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Discrepancies among experiments and theory on electron scattering from oriented holmium
are partially resolved. An estimate is presented which suggests that the distorted-wave
Born-approximation orientation effect calculated by Wright is too large by about a factor of
2. Distorted-wave Born-approximation calculations (made with a coupled-channel program)
are presented which confirm this suggestion. They agree well with the Stanford data for
orientation perpendicular to the scattering plane. The previous discrepancy for orientation
along the recoil-momentum direction is reduced, but is not removed. The sensitivity of
these results to the charge shape is examined although a fit to the data is not made. Results
are given of a complete coupled-channel calculation for the first three nuclear states. Sug-
gestions are made for future work, and cross sections and orientation effects for energy-
resolved scattering from holmium at 200 MeV are given.

NUCLEAR REACTIONS !§Ho(e,e’) oriented deformed nuclei, calculations;

estimate for energy-unresolved scattering, based on elastic scattering alone;

DWBA results; coupled-channel corrections; results for energy-resolved
scattering, and for other orientations.

I. INTRODUCTION

There has appeared in recent years an inter-
esting group of papers'™® on electron scattering
from oriented holmium. In this special and exper-
imentally very taxing application of the electron-
scattering method, the orientation of the deformed
i5Ho has the effect of holding the prolate nucleus
along the chosen axis. Consequently, the differ-
ential cross section reveals the radial shape of
the charge density along some selected radius,
rather than determining the spherical average
that is obtained with unaligned nuclei. The method
thus provides a valuable tool for more detailed
exploration of the shape of deformed nuclei acces-
sible to the method. The outcome of the experi-
mental and theoretical papers is unsatisfying,
however, in that there are disagreements among
them which preclude the drawing of definite con-
clusions. The purpose of the present paper is to
reexamine this work, and to suggest a resolution
of some of the disagreements.

In the first experimental investigation on this
topic, by Safrata, McCarthy, Little, Yearian,
and Hofstadter! (which we shall call Stan-Y), the
orientation axis was the normal to the scattering
plane, customarily called the Y axis, and elec-
trons were scattered at 200 MeV over a range of
angles. In the second experiment, by Uhrhane,
McCarthy, and Yearian® (Stan-q), the orientation
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axis was fixed in the scattering plane, and elec-
trons of various energies from 160 to 460 MeV
were scattered at a fixed angle which made the
axis also the direction of the nuclear recoil mo-
mentum g.

Theoretical investigations on this topic have
been summarized by Uberall.> We make specific
reference only to work which ventures numerical
values for the quantities measured in Refs. 1 and
2. The first numerical prediction was made by
Penner,? in an unpublished Born-approximation
calculation. For holmium, however, with Z =67,
proper inclusion of the distortion of electron wave
functions by the monopole Coulomb field is es-
sential. The first distorted-wave Born-approxi-
mation (DWBA) calculation was reported by
Wright and Onley.> They calculated the expected
effect of orientation in several directions, in
anticipation of Stan-Y and experiments with other
axes. Somewhat later, a similar investigation
was reported by Greenstein,® who gave a detailed
description of calculations with the Born approxi-
mation and with an approximate version? of
DWBA. A recalculation of the Wright-Onley work,
to correct a phase error, was reported by Wright®
(W1), who also made comparison with Stan-Y.
This is the first calculation of the effect which
makes no approximations beyond DWBA. We show
Wright’s comparison of theory and experiment in
Fig. 1(a). The theoretical effect of orientation is
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seen to have qualitatively the same angular de-
pendence as the measured effect, but is apparently
larger by about a factor of 2. The reference Stan-
q also included a later theoretical calculation by
Wright® (W2). The results are shown in Fig. 1(b).
Again the theoretical effect is larger than the
experimental one, but now by a bigger factor.

