and the collective
mass parameters are obtained from the cranking
model.

The classical total energy of the system is given
by

H(X, $) = pB„qX +B~P$+ 2B qq$ + V(X, $). (3)

Before quantizing Eq. (3), some simplifications
have to be made. First, as was already shown in
Ref. 7 and turned out to be true in all later calcu-
lations as well, the coupling mass 8„,may be
neglected. Secondly, we want to deal with the be-
havior of the nucleus shortly after it has finished
tunneling through the fission barrier (this pro-
ceeds mainly in the X degree of freedom}, so that
it starts its motion along X with zero kinetic ener-
by, i.e., 2=0.

Recent calculations" have shown that the system

1/ 1

t ~ o~/aa

A —A 2

A) +Ay

A)

2HoX

FIG. 1. Parametrization of the nuclear surface in the
asymmetric two-center shell model (Ref. 10). The free
parameters are the elongation A, , the deformations P &

and P 2, the mass asymmetry $, and a quantity determin-
ing the neck size d.

(4)

with 8 an abbreviation for B«. The quantization
procedure follows Pauli and Podolsky, "' so that we
get a volume element in ( involving B, as seen
from the orthonormality conditions

(5)$, X P„$,X B

The solutions of Eq. (4), the adiabatic basic
functions Q„($, A}, were discussed in Ref. V. Here,
however, we are interested in the additional X de-
pendence as well. So we set up the total wave
function as a sum over the Q„with X-dependent
coefficients

If X is determined classically as a function of
time, a = X(t), Eq. (6) is nothing else but the usual
ansatz for solving the time-dependent Schrodinger

will be in the ground state of ( at the exit point
even if there was some excitation before tunneling.
During the acceleration phase we shall set no re-
striction on the velocity X, so that all cases from
slow adiabatic motion up to the "sudden" case can
be treated.

Using these approximations, the $-dependent
part of Eq. (3) can be quantized while X is regarded
as a parameter:

S2 8 1 9~—+V((, X} y„(t, z)=E„(X)y„((,X),
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equation.
The classical equation of motion for X may be

obtained by calculating the average value of the
energy (3) in the wave function (6), replacing the
kinetic energy of $ and the potential energy by the
expectation value of the $ Hamiltonian as appear-
ing in Eq. (4), whereas the coupling mass B„,is
again neglected. This yields

(H}„=-,'(B„)XI+ g ~u„(X) ~'E„(X),

with the $-averaged mass parameter

Q„„)= g u„*(~)a„(X)
VI g

4.*($ &)&g&,(~ ()4„(k &) ~&dh (8)

The second term in Eq. (7) is the effective poten-
tial for relative motion; it depends on the excita-
tion of higher states in ( and thus on the velocity
A. and, in general, on the previous history of the
system. Thus, it contains the effects of excitation
during X motion, which may be regarded as fric-
tion. However, this is not the usual type of fric-
tion commonly related to the excitation of single-
particle states, but a purely collective one (frag-
mentation friction), which nonetheless should also
be present in reality. It should be noted that this
effective potential needs no renormalization, be-
cause the potential V($, X} of Eq. (4) which deter-
mines the E„(X) and thus V(X) is already renor-
malized.

Another interesting consequence of Eq. (7) is
that even if there is no excitation at all in $, i.e.,
if a„(X)= 6~ throughout, the potential still contains
the effects of a varying zero-point energy in $,
which reflects the changes in the potential and
mass parameter as X increases. So in the pres-
ence of a varying zero-point energy, one-dimen-
sional calculations of the WKB type' may not be
accurate. However, in the present calculations,
it turned out that the effects of both zero-point
energy and excitation energy in the $ degree of
freedom were less than 0.5 MeV in magnitude and
thus negligible compared to the overall drop of
V($, X) of about 10 MeV in the range of X values
concerned.

The time development of the coefficients a„(a)
may as usual be obtained by inserting the wave
function of Eq. (6) into the time-dependent Schro-
dinger equation

i@i„=P RA(p —g) exp —
~ (E„-E„)dt

(10)

The pair of equations (7) and (10) determine the
dynamical behavior completely. Starting with a
given initial set of a„, one may calculate the aver-
age mass (B„Q and the potential force in Eq. (7) via
Eq. (8). Because the force depends on the rate of
change of the a„'s, and these in turn are deter-
mined by the force, there is a requirement of self-
consistency between these two equations. This can
be fulfilled approximately by first computing the
force under the assumption of constant a„'s, and
then adjusting it with the actually calculated ones.
This problem, however, proved to be of practically
no significance so that, in general, a simple ex-
plicit time-stepping algorithm could be used.

