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We study the e6ect of ordinary viscosity on nuclear fission by solving classical equations of motion for the
time evolution of fissioning nuclei. The collective potential energy is calculated both by means of the usual

liquid-drop model and by means of a modified liquidMop model that takes into account the lowering in the
nuclear macroscopic energy due to the finite range of the nuclear force. The collective kinetic energy is
calculated for incompressible, nearly irrotational hydrodynamical flow by use of the Werner-Wheeler method.
The Rayleigh dissipation function, which describes the transfer of energy of collective motion into internal

excitation energy, is calculated under the assumption that nuclear dissipation arises from individual two-body

collisions. Prior to scission the nuclear shape is specified in terms of smoothly joined portions of three

quadratic surfaces of revolution. After scission the fission fragments are represented by two spheroids with

collinear symmetry axes. In addition to slowing the system down and converting some of the collective energy
into internal energy, two-body viscosity hinders the formation of a neck. This l~s to a more elongated
scission configuration and consequently to a s~aHer final fission-fragment kinetic energy. From a comparison
of calculated and experimental most probable fission-fragment kinetic energies for nuclei throughout the
periodic table, we determine that at high excitation energies the average value of the viscosity coefficient p, is

p, =0.015 + 0.005 TP =9 ~ 3X10 " MeVs/fm, provided that nuclear dissipation arises from two-body

collisions. This is about 30% of the value that is required to critically damp the quadrupole oscillations of
idealized heavy actinide nuclei.

NUCLEAR REACTIONS, FISSION calculated dependence of xnost probable fis-
sion-fragment kinetic energies on viscosity and compared with experimental val-
ues. Liquid-drop model, hydrodynamical model, nuclear potential energy of de-
forxnation, nuclear inertia, nuclear dissipation, numerical solution of classical

equations of motion for fissio~&~~ nuclei.

I. INTRODUCTION

In studying the dynamics of large-scale nuclear
shape changes such as occur in fission and heavy-
ion reactions, one may use either a microscopic
approach or a macroscopic approach. In a micro-
scopic approach one starts with a given interac-
tion between nucleons and solves the time-de-
pendent many-body Schrodinger equation in some
approximation. By use of simple effective inter-
actions and the time-dependent Hartree-Fock ap-
proximation this has been done recently for some
special cases involving the collision of two slabs
of nuclear matter' and the collision of two rela-
tively light nuclei. ' Such calculations are
promising, but the full realization of their possi-
bilities still requires several extensions. These
include considering much heavier nuclear sys-
tems, using more realistic nucleon-nucleon po-
tentials, incorporating residual interactions, al-

lowing for mass-asymmetric azd axially asym-
metric deformations, and improving the type of
wave function considered.

In a macroscopic approach one starts with a
continuous distribution of matter that is subjected
to given forces and solves the resulting equations
of motion in some approximation. Although one
usually starts directly with a specific macro-
scopic model, it is alternatively possible by use
of various approximations to derive macroscopic
equations from the time-dependent many-body
Schrodinger equation.

Once obtained, macroscopic equations of motion
may be solved either directly by use of numerical
methods, " or alternatively by parametrizing
the nuclear shape in some way, which leads to a
set of coupled nonlinear differential equations
that is in turn solved numerically. ' Both be-
cause of its relative simplicity and because it
permits concentrating on a few essential degrees
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of freedom, this latter method has been widely
used in the study of fission dynamics. This meth-
od also permits incorporating into an otherwise
macroscopic model certain purely microscopic
effects. These include single-particle correc-
tions to the nuclear potential energy of deforma-
tion, ""and nuclear inertias that are larger than
irrotational values.

Irrespective of the precise approach that is
taken, a problem of central importance in large-
scale nuclear shape changes is nuclear dissipa-
tion. This is the transfer of energy from collec-
tive degrees of freedom which describe the over-
all geometrical shape of the nucleus to internal
degrees of freedom which describe the motion of
the nucleons relative to this fixed shape. In a
purely microscopic calculation, where the dissi-
pation is determined automatically through the
solution of the time-dependent many-body equa-
tions, one need not make this separation into col-
lective and internal coordinates. Unfortunately,
because of the complexity and time reversibility
of the solution, it is difficult in a purely micro-
scopic approach to gain insight into the basic
mechanism of nuclear dissipation.

At issue is whether nuclear dissipation proceeds
primarily by means of individual two-body colli-
sions, as in the case of ordinary fluids, or by
means of nucleons colliding with a moving poten-
tial wall. "" Until recently it has always been
taken for granted that nuclear dissipation is of
the ordinary two-body type, ' ' and it is
this type of viscosity that we consider here.

In retrospect, one might argue that ordinary
two-body viscosity should apply only to systems
for which the collision mean free path is small
compared to the spatial dimensions. In nuclei,
where the collision mean free path is larger than
the nuclear diameter, the alternative one-body
dissipation mechanism of nucleons colliding with
a moving potential wall might be expected to ap-
ply. Some recent calculations ' in fact confirm
that most probable fission-fragment kinetic en-
ergies of nuclei throughout the Periodic Table
are reproduced equally well with a large one-body
dissipation as with the two-body viscosity con-
sidered here. In order to decide between these
two alternatives, it is crucial to know the con-
sequences of each, and it is in this spirit that
we describe our present calculations based on
ordinary two-body viscosity.

In our study of nuclear dynamics we use a
macroscopic approach in which the nuclear shape
is parametrized in a simple way. We restrict our
attention to nuclei at high excitation energies,
where single-particle effectS are expected to
become relatively small. This permits us to

calculate the collective potential energy in terms
of the liquid-drop model, or alternatively in
terms of a modified liquid-drop model that takes
into account the lowering in the nuclear macro-
scopic energy due to the finite range of the nu-
clear force. ' ' ' Because of the high ex-
citation energies and the large distortions en-
countered in fission, the collective kinetic en-
ergy should be much closer to the incompressible,
irrotational value than for nuclei in their ground
states. ~ As an approximation to incompressible,
irrotational flow we use the Werner-Wheeler
method, which determines the flow in terms of
circular layers of fluid. "' '

Under the assumption that nuclear dissipation
arises from two-body coQisions, we calculate
the transfer of energy of collective motion into
internal excitation energy in terms of the Rayleigh
dissipation function. 4' The presence of dissipation
introduces terms that are linear in the collective
velocities into the equations of motion. For a
given set of initial conditions, these equations
are solved numerically for the time evolution of
the generalized coordinates that describe the shape
and their conjugate momenta. These points are
discussed in Sec. II. Section III contains the re-
sults of our calculations, including a comparison
with experimental most probable fission-fragment
kinetic energies for the fission of nuclei through-
out the Periodic Table. This is in an attempt to
determine the average value of the two-body vis-
cosity coefficient at high excitation energies. In
Sec. IV we summarize our results and present
our conclusions.