Besides the theoretical-experimental discrep-
ancy in scale, which makes it difficult to use the
experiments further, there is a regularity which
all of the theoretical calculations share, but which
Stan-Y and Stan-q do not. These experiments may
be thought of as exploring, respectively, the
equatorial and the polar radial dependence of the
charge density. The assumption that the defor-
mation of holmium is predominantly quadrupole
gives the result that the changes in radius from
that of the undeformed shape, between equator and
pole, are in the ratio -1 to 2. The magnitude of
the first bump (or dip) of the alignment effect
should thus also be approximately in the ratio -1
to 2. It is to be observed from Fig. 1 that the
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FIG. 1. (a) Orientation effect [Eq. (1) of text] for
orientation in the Y direction perpendicular to the scat-
tering plane for 200 MeV electrons on holmium. The
experimental points are from Stan-Y (Ref. 1) and the
curve is from Wright (Ref. 8). (b) As in (a) for electrons
scattered through 36° at various energies and orientation
along the ¢ direction. Experimental points are Stan-q
(Ref. 2) and the curve is from Wright (Ref. 9).

theoretical curves W1 and W2 bear this ratio ap-
proximately, as do the calculations we shall re-
port, and we believe it to be a necessary result of
quadrupole deformation. [To the accuracy needed
to point up the discrepancy, the orientation effect
depends only on g (the recoil momentum), and the
horizontal scales of Figs. 1(a) and 1(b) have been
chosen to have the same g scale at small angles.]
It is evident from Figs. 1(a) and 1(b) that the ex-
perimental values for the orientation effect at
around 30° or 180 MeV depart somewhat from the
ratio -1 to 2. While it is possible that a nuclear
model of sufficient peculiarity (e.g., deformation
not of quadrupole character) could reproduce the
experimentally observed ratio Ay : Ag, such a
model would be in violation of the well-established
quadrupole-deformed rotational model of such
nuclei. We summarize the comparison among the
experiments Stan-Y, Stan-q, and the theories W1
and W2 as follows: W1 and W2 are consistent with
each other according to the —1:2 relationship but
the experiments Stan-Y and Stan-q are not; and
the experiments are not in agreement with the
theory. Our purpose in this paper is to reexplore
the theoretical part of this paradox.

The project was envisaged initially’® as an ex-
amination of possible coupled-channel effects in
electron scattering from aligned nuclei, using
our computer program ZENITH.!! Nuclear orienta-
tion introduces an interference of amplitudes not
encountered in the usual scattering from randomly
oriented nuclei, and thus provides a more strin-
gent test of various parts of the partial-wave anal-
ysis. It is fairly clear, however, that the dis-
crepancy between theory and experiment, of a
factor 2 at best, is much larger than can be ex-
pected from the particular dispersion effects which
a coupled-channel calculation includes, but which
a DWBA calculation omits. There are certain
other approximations and simplifications made in
Wright’s calculations®®° which we avoid, but they
also do not affect the results very much. The fact
that our calculated alignment effect agrees with
Stan-Y, while W18 does not, is a disagreement at
the DWBA level whose origin we do not under-
stand. We shall make plausible the size of the ef-
fect we obtain by relating it to elastic scattering
from a spherically symmetric charge distribution,
thus eliminating the possibility of recoupling er-
rors that the full DWBA calculation might possess.
We shall give enough information concerning the
amplitudes and factors obtained that checks with
other calculations of this effect should be fairly
straightforward.

In Sec. II the experimental alignment effect is
defined, and the assumptions made about the tar-
get orientation are stated. The nuclear model and
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its parameter values are given in Sec. III. An
estimate of the expected size of the alignment ef-
fect, based only on elastic scattering by a spheri-
cally symmetric charge distribution, is pre-
sented in Sec. IV. In Sec. V we establish that the
DWBA-type results of our computer program
ZENITH agree with those of other programs. Some
necessary properties of DWBA amplitudes are
briefly recalled in Sec. VI, and are applied in
Sec. VII to ZENITH amplitudes. There we present
alignment-effect results and make detailed com-
parison with the earlier calculations. Sensitivity
of the results to the particular nuclear model
used and an examination of their dependence on
recoil momentum at various energies are dis-
cussed in Sec. VIII. A complete coupled-channel
calculation is reported in Sec. IX and compared
with our DWBA results. Conclusions are sum-
marized and future work suggested in Sec. X.