In order to estimate the possible effects of dis-
sipation into single-particle degrees of freedom,
we have included a parametrized frictional force
in the calculation by replacing the requirement of
constant total energy H by

dH—--f A. )dt

with f the coefficient of friction.
The results presented below refer to the fission

af -'"U. Figure 2 shows the potential energy sur-
face along that part of the "fission path" we have
investigated. X =1.65, the starting point, corre-
sponds to approximately the exit point for spontan-
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FIG. 2. The col.lective potential energy surface as a

function of asymmetry $, for various values of the elon-
gation ~ as indicated at the curves.
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eous fission, and X=1.85 is the (somewhat arbi-
trary) termination point for the calculation. There
does not seem to be much to be gained in following
the system further down the slope, because the
ultimate rapid formation of a neck changes the
collective motion drastically, although it probably
does not change the fragment masses to any large
extent anymore. " The figure shows that the poten-
tial drops down uniformly in this range of X values,
but with the dependence on $ still changing consid-
erably.

The mass parameters B«and B» are shown in
Figs. 3 and 4. They show the mell-known oscil-
latory behavior with the details not well deter-
mined because of the relatively small number of
points (11)used for each curve Neve. rtheless,
two interesting gross features may be seen in the
curves. The average value of B» decreases with
X increasing, coming closer to the limiting value

l2
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&„(~-")= (2R.)'&„,(t'), (12) FIG. 4. The mass parameter Bz& for relative motion
as a function of ( for different values of ~.i.e. , the reduced mass of the fragmentation $. 8,

is the radius of the spherical nucleus and the fac-
tor is caused by the difference in definition be-
tween X and the relative distance. On the other
hand, the average value of B«rises with X in-
creasing, showing thai the exchange of mass be-
tween the fragments is becoming increasingly
hindered by the formation of a neck. This problem
has been investigated in Ref. 13.

Figures 5 and 6 show the results for the dyna-
mical development of the collective wave func-
tion, obtained in the manner discussed above.

The calculation was done for several values of the
friction coefficient f, which were chosen such as
to show the transition from unimpeded accelera-
tion to very slow motion. This can be seen almost
immediately from the plot of collective velocities
X in Fig. 5.

Much of the collective behavior depends criti-
cally on the velocity X and thus on friction. Only
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FIG. 3. The mass parameter B ~ L for asymmetry os-
cillation as a function of $ for different values of ~.

FIG. 5. Results of the dynamical calculation for vary-
ing friction parameters given below. Upper left:
average B~~-mass parameter; lower left: relative velo-
city A, ; upper right: col, lective excitation energy; lower
right: average mass asymmetry ($) . All are plotted as
functions of elongation. The dash patterns associated
with the friction values can be seen in the plot of R,
where f takes the values f =0, 5, 10, 20, and 40 (in
units of 10 ~MeV sec) from the highest down to the low-
est curve in that order.
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FIG. 6. The collective wave functions, converted to an equivalent mass yield. From l.eft to right the curves pertain
to A, = 1.65, 1.7, 1.75, 1.8, and 1.85, so that each row shows the development of the wave function in a particular case.
The top row is for frictionf =0, the middle one for f =].0 MeVsec, and the bottom one for f=4x10 MeVsec.

E..(~) = Q Is. I'(B.—E.). (13)

the average mass (B»), calculated similarly to
Eq. (9), does not seem to be sensitive. It only
drops down rather smoothly to the limiting value
of Eq. (13) for the most probable asymmetry.

The collective excitation energy has been defined
as

rameter at each stage, and, in general, tends to
become narrower because of the increasing aver-
age value of B«. The intermediate cases show
some oscillations which are due to coherent ex-
citation of higher $ states.