II. THEORY

We obtain and solve classical equations of motion
for fissioning nuclei under the assumption that the
nucleus is an incompressible fluid whose hydro-
dynamical flow is nearly irrotational. In the pres-
ence of viscosity the actual flow is of course no
longer irrotational. However, the assumption of
a specific type of hydrodynamical flow allows us
to take viscosity into account by means of the Ray-
leigh dissipation function, which is defined as one-
half the rate at which energy is transferred from
collective to internal degrees of freedom. This
procedure leads to the generalized Lagrange or
Hamilton equations. ~'

The criterion for the validity of a classical
treatment is that, for a given degree of freedom,
the de Broglie wavelength be small compared to
the distance over which the potential energy
changes appreciably. This condition is well satis-
fied for the fission degree of freedom so long as
the kinetic energy in the fission direction is great-



13 EFFECT OF VISCOSITY ON THE DYNAMICS OF FISSION 2387

er than about 1 MeV.
In the present treatment shell and pairing cor-

rections~ are neglected entirely. Thus, we re-
strict ourselves to cases in which the excitation
energy is sufficiently high to effectively destroy
the single-particle corrections; the system then
responds mainly to the dominant macroscopic con-
tributions. This treatment of course limits us to
cases in which the most probable mass division is
symmetric.

A. Potential energy

The potential energy of a deformed nucleus is
given by

where E, is the nuclear macroscopic energy and

Ec is the Coulomb energy. The quantities E,"'
and Ec ' are the corresponding energies for a
spherical shape. As the nucleus deforms, its
volume is assumed to remain equal to —, mR0',

where

is the radius of the sphere.
The Coulomb energy is given by

dt~d 9
C=2 ~e (2)

where

p, =Ze/(-'vR, ')

is the constant charge density. For a spherical
shape Eg. (2) reduces to

E',"= 3 Z' '/R, = Z2/c (4)

while for a nucleus of arbitrary axially sym-
metric shape the Coulomb energy is calculated
efficiently by use of Gaussian-Legendre quad-
rature formulas. ' It is convenient to define the
relative Coulomb energy Bc by means of the re-
lationship

Ec =BcEc' (5)

We consider two types of nuclear macroscopic
energies. The first is the usual surface energy
of the liquid-drop model, which we write as

E =B E'0' .S S S

The quantity B, is the relative surface energy and

E,' ' is the spherical surface energy, which is
given by

surface energy B, is therefore equal to the sur-
face area of the deformed shape divided by
4wR, '. Upon substituting Eqs. (5) and (6) into
(1) we obtain

V= [(B,—1)+2x(Bc —1)]E~O',

where

(6)

(2a, /a ){1—x[(N- Z)/ A]'}

is the fissility parameter. Although deficient in
some respects, ~ the values of the constants pre-
sented by Myers and Swiatecki at the 1966 Lysekil
symposium" are frequently used for calculating x
and E' '

S

The second type of nuclear macroscopic energy
that we use is obtained from a double volume in-
tegral of a Yukawa effective two-body potential,

20 22, 40, 41l.e.
y

e-Ir~- r2 [ /a
3 / 3

I/ dr, d r, , (10)

where P measures the strength of the interaction
and a is the range of the Yukawa potential. This
expression takes into account the finite range of
the nuclear force, which is very important for
describing the formation of the neck in fission
and for describing two nearly touching nuclei in
heavy-ion reactions. For a spherical shape Eq.
(10) reduces to

B. Kinetic energy and dissipated energy

E nm= P[ ——&Ra + 2waRo —2wa~

+2wa(Ra+a) exp(-2R /a)] . (11)
These finite-range energies contain a constant

volume energy ——mpR0', but this term cancels
when Eg. (11) is subtracted from Eq. (10) to ob-
tain the nuclear macroscopic energy relative to
the spherical shape. The remaining shape-de-
pendent terms include the usual surface energy
of the liquid-drop model plus some finite-range
terms which vanish as the Yukawa range a ap-
proaches zero. The values of the constants in
Eqs. (4) and (11) are obtained from analyses of
electron-scattering experiments ~'" and from
adjustments to experimental fission-barrier
heights and heavy-ion interaction-barrier heights. 4

The integrals in Eq. (10) are evaluated efficiently
for axially symmetric shapes by use of the same
Gaussian-Legendre quadrature method that is
used to calculate the Coulomb energy. "

where a, is the surface-energy constant and x is
the surface-asymmetry constant. 4' The relative

Under certain restrictions that are discussed
in Appendix A, the collective kinetic energy of
the system depends quadratically on the general-



2388 K. T. R. DAVIES, A. J. SIERK, AND J. R. NIX 13

ized velocities. i.e.,
1T=
2 Q M;;(q)q, q

fsj

where

q =qz~ q2y ~ ~ ~ y qadi

(12) H(q P}=gq~P;-«q q) .

Then the generalized Hamilton equations, in-
cluding dissipative effects, are

(16)

denotes the N generalized coordinates that specify
the shape of the system, and where time differen-
tiation is denoted by a dot. The shape dependence
of T is contained in the elements M,z(q) of the
inertia tensor.

Frictional forces are introduced by means of
the Rayleigh dissipation function43

8H
q&-— = g [M(q) ]&&P» i =1, 2, .. ., N,

P2
(19a)

8H BE

8q] 8q]

1 ~ ~ ~

4y (q}q& qg2
g j

(13)
1 g 8[M(q) ]q~

2~k Bq

C. Equations of motion

The classical equations of motion, including
dissipative effects, are the generalized Lagrange
equations"

i =- 1, 2, . . ., N, (14)
d BL 8L BF
dt Bq; Bq,

where

f(q q)=&(q q)-v(q) (15)

is the Lagrangian for the system. Upon substi-
tuting Eqs. (12), (13), and (15}into Eq. (14) and
using the symmetry of the inertia and viscosity
tensors, we obtain

SM,~(q) 1 8M~~(q)
Mq~(q q~+ q& qk

j qa qg

+ Qgo(q)q~+ =0, i=1, 2, . . . , N,sv(q)
Bq)

(16)

a system of N coupled nonlinear second-order dif-
ferential equations.

It is sometimes convenient to use the Hamil-
tonian formulation of the classical equations of
motion. We first define the generalized momenta
and Hamiltonian function H in the usual way by '

BL
P& —— . = M&&(q)q» i=1, 2, . . . , N, (1V)

Bq]

where q, &(q) denotes an element of the shape-de-
pendent viscosity tensor. The rate of dissipation
of collective energy into internal excitation energy
is equal to 2E.

In Appendix A we show how to evaluate the iner-
tia and viscosity tensors for an incompressible,
nearly irrotational fluid by use of the Werner-
Wheeler method. '7'~'~~ The accuracy of this
method for describing viscous flow is discussed
in Appendix B.