II. EXPERIMENTAL MEASUREMENT AND DEFINITION
OF ALIGNMENT

The holmium nuclei are oriented by cooling the
single-crystal target and imposing an external
magnetic field.!”? The experiments do not resolve
elastic electron scattering from inelastic scatter-
ing to the low-lying nuclear excited states. The
quantities quoted are the differential cross section
for scattering from an unoriented target with unre-
solved elastic and inelastic scattering, called
0,(E,6), and the relative effect of orientation A:

A=0,(E,8)/0(E,6) -1, 1)

where o,(E, 6) is the differential cross section, un-
resolved in energy, for the oriented target.

We assume with W1 that the effect of orientation,
so far as a theoretical calculation is concerned,
is to populate unequally the eight M levels of the
spin-% nucleus, where M is the component of nuclear
spin along the orientationaxis, but that there is no
phase relationship among the M states. (In other
words, the density matrix of initial nuclear spins
referred to the orientation axis has elements whose
magnitude depends on the target temperature and
the level spacing but it is diagonal.'?) In terms
of theoretical differential cross sections o(IM
-~I'M’"), where IM and I’M’ refer to individual ini-
tial and final nuclear states, the effect of nuclear
orientation is obtained by calculating the oriented
cross sections ¢ol~ 7 for particular levels:

oI ~1)= Y PyoUM—~I'M"), (2)
M, M’

where P, are the initial-state populations, and
then the relative effect of orientation A for unre-

solved scattering is

A=Yy oI~I1/0,~1. 3)
Il

Here o0, is the result corresponding to 2, o,(I~1")
for unoriented unresolved scattering, i.e., that
obtained with P, =1/(21+1).

The method of population moments, details of
which are given in Appendix A, gives insight into
the manner in which the populations P, affect A.
The major contribution to A is from the 7=2 term
4A,. This moment is directly proportional to the
quadrupole part of the elastic scattering ampli-
tude, as we discuss later, and it is revealed by
the second-order nonuniformity in the M popula-
tion, measured by A,, the degree of alignment
(see Appendix A). Stan-Y' gives A, as 45%. W1
quotes populations P, which lead to A, =50.9%.
The temperature implicit in those populations may
be adjusted, while maintaining the relative spac-
ing of the levels, so that A, has the value quoted
in Stan-Y. The various populations are listed in
Table I. While a 10% reduction in A, reduces the
calculated A by about 10%, the change is not too
significant, since the uncertainty in A, is of order
+3%.13

While only a small correction, A, also contri-
butes to the measured A. It reveals the presence
in elastic scattering of [/ =4 interactions, as well
as /=2 interactions in second order. It is thus,
in principle, a different probe of the deformation
of the nucleus, in the same way that I =4 excita-
tions add to our knowledge of the structure of
even-even I, =0 nuclei. The coefficient R, is to
some extent adjustable, with respect to R,, by
changing the temperature of the targets.

III. NUCLEAR MODEL FOR {$°Ho

The part of the nuclear level scheme of interest
here is shown in Fig. 2(a). We consider only the

= rotational band of levels built on the ground
state =7 and shall be mainly concerned with the
levels reached from the ground state directly by
(one-step) quadrupole interactions, i.e., =% and
Y. The levels are regarded as the rotational
eigenstates ¥,,, of a rigid spheroid of charge
p(E,z;7):

p(€,2; F) = pyodcll + Boc Y30(R,,)], 257}, (4)
where the intrinsic shape p,,,(c,z;7) is the Fermi
type

Pt (c,z;7) x {expl(r - c)/z] +1}7. (5)
The Coulomb multipole potentials which effect the

electron scattering are generated by the multipole
moments of p(&,z;¥):
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TABLE 1. Populations quoted by Wright and Onley,
Refs. 5 and 8, normalized to an alignment A,=50.9%,
and those used in the present work, normalized to the
A, value quoted in Stan-Y (Ref. 1). For the latter values,
the coefficients C,, A, (see Appendix A) are given for
all of the orders of alignment relevant to the present
work.