One of the most interesting quantities to be cal-
culated from these wave functions is the mean
asymmetry defined as

It depends quite strongly on friction. For a very
slow "adiabatic" movement, it remains quite
small and conversely gets largest for the "rapid"
case with no friction. In the latter case the wave
function does not change much with X and the ex-
citation simply reflects the fact that the $ wave
function at the start is really an excited state for
later values of X with their different potentials
and mass parameters. The fact that E„goes
down near X=1.85 can be explained by observing
that there the potential and mass become more
similar to those near X = 1.65 again, so that the

$ wave function is closer to the ground state.
The collective probability distribution

+'(5, ~)@(5,~) = g n.*(~)n„(~)e.*(h, ~)e„((,~)

(14)
is shown in Fig. 6 for three different values of the
friction. For no friction the wave function changes
little so that we seem to be close to the "sudden"
case, whereas for very strong friction and slow
descent, it adapts to the potential and mass pa-

(t) = Q n.*&„(~It 5 ll V).

It is also shown in Fig. 5. Apparently its behavior
depends quite strongly on friction so that we have
a clear demonstration of the influence of dyna-
mics. On the other hand, the range of $ values
covered in this plot corresponds to a difference
in fragment mass of only about four units, so that
the dynamic effects are there, but not dominant.
The location of the minimum in the potential en-
ergy surface still provides a good first approxi-
mation to the preferred asymmetry. On the other
hand, the spread of the probability distribution
around the maximum seems to depend much more
sensitively on dynamics.

For comparison, we did the calculation with no
frictional force also under the assumption of a
constant X mass, to see if the variations in this
mass were of any large importance. The results
are shown in Figs. 7 and 8. The values of B»
selected covered the actual range of the variable
mass. Since a large B» mass tends to slow down
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FIG. 9. The same quantities as in Fig. 5, pl.otted for
different initial speeds ~. The initial values can be se~n
in the lower left.

motion in X, its effects are similar to those of an
increased friction, but on the whole the depen-
dence of the velocity and excitation on X seems to
be smoother than with 8» varying. Also, the
spread of (t') values is much reduced, amounting
to only a change of about one unit in the fragment
masses. It seems that the stronger dependence
of (t') on X is the most prominent effect of having

Bu varying
Figures 9 and 10 show the effects of a nonzero

initial velocity X. Apparently the results are not
changed appreciably, the noticeable differences
in (t') being exaggerated by a small scale. This,

together with the behavior of the wave functions
in Fig. 10, indicates that the situation is close to
the "sudden" case, '4 which is characterized by an
almost constant wave function becoming indepen-
dent of the changes of the potential and mass pa-
rameter with X. The results of the calculation
come close to this limit except for the low prob-
ability region in the mass distribution, where
numerical accuracy becomes important.

Summarizing the results of the calculations, we
have obtained some insight into the behavior of a
collective system with two coupled degrees of
freedom exemplified by the interplay of mass
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FIG. 10. Wave functions for different initial velocities. Top row: A, j t 0; middle row: ~1»t =10 s; bottom row:
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asymmetry and relative motion in fission. It was
seen that the static potential energy surfaces are
quite sufficient to determine the gross features of
fission and that the detailed behavior of the mass
parameters does not change the dynamics as
drastically as is possible in theory. 4 However,
any detailed study of the peak-to-valley ratio and
the structure of the mass distribution curve will
not be possible without studying the dynamics.
These details are still beyond the reach of any
theory of this type because of the intrinsic re-
strictions made in the shape parametrization and
the choice of a single-particle potential, but we
may hope that constrained Hartree-Fock calcu-
lations may carry us farther.

If we assume for the moment that the potential
energy surface and mass parameters calculated
in the two-center shell model" are sufficiently
realistic, some further deductions may be made
from these results. In this case, the results seem
to show that the theoretical mass distribution comes
closest to the experimental one for a rather rapid
descent with no friction or even some initial ve-
locity. Now the smallest coefficient of friction
used may be converted to a viscosity by dividing
by the nuclear volume, in order to obtain an order
of magnitude estimate:

5x10 ' MeVsec 0 5 Tp
3 0

This seems to be somewhat larger than theo-
retical estimates lying in the range of 0.01 to 0.1
TP."" Accordingly, if the theoretical estimates

are believed, the real system behavior should be
rather close to the sudden case with viscous ef-
fects relatively unimportant. This is true only,
however, as long as only collective dynamics are
considered. The single-particle heating of the
nucleus described by viscosity will change the
potential energy surface and the mass param-
eters, "so that these arguments are only prelim-
inary, especially since single-particle heating
will tend to make the potential shallower and thus
counter the collective effects of slowing as seen
in Fig. 6. If the internal excitation is estimated
to be about 20 MeV, the nuclear temperature of
0.9 MeV should be just in the range where the po-
tential energy surface changes drastically ac-
cording to Ref. 17. Thus, heating effects will
have to be included in these considerations;
nevertheless, it is clear how fission mass dis-
tributions may, in principle, help in the deter-
mination of nuclear viscosity by fitting a coeffi-
cient of friction or viscosity to the experimental
distributions.