'Q
g q M q gkPk-

sv(q}
yk Bqg

'E &y 2y ~ ~ ~ y Np (19b)

a system of 2N coupled nonlinear first-order dif-
ferential equations. In our work we integrate
numerically Egs. (19) by use of a fourth-order
Adams-Moulton predictor-corrector method, '
with the starting procedure based on a modified
fourth-order Runge-Kutta method. ' '"

As discussed in Appendix A, the viscosity ten-
sor g is proportional to the viscosity coefficient
p.. It is of interest to study the dynamical equa-
tions of motion for the limiting case of infinite
viscosity. As p, - the time required to undergo
a finite displacement also becomes infinite. This
makes it convenient to define the quantities

&v='%y~k ~

which remain finite as p -~. In this limit Eq.
(16) reduces to

,'=-g[@'(q)-']„. , i=1, 2, . . . ,N,~ ~ y

D. Deformation coordinates

We restrict ourselves to axially symmetric
nuclei and describe the shape of a fissioning nu-
cleus prior to scission in terms of smoothly
joined portions of three quadratic surfaces of
revolution. " The results reported here are also
restricted to reQection-symmetric nuclei, which

(20)

a system of N coupled nonlinear first-order dif-
ferential equations which is integrated numerical-
ly as indicated above.
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means that we consider explicitly only three de-
formation coordinates. These specify (1) the
distance between the centers of the two end
spheroids that form the shape, (2) the eccen-
tricity of these end spheroids, and (3) the eccen-
tricity of the middle quadratic surface that forms
the neck.

For displaying the dynamical paths of fissioning
nuclei it is convenient to project out of this three-
dimensional space (or in general out of an infinite-
dimensional space) the two most important sym-
metric degrees of freedom. These are defined
conveniently in terms of the central moments"~ '"

r= 2( z) (21a)

a=2((z- (z))'}' ', (21b)

For a pure spheroidal distortion, ~ and v are
given exactly by

y= —,c3

o (19)1/2c
80

where c is the semisymmetry axis of the spheroid.
The three-quadratic-surface parametrization is

used to study the dynamical motion of the system
from its saddle point to scission. After scission
the fission fragments are described in terms of
two separated spheroids. ' '~ The transition from
one shape parametrization to the other is ac-
complished by equating the values of r and o and
the corresponding velocities r and o before and
after scission. This introduces a small but never-
theless tolerable discontinuity in the various con-
tributions to the total energy.

For two equal separated spheroids r is equal
simply to the distance between their centers, and

where the angular brackets ( }denote an average
over the half volume to the right of the midplane
of the reflection-symmetric shape. The moment
r gives the distance between the centers of mass
of the two halves of the dividing nucleus, and 0
gives a measure of the elongation of each half
about its center of mass.

For small distortions about a spherical shape
the moments r and o are easily related to the co-
ordinates ~, and a4 in an expansion of the system's
radius vector in Legendre polynomials. To first
order this relationship is

r = —,
' (1+ o., —-', &,)R,

o is given by

2
g ~cgy

5

where c, is the semisymmetry axis of one of the
spheroids. For such postscission shapes the iner-
tia tensor and viscosity tensor are both diagonal
with respect to the moments r and cr.

The division of the total energy release into
translational kinetic energy and excitation energy
of the fission fragments at infinity is determined
by integrating the postscission equations of motion
until the higher multipole corrections to the Cou-
lomb interaction energy are negligible. At this
point the sum of the translational kinetic energy
and the Coulomb interaction energy is taken to be
the final fission-fragment kinetic energy at infinity.
The excitation energy is obtained finally by sub-
tracting the kinetic energy from the total energy
released in going from the saddle point to infinity.

III. CALCULATED RESULTS

We have used the methods described in the pre-
ceding section to calculate the effect of two-body
viscosity on various aspects of nuclear fission.
We present first our results concerning the in-
duced fission of the compound nucleus "'U, and
second our results concerning the spontaneous
fission of ~'Cf. This is followed by a discussion
of the fission of nuclei throughout the Periodic
Table. In the final part of this section we compare
our calculated most probable fission-fragment
kinetic energies with experimental values for the
fission of nuclear systems ranging from "Sr to
'~110. Provided that nuclear dissipation arises
from two-body collisions, this permits us to deter-
mine the average value of the two-body viscosity
coefficient at high excitation energies.

A. Induced fission of 2~U

As an example pertinent to induced fission, we
consider a "'U compound nucleus that is started
in motion at its macroscopic saddle point with 1
MeV of kinetic energy in the fission direction.
(For heavy nuclei the dependence of the fission
eigenvector upon viscosity is so slight that we
may safely use the eigenvector calculated for zero
viscosity. } The nuclear macroscopic energy is
calculated in terms of a double volume integral of
a Yukawa function.

Figure 1 illustrates the effect of two-body vis-
cosity on the dynamical descent from the saddle
point to scission. The unit of viscosity is the
terapoise, which is given by

1 TP =10"P=10"dyn s/cm2

= 6.24 x 10 "MeV s/fm' = 0.948 5/fm' .



2390 K. T. R. DAVIES, A. J. SIERK, AND J. R. NIX 13

Initial kinetic energy of I MeV in the fission direction
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FIG. 1. Calculated shapes at equal time intervals of a U nucleus from its macroscopic saddle point to scission,
for various values of the two-body viscosity coef6cient p . The initial conditions in each case correspond to starting
from the saddle point with 1 MeV of kinetic energy in the Qssion direction. The scission shapes are shown dashed.

For a viscous system some of the decrease in col-
lective potential energy is converted into internal
excitation energy rather than into collective kinet-
ic energy. This causes the system to slow down,
as can also be seen in Fig. 2. For an initial kinet-
ic energy of 1 MeV in the fission direction, the
time from saddle to scission increases from 2.8
X10 ' s for zero viscosity to 17.3 X 10 ' s for
p, =0.16 TP. An increase in the initial kinetic en-
ergy in the fission direction decreases the time
from saddle to scission and vice versa, especially
for small values of viscosity.

A viscous "'U nucleus therefore undergoes
scission with less translational kinetic energy
than a nonviscous one. But, in addition, the
scission configuration is more elongated for a
viscous "'U nucleus than for a nonviscous one.
This is because in the presence of viscosity the

dynamical path readjusts itself so as to lessen
the energy dissipation. The large gradients in the
hydrodynamical flow pattern during neck formation
lead to a large dissipation for this mode, which is
therefore hindered. In the fission of a heavy
viscous nucleus, both the smaller translational
kinetic energy at scission and the more elongated
scission configuration decrease the final transla-
tional kinetic energy of the fission fragments at
infinity.