Populations

Refs. Present Alignment

5and 8 work coefficients
M Py Py, ™ R, A,
1 0.561 0.523 0 0.35¢ 1.000
3 0.254 0.259 1 0408 0.756
i 0.110 0.123 2 0.242  0.448
% 0.046 0.056 3  0.092 0.213
-3 0.018 0.024 4 0.023 0.082
-3 0.007 0.010
-2 0.003 0.004
-I 0.001 0.002

p@,2;T)=VET X p,(N)Y (2, (6)

1

[We insert the factor V4w so that py(v) and p,,, are
comparable in magnitude.] For given values of ¢
and z, the one remaining parameter 3,, may be
determined by comparison with the strength of the
quadrupole transition I =~ 4 measured by Coulomb
excitation?®

B(E2;1 ~£)=2.41 X10% % fm*. (7
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FIG. 2. (a) Nuclear level scheme for g7Ho (K=21 rota-
tional band). (b), (c), (d), (e) Coupling schemes used in
the coupled-channel program zeNITH (see text).

The strength is equivalent to an intrinsic quadru-
pole moment of Q,=7.56b, defined in the custom-
ary way as

Qo=241/91"2 [ d% P0(&,2;0)Y0(6,).  (8)

For reasonable values of ¢ and z, the deformation
parameter g, turns out to be about 0.35, large
enough that the integrals involved in inverting the
expansion (6) must be performed numerically.
When this is done, it turns out that there is also
an appreciable hexadecapole deformation p,(7).
The latter quantity would of course, be strongly
affected by the inclusion of a deformation param-
eter B, in p(¢,z;T), an additional variable we have
not included in our model.'’* The theoretical DWBA
calculations of Wright and Onley®'®® used the
small-8 approximations,

po(¥) = py(c,2;57) (9a)

and
pz(‘}’) = - Bzcy[apmt (C y 25 1’)/31’], (Qb)

which, as can be seen from Fig. 3, do not repre-
sent the functions accurately. (Part of this defect
is accommodated in Refs. 8 and 9 by taking a rath-
er large value for z.) Thus the determinations of
c and z reported by them, from fitting o, and the
approximate value of Q,=8b, are capable of im-
provement. Our object in the present paper is not
to make a fit to the electron-scattering data, how-
ever, but rather, to repeat Wright’s calculation
and then, in view of the discrepancy between our
result and his, to see how close to the data one
comes with more recently based estimates of ¢
and z. (The more time-consuming process of
fitting will be considered at a later date.) For this
estimate, there is now available information on ¢
and z for a neighboring deformed nucleus }32Sm!7!®
This suggests another set of parameters c and z
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FIG. 3. Monopole and quadrupole charge distributions
obtained for the shape described in Sec. III. The dashed
curves are obtained by the small-p approximation [Eq.
(9) of the text], the full curves by numerical calculation.



2328 D. G. RAVENHALL AND R. L. MERCER 13

as a starting point for §°Ho, namely the samarium
value of z (=0.6014 fm), and the samarium value
of ¢ scaled upby A3 (=5.917 fm). The various sets
of parameters c, z, 8 used by Onley and Wright,
and now ours, are listed in Table II together with
the @, and B(E2; % - 3) that they yield.

We give here for completeness some well-known
results concerning the rotational model.'®* An
even-even nucleus with the expected level scheme
of Fig. 2(d) and intrinsic quadrupole moment @,,
has as a measure of the quadrupole transition
strength

B(E2;0~2)=(5/167)e2Q,2. (10)

For quadrupole transitions among levels of the
real 15°Ho, with the level scheme of Fig. 2(b), the
strength is given by

B(E2;I1~I')=(5/16me?Q? ¥1.2, (11a)

where the factor y,,, is a Clebsch-Gordan coeffi-
cient®

v ={UK20|I'K). (11b)

K is here equal to the ground-state spin 7, g=§-, and
the factor y,, is equal to 1 in the case I=0~1=2
(K=0). A simple property of the Clebsch-Gordan
coefficients produces the sum rule

Y B(E2;1-I')=(5/16me’Q.?,
r

which for scattering in the DWBA means that the
total quadrupole cross section depends only on
@y, and not on the nuclear spins. This result was
first observed by Schiff.*

The relationships given specify uniquely the
nuclear model and the diagonal and transition
multipole charge densities we shall use.