Another problem which could be investigated
by comparison with experiment is the question
of whether friction is of the simple functional
form assumed in Eq. (11), or whether some
higher power of A.

' or an even more complicated
functional form should be used. In order to check
the sensitivity of the results to the assumed X

dependence of friction, we did some calculations
using a form proportional to X4, as suggested by
Schiitte and Wilets. " Some results are shown in
Fig. 11. It appears that the development of the
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ditive constant to make them agree with experiment at
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0.4 165.2 1.00 1.00 178.7
0.5 177 0.95 0.98 151.3
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FIG. 11. The same quantities as in Fig. 5, plotted for
varying values of a friction of the form -g A,

4 replacing
the right-hand side of Eq. (11). The values of the coef-
ficient g are g=0, 5, 10, 40 (inunits of 10 MeVsec),
pertai~i~g to the highest down to the lowest curve in the
~ plot, in that order.

collective velocity with time is characteristically
different; the transition from the acceleration
phase to an asymptotic almost constant velocity
is much more rapid. So the region where the
sudden case is reached and the final distribution
is practically determined may be shifted con-
siderably. In the present case, however, the
distributions show roughly similar variations as
in Fig. 6 and have thus been omitted for brevity.
Clearly the final distribution will be very sensi-
tive to the details of the acceleration only if the
potential surface shows major variations in the
area traversed.

Finally, we tried to get a very simple estimate
of the kinetic energy distribution as a function of
fragment mass. For that, we assumed that the
fragment deformations p, and P, do not change
any more from X=1.85 to the scission point. If
the simplified four-parameter shapes of Mosel
and Schmitt" are used, the scission-point shapes
are defined completely by $, p, ((), P,($), and X

determined so that the fragments touch. We esti-
mate the kinetic energy by subtracting the Cou-
lomb energy of two separate fragments with de-
formation p, and p, from the Coulomb energy of
the touching configuration. It has to be assumed
in this model that the charge to mass ratio Z jA
is uniform and applies to the fragments as we11.

The relative kinetic energy ~(B„~)X' is included
in the results, but it is independent of fragment
mass in the framework of the present theory.

The results are shown in Table I. They have
an overall shift of more than 40 MeV compared

to the experiment, which is probably caused by
the fact that Mosel' s parametrization does not
allow for an independent variation of neck size
and elongation, so that the scission-point config-
uration may not be sufficiently elongated. This
problem could be tackled in the five-parameter
parametrization used for the other calculations
presented in this paper, but this would require a
more extensive dynamical calculation to compute
the rate of necking-in as a function of elongation.
We present the results of the simple calculation
nonetheless, because the main features of the
dependence of kinetic energy on mass division
should be caused by deformation in the nascent
fragments, so that the dependence on $ should be
more reliable than the overall absolute values.

However, if we renormalize the theoretical
values by an additive constant so that they agree
with experiment at the symmetric point, it ap-
pears that some trends are reproduced. The dip
for symmetric fission is there and the value at
$ =0.3 agrees surprisingly well. On the other
hand, the value at $ =0.2 is off quite considerably.
So the results seem encouraging but are certainly
not yet quantitatively comparable to experiment.

It is to be expected that more can be learned
about the kinetic energies if the dynamical calcu-
lation is carried through to the scission point.
This, however, would require a dynamic treat-
ment of the neck size as well, since close to scis-
sion the potential energy may not have a definite
minimum as a function of neck size, so that the
usual method of minimization to replace a co-
ordinate by a fixed value does not work any more.

On the other hand, before this is attempted it
seems more urgent to study the behavior of the
collective dynamics under the influence of single-
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particle heating, to see how the potential energy
surfaces and mass distributions are modified by
internal excitation. The failure to include this is
the major shortcoming of the pure collective the-

ory presented here and such a calculation should
enhance its value considerably and perhaps bring
quantitative comparison with experiment within
reach.
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