In Fig. 3 we show the dynamical paths for U
for several values of viscosity projected onto the
two-dimensional space of center-of-mass separa-
tion r and fragment elongation 0. Although the ini-
tial conditions correspond to starting from the
saddle point with 1 MeV of kinetic energy in the
fission direction, the most probable dynamical
paths corresponding to starting from rest an in-
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FIG. 2. Time required for a ~U nucleus to travel
from its macroscopic saddle point to scission, as a func-
tion of the two-body viscosity coefficient p. The initial
conditions correspond to starting from the saddle point
with 1 MeV of kinetic energy in the fission direction.

theory on the grounds that nuclei are very viscous
and therefore will follow the path of steepest
descent in the potential-energy surface. ~ It is
well known that for nonviscous nuclei the depen-
dence upon shape of the inertia tensor causes the
dynamical fission path to deviate from the path of
steepest descent. ~ It is less well known but equal-
ly true that the viscosity tensor has a similar ef-
fect. In fact, the path of steepest descent in Fig.
3 lies below the p. =0 path, and increasing the
two-body viscosity increases rather than de-
creases the deviations from this path. A nucleus
with large two-body viscosity therefore follows a
path that is even farther away from the path of
steepest descent than does a nonviscous nucleus,
which means that this justification for the statisti-
cal theory of fission is invalid.

In Fig. 4 we illustrate the effect of viscosity
on the postscission motion of the fission frag-
ments. As discussed in Sec. IID, the fission
fragments are described in terms of two sepa-
rated spheroids. The postscission motion con-
sists of a separation of the centers of mass of the
two fragments, coupled with motion of the frag-
ments about their own centers of mass. Configu-

finitesimal distance from the saddle point are in-
distinguishable on the scale of this figure. An
increase in the value of e for a fixed value of r
corresponds to an increase in the neck radius.
This figure clearly shows the viscosity-induced
inhibition of neck formation mentioned above.

Figure 3 illustrates another important point
that is relevant to the statistical theory of fis-
sion." Attempts have been made to justify this
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FIG. 3. Dy~~~ical paths in r-0 space of a ~U nucleus
from its macroscopic saddle point to scission, for vari-
ous values of the two-body viscosity coefficient p. The
scission points are indicated by the tips of the arrow-
heads.
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FIG. 4. Dynamical paths in r-cr space of a 2 8U nucleus,
for various values of the two-body viscosity coefQcient
p. The paths from the macroscopic saddle point to
scission are given by the solid curves. The postscission
paths of the fission fragments are given by the solid
circles, which are equally spaced in time at intervals
of 0.2 x10 s. The thin horizontal long-dashed lines
denote configurations of bvo separated spherical nuclei.
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rations of two separated spherical nuclei are in-
dicated in the figure by the thin horizontal long-
dashed lines.

For zero viscosity the fragments oscillate about
their centers all the way to infinity, at which point
the excitation energy is entirely in the form of
collective vibrational energy. For finite values of
viscosity, the energy of collective motion is dis-
sipated during the separation, and the excitation
energy at infinity is entirely in the form of in-
ternal energy. %hen the viscosity is smaQ, the
fragments still oscillate but with amplitudes that
decrease as they separate. Above a critical vis-
cosity, whose value is roughly 0.1 TP, the frag-
ments no longer oscillate but instead their elonga-
tion decreases nearly exponentially as they sepa-
rate.

For small values of viscosity a portion of the
total interaction energy at scission is converted
into fragment vibrational kinetic energy rather
than into translational kinetic energy. This can
be seen in Fig. 4 for zero viscosity by the in-
crease in the maximum fragment elongation 0
after one complete oscillation relative to the
fragment elongation at scission. For infinite
viscosity, the fragments retain their shape as
they separate, and the total interaction energy
at scission is converted entirely into transla-
tional kinetic energy.

B. Spontaneous fission of Cf

As another example, we consider the motion
of a '"Cf nucleus after it has penetrated the fis-
sion barrier in spontaneous fission. For thispur-

IOO

pose we start the system at rest from the point
that it emerges after penetrating the macroscopic
fission barrier at zero potential energy. The bar-
rier is calculated for the fission coordinate y that
is defined in terms of liquid-drop-model saddle-
point shapes. ' '" The nuclear macroscopic energy
is again calculated in terms of a double volume
integral of a Yukawa function.

Figure 5 illustrates how two-body viscosity de-
creases the translational kinetic energy that is
acquired for a given separation of the centers of
mass. The vertical arrows denote the zero-neck-
radius scission configuration, which becomes
more elongated with increasing viscosity. For
zero viscosity the centers of mass at scission
are separated by 23.7 fm and the translational
kinetic energy is 58 MeV, whereas for p, =0.08
TP the corresponding values are 30.2 fm and 27
MeV.

Our initial hope was that we could determine
the viscosity coefficient by comparing the results
of Fig. 5 with scission-point properties deduced
from armlyses of light particles emitted during
the spontaneous fission of '"Cf. However, this
does not appear to be possible because of the dif-
ferent dynamical path taken for fission accom-
panied by the emission of light particles relative
to the path taken in normal fission (where no light
particles are emitted). 5'

In Fig. 6 we show the dependence of the neck
radius upon the distance between mass centers,
for dynamical paths calculated with various
amounts of two-body viscosity. This figure illus-
trates once again that two-body viscosity binders
neck formation and leads to a more elongated
scission configuration.

Both because of the more elongated scission con-
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FIG. 5. Dependence of the translational kinetic energy
acquired during the s~~etric spontaneous fission of

Cf upon the distance between mass centers r, for
various values of the two-body viscosity coefficient p.
The scission points are indicated by the vertical arrows.

FIG. 6. Dependence of the neck radius in the sym-
metric spontaneous fission of ~ Cf upon the distance
between mass centers r, for dynamical paths calculated
with various values of the two-body viscosity coefficient
P.
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figuration and because of the smaller translational
kinetic energy at scission, the final translational
kinetic energy at infinity decreases with increasing
two-body viscosity. This is illustrated by the
bottom curve in Fig. 7.

We also show in Fig. 7 the effect on the final
kinetic energy of the neck rupturing before its
radius reaches zero. Where this is expected to
occur in the fission of an actual nucleus may be
estimated by determining the area of the neck that
is required for the attractive nuclear force to with-
stand the repulsive Coulomb force. In making this
estimate, we approximate the nuclear force per
unit area in terms of a Yukawa interaction~ be-
tween two semi-infinite slabs of nuclear matter.
The Coulomb force is approximated by the force
between two equal spheres separated by 21.5 fm,
which is a nominal value deduced from an analysis"
of the light particles accompanying the spontaneous
fission of "'Cf. This yields a neck radius of about
1.2 fm at which rupture should occur.

In calculating the effect of a finite scission neck
radius upon the fission-fragment translational ki-
netic energy at infinity, the postscission motion of
the fission fragments is again described in terms
of separated spheroids. The initial conditions for
the postscission motion are determined by making
continuous the values of r, o, i, and 0 at the scis-
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sion point (which now occurs at a finite neck radi-
us). As seen in Fig. 7, the calculated kinetic en-
ergy at infinity increases slightly as the scission
neck radius increases. As indicated by the dashed
line in Fig. 7, the kinetic energy also increases
when scission is assumed to occur at a constant
distance between mass centers of 21.5 fm.

The shaded band in Fig. 7 gives the experimental
value of the average fission-fragment kinetic ener-
gy corresponding to a symmetric mass division for
'"Cf spontaneous fission. " The experimental value
is reproduced by the calculations for a two-body
viscosity coefficient p, of O.OOV TP when the scis-
sion neck radius is taken to be zero. The viscosity
coefficient increases to 0.009 TP for a scission
neck radius of 1.2 fm, and to 0.01V TP for a scis-
sion neck radius of 2.0 fm or a distance between
mass centers at scission of 21.5 fm. However,
because in the spontaneous fission of "'Cf the
kinetic energy is affected strongly by single-par-
ticle corrections, we do not place significant
weight upon this comparison. We return in Sec.
IIID to a determination of the viscosity coefficient
from a comparison with experimental kinetic en-
ergies at high excitation energies, where single-
particle corrections are much less important. Be-
cause of the relatively small effect of a 1.2-fm
scission neck radius on the final translational
kinetic energy, the scission neck radius is taken
to be zero throughout the remainder of the paper.
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252 C. Fission of nuclei throughout the Periodic Table

We turn now to the effect of two-body viscosity
on the fission of nuclear systems throughout the
Periodic Table. For this purpose we use the
pure liquid-drop model, in which the nuclear sys-
tem is characterized by the fissility parameter
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FIG. 7. Fission-fragment translational kinetic ener-
gies at iri&mty for the symmetric spontaneous fission of

2Cf, as functions of the two-body viscosity coefficient
p. For the three solid curves the neck is assumed to
rupture at the indicated value of the neck radius, where-
as for the dashed curve the neck is assumed to rupture
when the nascent-f'ragment mass centers are separated
by 21.5 fm. The experimental most probable kinetic
energy for equal mass division (Bef. 57) is given by the
shaded band.
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FIG. S. Liquid-drop-model saddle points (solid circles)
and most probable dynamical paths for various values of
the fissility parameter ~. The paths for zero viscosity
are given by solid curves, and those for i~ft~ite viscosity
are given by dashed curves. The scission points are
indicated by the tips of the arrowheads.
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x defined by Eq. (9). The nuclear potential energy
is measured in units of the spherical surface en-
ergy E,'0' defined by Eq. (7), and the two-body vis-
cosity coefficient is measured in the natural unit'

For a heavy nucleus the value of p,o is roughly 1
TP.

In the fission of heavy nuclei, where the saddle-
point shapes are cylinder-like, the distance frr .i
the saddle point to scission is much longer than in
the fission of light nuclei, where the saddle-point
shapes are dumbbell-like. '~"'"'" In this context
the transition between heavy and light nuclei oc-
curs at x=0.67, which corresponds roughly to
radium. This difference is illustrated in Fig. 8,
where for five values of the fissility parameter
we show the most probable dynamical paths for
zero viscosity (solid curves} and infinite two-body
viscosity (dashed curves}. Near x = l the most prob-
able paths follow closely the sequence of liquid-drop-
model saddle-point shapes (indicated by the solid
points). This demonstrates that the frequently
used fission coordinate y"'" is adequate for small
deformations, but beyond y =0.3 the most probable
path diverges from the sequence of liquid-drop-
model saddle-point shapes.

The initial most probable fission direction (the
fission eigenvector) is in general determined by
the stiffness, inertia, and viscosity tensors at
the saddle point. For zero viscosity this direction
is determined by the stiffness and inertia tensors
alone, whereas for infinite viscosity it is deter-
mined by the stiffness and viscosity tensors alone.
As x-1 all three tensors become diagonal in terms
of second-order Legendre-polynomial distortions,
so that the initial directions for zero viscosity
and infinite viscosity coincide. However, for
light nuclei the initial direction corresponds
primarily to a contraction of the neck for
small viscosity, and primarily to a separation
of mass centers for large two-body viscosity.

As the two-body viscosity coefficient increases,
the dynamical path in general shifts monotonically
away from the nonviscous path in the direction of
increased fragment elongation, and the scission
configuration is more elongated. However, for
values of x close to 1 the dynamical path near the
scission point for infinite two-body viscosity lies
somewhat below those for large finite values of
viscosity, and the scission configuration is some-
what less elongated. This crossover in the dy-
namical paths is caused by an inertial effect for
finite viscosity.

In Fig. 9 we see the effect of two-body viscosity
on both the prescission translational kinetic energy
(dashed curves) and the total translational kinetic
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FIG. 9. Dependence of the fission-fragment transla-
tional kinetic energy upon the fissility parameter x, for
various values of the two-body viscosity coefQcient p.
The natural unit of viscosity p 0 is given by Eq. (22).
The dashed curves give the translational kinetic energy
acquired prior to scission, and the solid curves give the
value at in6nity.

energy at infinity (solid curves) B. ecause of the
transition at x= 0.67 in saddle-point properties,
the results are qualitatively different for heavy
nuclei and for light nuclei. For heavy nuclei, in-
creasing the viscosity reduces the prescission
kinetic energy, which in the absence of viscosity
is considerable because of the relatively long
distance from the saddle point to scission. For
light nuclei the short distance from the saddle
point to scission means that the prescission kinetic
energy is small for all values of viscosity. How-
ever, because the effect of two-body viscosity is
to increase the distance from saddle to scission,
a viscous system has a longer distance in which
to acquire prescission kinetic energy than does a
nonviscous one. Because of this, the prescission
kinetic energy for light nuclei increases slightly
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for small values of viscosity, although it is of
course zero for infinite viscosity.

The translational kinetic energy at infinity is the
sum of the prescission translational kinetic energy
and the translational kinetic energy acquired after
scission. In the liquid-drop model the latter
arises primarily from the Coulomb interaction
energy at scission, although it is not given exactly
by this quantity because in general some of the
interaction energy is converted into vibrational
energy and subsequently into internal excitation
energy rather than into translational kinetic ener-
gy.

For heavy nuclei the translational kinetic energy
at infinity in general decreases with increasing
two-body viscosity both because the prescission
contribution is less and because the Coulomb inter-
action energy at scission is less. That fraction of
the Coulomb interaction energy that goes into
translational kinetic energy decreases for small
values of viscosity because of the increased time
the fission fragments spend with significant oblate

0.30—

deformations during their separation relative to the
time with prolate shapes. " For large viscosity the
fraction increases because the fission fragments
remain prolate for a significantly longer time dur-
ing the initial separation stage.

For values of x close to 1 the total translational
kinetic energy for large finite viscosity is smaller
than that for infinite viscosity because of the
crossover in the dynamical paths discussed ear-
lier. For light nuclei the total translational kinet-
ic energy depends very little upon viscosity, as a
result of the short distance from the saddle point
to scission.

The energy released in going from the saddle
point to infinite separation of the fission fragments
is divided into translational kinetic energy, which
we have just considered, plus excitation energy.
As shown in Fig. 10, the excitation energy in-
creases with increasing fissility parameter x, and
also in general increases with increasing two-body
viscosity. However, for values of x close to 1, the
crossover in the dynamical paths discussed earlier
leads to a slightly smaller excitation energy for in-
finite viscosity than for large finite viscosity. At
infinite fission-fragment separation the excitation
energy remains entirely in the form of collective
energy for zero viscosity, but is entirely converted
into internal energy for all finite values of viscos-
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FIG. 10. Dependence of the fission-fragment excita-
tion energy at infinity upon the fissility parameter x, for
various values of the two-body viscosity coefficient p.
The natural unit of viscosity po is given by Eq. (22).

FIG. 11. Decomposition of the fission-fragment exci-
tation energy into its various components at scission,
as a function of the fissility parameter ~. The two-body
viscosity coefficient p has the value 0.01po, where the
natural unit of viscosity p, o is given by Eq. (22). The
dashed curve gives the energy dissipated into internal
energy prior to scission, and the difference between the
long-dashed curve and the short-dashed curve gives the
vibrational kinetic energy at scission. The remaining
energy, given by the difference between the solid curve
and the long-dashed curve, is in the form of potential
energy at scission.
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ity.
The energy that appears ultimately as excitation

energy is in several different forms at the scission
point, as illustrated in Fig. 11 for p, =0.01@, The
short-dashed curve gives the dissipated energy
Efff

' that is in the form of internal energy al ready
at the scission point; this quantity in general in-
creases with increasing viscosity. The difference
between the long-dashed curve and the short-
dashed curve represents the vibrational kinetic
energy E'fbgf at the scission point; an increase in
viscosity in general decreases this quantity. The
remaining energy, which is given by the difference
between the solid curve and the long-dashed curve,
is primarily potential energy of deformation at
scission, but also contains that portion of the Cou-
lomb interaction energy at scission that is con-
verted during the dynamical postscission motion
into vibrational energy and ultimately into internal
excitation energy rather than into translational ki-
netic energy. This remaining energy also in gen-
eral increases with increasing viscosity.
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which is 1.16 fm for medium-weight nuclei. )
By comparison, the frequently used value of

1.2249 fm in the liquid-drop model~ gives nuclei
that are about 6% too large and consequently fis-
sion-fragment kinetic energies that are about 6%
lower than values calculated with the correct nu-
clear-radius constant. It is primarily the use of
the larger value of 1.2249 fm for the nuclear-radi-
us constant that explains why in Ref. 17 the experi-
mental kinetic energies lie above the calculated

D. Comparison with experimental fission-fragment kinetic

energies
i50-

Cl
C:

We have considered up to this point the effect on
the dynamics of fission of varying the two-body
viscosity coefficient p, from 0 to ~. Provided that
nuclear dissipation proceeds primarily by means
of two-body collisions, we now proceed to deter-
mine the average value of p, at high excitation en-
ergies by comparing calculated and experimental
most probable fission-fragment kinetic energies
for the fission of nuclei throughout the Periodic
Table. However, we should stress from the out-
set that this comparison does not imply that nu-
clear dissipation is necessarily of the two-body
type.

In making this comparison, which is shown in
Fig. 12, we take into account the finite range of the
nuclear force when calculating the nuclear macro-
scopic energy. This is done both because this ef-
fect is present in the fission of real nuclei and be-
cause the available constants for the finite-range
model" are more appropriate for calculating fis-
sion-fragment kinetic energies than are the best
available constants for the liquid-drop model. " In
particular, the value of 1.16 fm that is used here
for the nuclear-radius constant x, describes ade-
quately the average equivalent-sharp spatial ex-
tent of nuclei throughout the Periodic Table. " '
(The value of 1.18 fm given in Ref. 48 refers to in-
finite nuclear matter. The squeezing of finite nu-
clei by the surface tension and their dilation by the
Coulomb repulsion lead to an effective value which
varies slightly throughout the Periodic Table but
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FIG. 12. Comparison of experimental most probable
fission-fragment kinetic energies with results calcu-
lated for different values of the viscosity coef6cient p
(solid curves). The calculations include the effect of the
finite rm~e of the nuclear force on the nuclear macro-
scopic energy. The experimental data are for the fis-
sion of nuclei at high excitation energies, where the
most probable mass division is into two equal fragments.
The open symbols represent values for equal mass divi-
sions only, and th@ solid symbols represent values aver-
aged over all mass divisions. Open circles are used for
data obtained in Ref. 60, and open squares are used for
data obtained in Refs. 61-64 and reported in Ref. 60.
Open downward-pointing tr~n4y'les refer to Ref. 65, open
upward-pointing tri~~gles to Ref. 66, open diamonds to
Ref. 67, and open hexagons to Ref. 68. Solid circles
are used for data obtained in Ref. 69 and corrected in
Ref. 70. The solid square refers to Ref. 71 and the
solid downward-pointing trl~~~le to Ref. 72. The dashed
curves give the calculated translational kinetic energies
acquired prior to scission.
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curve for zero viscosity. However, two other dif-
ferences are the use in Ref. 17 of the liquid-drop
model and a simpler approximation for the post-
scission motion than is used here.

When the finite range of the nuclear force is
taken into account, it is no longer strictly possible
to display the results calculated for all nuclei as
functions of a single parameter. We therefore
adopt the expedient of calculating the results for
nuclei along Green's approximation to the valley of
P stability;" the calculated kinetic energies are
then plotted in units of MeV as functions of Z'/A'~'
for the nuclear system undergoing fission. The
accuracy of this procedure turns out to be excel-
lent, as verified by performing additional calcula-
tions for the actual nuclear system "'110, which
is moderately far removed from the valley of P
stability.

The transition from cylinder-like saddle-point
shapes for heavy nuclei to dumbbell-like saddle-
point shapes for light nuclei is more gradual in the
finite-range model" than in the liquid-drop mod-
el.'"'"'8'" Because of this, the transition that oc-
curs in Fig. 12 at Z'/A'~'= 1100 is more gradual
than the analogous transition that occurs in Fig. 9
at x = 0.67.

Experimental most probable fission-f ragment
kinetic energies"" for the fission of nuclear sys-
tems ranging from "Sr to "'110are included in
Fig. 12. These data all refer to moderately high
excitation energies, where the most probable mass
division is into two equal fragments and where
single-particle effects on the nuclear potential en-
ergy of deformation should be reduced. Open sym-
bols represent values for equal mass divisions
only, and solid symbols represent values averaged
over all mass divisions. (The opposite convention
concerning open and solid symbols stated in Ref.
21 is erroneous. )

Some of the experimental kinetic energies in Fig.
12 are strictly "most probable" values, whereas
the remainder are in fact average values; in ac-
cordance with usual practice we use most probable
to refer loosely to both types of data. All experi-
mental data in the figure have been corrected for
the effects of neutron emission from the fragments
and for calibration effects. No corrections have
been made for angular-momentum effects, which
are possibly large for those data that refer to fis-
sion induced by very heavy ions.

It is seen from Fig. 12 that the value

p=0.015+0.005 TP =9+ 3 & 10 "MeVs/fm'

accounts for most of the experimental data to with-
in their uncertainties, although there is a clear
variation in the optimum value of p, from about
0.01 TP for the lighter systems to about 0.02 TP

for the heavier systems. By coincidence, 0.015
TP is the same value obtained earlier by Wiec-
zorek, Hasse, and Sussman" "by integrating the
Rayleigh dissipation function along the nonviscous
'~U path from saddle to scission and by assuming
arbitrarily that 10 MeV of energy is dissipated
along this path.

The deduced value of p. may be compared with
the value that is required to critically damp the
quadrupole oscillations of idealized nuclei, which
is approximately 0.05 TP for heavy actinide nuclei
and approximately 0.08 TP for medium-weight nu-
clei. (In Ref. 20 it is implied erroneously that the
critical viscosity coefficient for idealized heavy
nuclei is about 0.1 TP.}

IV. SUMMARY AND CONCLUSION

In this study of the dynamics of large-scale nu-
clear shape changes we have used a simple mac-
roscopic approach in which the nuclear shape is
parametrized in terms of a few relevant degrees
of freedom. The dissipation of energy from col-
lective motion into internal single-particle motion
was calculated under the assumption that nuclear
dissipation arises from two-body collisions. We
have studied the time evolution of fissioning nu-
clei by solving numerically the classical equations
of motion with appropriate initial conditions.

In addition to slowing down the dynamical de-
scent of a fissioning nucleus from its saddle point,
two-body viscosity hinders the formation of a
neck, which leads to a more elongated scission
configuration. Because of both the slowing down
and the increased scission elongations, the calcu-
lated fission-fragment translational kinetic energy
decreases with increasing two-body viscosity.

This permitted us to determine the average value
of the two-body viscosity coefficient that repro-
duces experimental most probable fission-frag-
ment kinetic energies for the fission at high ex-
citation energies of nuclei throughout the periodic
table. The result is

p = 0.015 6 0.005 TP = 9 k 3 x 10 ~4 MeV s/fm3,

which is about 3(Pip of the value that is required to
critically damp the quadrupole oscillations of
idealized heavy actinide nuclei. Thus, provided
that nuclear dissipation arises primarily from
two-body collisions, nuclei are only moderately
vis cous.

However, because of the relatively long mean
free path of nucleons inside a nucleus, it is en-
tirely possible that nuclear dissipation arises pri-
marily from nucleons colliding with the moving
boundary of the nucleus rather than with each
other. "" This one-body dissipation has proper-



2398 K. T. R. DAVIES, A. J. SIERK, AND J. R. NIX

ties that are qualitatively opposite"'" those for the
two-body viscosity considered here. In particular,
one-body dissipation enhances the formation of a
neck, which leads to a more compact scission con-
figuration. Fission-fragment kinetic energies cal-
culated on the basis of one-body dissipation" agree
with the experimental values equally well as do our
present calculations with two-body viscosity.

The basic mechanism of nuclear dissipation—
whether by means of individual nucleon collisions
with each other or by means of nucleon collisions
with the moving boundary of the nucleus —is there-
fore still open. In deciding this important question
we hope that the results presented here for the
former mechanism will prove useful.

We are grateful to J. Peter for his assistance
with collecting the experimental data used in Fig.
12, and to W. J. Swiatecki for stimulating discus-
sions concerning one-body dissipation.

and

z =8(z;q, q) =+A, (z;q)q,
i

(A6a)

1 BQS=-——
2 Bz (A7)

p= pe(z;q, q) = Q—B,(z;q)q, , (A6b)

where P =P(z;q) is the value of p on the surface of
the shape at the position z.

In previous studies of the Werner-Wheeler meth-
od, which were restricted to nonviscous flow, the
expansion coefficients B, were related to the co-
efficients A, by use of the kinematical boundary
condition on the system's surface. We find it more
convenient here, where we must calculate the vis-
cosity tensor in addition to the inertia tensor, to
use instead the interior relation (Al) to obtain

APPENDIX A: DERIVATION OF THE INERTIA AND

VISCOSITY TENSORS

V v=0. (A1)

The total kinetic energy of the system is given by

By virtue of the equation of continuity the velocity
field v for an incompressible fluid satisfies

or

1 BA]
2 Bz' (AS)

Upon substituting Eqs. (A5), (A6), and (AS) into
E(I. (A2) and comparing with Eq. (12), we obtain
for the elements of the inertia tensor the result

T=ppm v d v (A2)
M~~= gp P A)A~+ g P A,'A~ dz,

~mug

(AS)

where

p =M /(vs ') (AS)

is the constant mass density and where the integra-
tion is over the volume of the shape.

In order to express T in the form of E(I. (12), it
is necessary that the position vector r of a fluid
element not involve the time explicitly; instead, it
must depend only upon the shape of the system. "
This permits us to write

V '(z; q) zJ P '(z 'q)dz=,
and

(A10a)

where the primes denote differentiation with re-
spect to z.

The expansion coefficients A, are determined
from the condition that for an incompressible fluid
the total (convective} time derivative of any fluid
volume must vanish. '4 We denote by

Br ~v= r(q) = q, ,
Bq]

(A4)
V (z;q) zJ P'( ',q)dz'=

min

(A10b}

which, upon substituting into E(I. (A2) and per-
forming the volume integration, expresses T in the
form of E(I. (12).

We specialize to axially symmetric shapes, for
which the velocity is given in cylindrical coordi-
nates by

the volumes of the fluid to the right and to the left,
respectively, of a plane perpendicular to the sym-
metry axis at the point z. It then follows that

d . BV' . BV—V'(z;q) = z+ q&Bz Bq)
~ zqqz

v= pe~+ze, , (A5) =m -P z qz
where e, and e, denote unit vectors in the p and z
directions, respectively. The Werner-Wheeler
method'""'" is equivalent to assuming that z is
independent of p and that p depends linearly upon

p, 1 e =0

+Q P'(z', q)dz' q,

(A11)
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z = g P (z;q}dz' q ~ (A12)P2 z;q Sql

Upon comparing Eqs. (A6a) and (A12), we see
t at"

may
A, (z;q)= „, P'(z', q)dz',I"(z;q) eq,

(A13a)

which is an expression that is especially useful for
calculating A,- for values of z to the right of the
body's midplane. Also, we obtain in a similar
way, by taking the total time derivative of V (z;q),
the alternative formula"

&,(z;q) =-, P'(z', q)dz', (AI3b)P'z;q aq,.

which is especially useful for calculating A, for
values of z to the left of the midplane.

For an incompressible fluid with a consta, nt two-
body viscosity coefficient p, the Rayleigh dissipa-
tion function is given by"

E=&p. 4 r 'y, (A14}

where

4(r) = V'v'+ ru' —2V * (v x u&}

and where

~=9 xv (A16)

is the vorticity.
Insertion of Egs. (A5) and (A6) into this result

leads to

4 = 48'+ p'(8')'+ 48$'+ 2[(8')'+ 88"], (A17)

where the single and double primes denote, re-
spectively, first and second derivatives with re-
spect to z. By virtue of Eq. (A7) this simplifies
further to

early stages of fission. " Here we study the accu-
racy of this method as an approximation to incom-
pressible viscous flow.

As the viscosity increases from zero, the exact
hydrodynamical flow deviates from irrotationa, l
flow. This causes the exact hydrodynamical iner-
tia to increase, as required by Kelvin's theorem
that the kinetic energy for irrotational flow is a
minimum. " The viscosity tensor is proportional
to the viscosity coefficient p, . However, the pro-
portionality factor depends upon the hydrodynami-
cal flow and therefore upon the viscosity.

Because the Navier-Stokes equations for incom-
pressible viscous flow are harder to solve than the
Euler equations for nonviscous flow, it is more
difficult in the presence of viscosity to determine
the accuracy of the inertia and viscosity tensors
calculated by use of the Werner-Wheeler method.
However, exact solutions are available for the
small motions about a spherical equilibrium shape
of a viscous fluid under the influence of gravita-
tional (or electrostatic) forces and/or surface ten-
sion. ~""

The normal modes of a viscous sphere have
spherical-harmonic angular behavior, with an in-
finite number of radial eigenfunctions for each or-
der of spherical harmonic. The normal modes
have the time dependence exp(-g„„f), where n la-
bels the degree of the spherical harmonic and
where k is the index of the radial eigenfunction.
For a given degree n, the two lowest values of o„~
are either both real and positive or complex con-
jugates, depending upon whether the system is
overdamped or underdamped; the other roots are
all positive and real. Some numerical values of
the roots are given in Refs. 78, 80, and 81.

Upon restricting the discussion to axially sym-
metric motions and working to first order in the
coordinates and momenta, we may expand the
system's radius vector in a series of Legendre
polynomials,

3(8I)2+4 p2(88)2 (AI 8)
R=R 1++ a„P„(cos8}

n=l

gmfLX

qq(=vp P (3AfAq+ sP A)Aq)dz .
+mift

(A19)

Upon substituting Eqs. (A6a) and (A18) into Eg.
(A14) and comparing with Eq. (13) we obtain for the
elements of the viscosity tensor the result

where R, is the radius of the spherical shape.
Evaluation of Eqs. (A2)-(A5) and (A14)-(A16)
for hydrodynamical flow in the limit of zero vis-
cosity (irrotational flow) then yields for the diag-
onal elements of the inertia~ and viscositys'"
tensors

APPENDIX 8: ACCURACY OF THE WERNER-WHEEI. ER
METHOD

birr 3
M R

(2n+ I)

As an approximation to incompressible, nonvis-
cous irrotational flow, the Werner-Wheeler method
is known to be excellent for shapes involved in the

birr 8~ & g 3
p

(n- I)
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FIG. 13. Comparison of the diagonal elements M„of
the inertia tensor for three types of hydrodynamical
Qow about a spherical shape. The solid curve gives the
result for Werner-Wheeler Qow, the short-dashed curve
gives the result for nonviscous irrotational Qow, and
the dot-dashed curve gives the result for infinitely vis-
cous Qow. The quantity that is actually plotted is the
inertia for a particular type of Qow divided by the in-
ertia for irrotational Qow.

FIG. 14. Comparison of the diagonal elements g„of
the two-body viscosity tensor for three types of hydro-
dynamical flow about a spherical shape. The solid curve
gives the result for Werner-Wheeler Qow, the short-
dashed curve gives the result in the limit of nonviscous
irrotational Qow, and the dot-dashed curve gives the
result in the limit of infinitely viscous Qow. The results
are plotted in units of 87(+ p, where Bo is the radius of
the sphere and where p is the two-body viscosity co-
efficient.

where Mo is the total mass of the system and
where p, is the two-body viscosity coefficient.

Evaluation of the same equations for hydro-
dynamical flow corresponding to the lowest radial
eigenfunction in the limit of infinite two-body vis-
cosity yields~ "

M--1+ """ ' M"
(2n+ 1)'(2n+ 5)

vectors in the p, z, and P directions, respective-
ly, and where P„ is an associated Legendre poly-
nomial of degree n and order m." Evaluation of
Egs. (A2)-(A5) and (A14)-(A16) with this Werner-
Wheeler Qow then yieMs

ww ~ +++6 Mirr
n

=
4(n+ 1)

n"

' 2(n+1) + 1
n (2n+ 1)2 Rn

In the Werner-Wheeler method, the velocity
field corresponding to a given Legendre-poly-
nomial distortion n is

pP'„(cos 8) - 2''„( cso)8v= — " . e+ " . e 6
n(n+ 1) sin 8 ' n(n+ 1) sin~8

and the corresponding curl is

pP„(cos8)gxv = . e Q
n(n+ 1) sin'8R,

A

where e„e„and e are cylhxlrical-coordinate unit

(n+ 2)(n'+ n+ 30)
48(n+ 1)

In Fig. 13 we compare the six lowest elements
of the inertia tensor calculated by use of the
Werner-Wheeler method with the results for zero
viscosity and infinite viscosity. A similar com-
parison is made in Fig. 14 for the elements of the
viscosity tensor. For the n=1 mode, which cor-
responds to a shift of the center of mass, the
Werner-Wheeler method gives trivially the exact
results for both irrotational flow and infinite vis-
cosity. For n= 2, the Werner-Wheeler method
gives the exact results for irrotational flow, but
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for infinite viscosity it underestimates the inertia
eiement by 5% and overestimates the viscosity
element by $2%. For the higher modes, both the
inertia elements and the viscosity elements cal-
culated by use of the Werner-Wheeler method are
larger than the values corresponding to either
zero viscosity or infinite viscosity.

For pure spheroidal distortions of arbitrarily
large eccentricity, the flow produced by the
Werner-Wheeler method is exactly irrotational.
In this case the inertia with respect to the semi-
symmetry axis c of the spheroid is given by'4

I,= ff 1+ ~(RO/c)3]MO .
The corresponding element of the two-body vis-
cosity tensor is"

3

g =4m, p.c C

For the nearly spherical shapes for which an
exact solution is possible in the presence of vis-
cosity, fission is primarily an n=2 motion, with
a small admixture of n= 4 motion. From the above
results and from considerations of the solutions
for finite viscosity, we conclude that a value of
the viscosity coefficient inferred from dynamical
calculations in which the Werner-Wheeler method
is used will be underestimated by roughly 30-50%
if the viscosity is large enough to put the system
in the region of the large-viscosity limit.

It should be stressed that the results in this
appendix are valid only for small motions about
a sphere. The fission mode corresponds to large-
amplitude nonoscillatory motion in which large
vorticities could be built up by moderate viscosity
because the motion is unidirectional. This could
cause the inertia and viscosity tensors to vary
significantly from their small-oscillation values.
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