IV. ESTIMATE OF EFFECT

In this section we estimate the effect of align-
ment, by relating it to properties of only elastic scat-
tering from a spherically symmetric chargedistri-
bution. The physical considerations involved give
useful insight into the more general problem, and

small nuclear deformation, a physically uninter-
esting but computationally useful limit.

Our estimate is based on the following observa-
tion concerning the Born-approximation scattering
from a particular quadrupole-deformed nuclear
shape. To lowest order in 8, the approximations
(9) for the deformed charge distribution are actual-
ly equivalent to a shape somewhat different from
Eq. (4), of the form

P,«(E’Z§;) =Png{c,2;7’[1 - ﬁzcyzo(gc,)]}o (12)

This has the property that along the direction T,
the radial variable is contracted by B,.Y,,(%2,,),
so that the resulting charge profile is dilated by
this factor. The Born-approximation form factor
corresponding to a recoil momentum 6=E¢ - E,,

FE,8=(1/ze) [ a*re ™ p &2, (13)

depends on the relative orientation of § and €, the
axis of the charge distribution. If we expand it in
spherical harmonics in a form similar to the ex-
pansion (6) for p,:

F@E,8=VE1 3 F,(@)Y,0(2,), (142)
1

then the monopole and quadrupole form factors
are, respectively,

Fo(q)=(41r/Ze)fm'rzdrpno(r)jo(qr), (14b)
0

F,(q)=—-(41/Ze) f”r"'drp,.z(r)jz(qr). (14c)
(1]

For small §,., p, o and p, , may be approximated
by Egs. (9). An integration by parts, and the re-
lationship d/dx[x%,(x)]= - x 3j5(x), enable us to
rewrite F,(g), so that in the vector recombination
we can obtain

F(¢,q) 41 r2dr pyg(c,z;7)
ZeJo (15a)

X[Go(@7) + B2 20(Reg)a7it(a )]

3
the estimate itself is accurate for the case of =[1+ BYZO(QW)qa—q ]Fm(‘l ), (15b)
TABLE II. Charge distribution parameter values employed in the deformed Fermi shape
(see Sec. III).
c Q B(E2; £+—3)
Calculation (fm) B () (e*fm?)

Wright & Onley Ref. 5 6.18 se 8.00

Wright Refs. 8, 9 6.12 .. 8.00 oo

Present work 5.917 0.6014 0.346 7.56 2.41x10*
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where F,,(q) is the form factor of the undeformed
shape p,,,(c,z;7). This relationship is the expan-
sion to first order in §,,, but to all orders in g,
of

F(E,8) =F,al1+8,.Y,0(2,)]} (16)

The final expression is the form factor of the
shape p,.. with a fixed radial dilation of magnitude
BzeY20(8?,,). In other words, in Born approximation
the scattering from this particular deformed shape
depends only on the radial profile in the g direc-
tion, and could thus be calculated for a particular
4 by using the spherical shape

peaulv('r) < pylc’s2"57), (17a)

¢’ 2" =c,z[1+B,,Y5(8R,,)], (17b)

properly normalized to total charge Ze.

We wish to exploit this idea to examine holmium
scattering, where the Coulomb distortion of the
electron wave functions is important. A major
part of the effect of Coulomb distortion can be
simulated, however, by calculating Born-approxi-
mation form factors at an effective ¢ value of the
form

qeft=[1[1+(4/3)zez/CEo]. (18)

Clearly, this modification does not interfere with
the Born-approximation relationship we have just
obtained. Thus to lowest order in B,., but to all
orders in ¢, and to some extent for all Z, we may
replace electron scattering with recoil momen-
tum q from a fixed deformed shape by scattering
from a spherically symmetric shape with the
same radial profile, as measured in the § direc-
tion. At this stage, we shall revert to the shape
(4), preferred for analyzing experiments's be-
cause its skin thickness is angle independent, even
though the relationships we have derived will now
only hold to some further degree of approxima-
tion.

A physical nucleus, for which only the projec-
tion M of the angular momentum 1 along the align-
ment axis is controllable, presents to the incident
electron a somewhat smeared-out picture of the
fixed object whose scattering properties we have
discussed.?® For a classical spheroid rotating
under the influence of an external (magnetic)
field, i precesses about the field axis 2, and the
symmetry axis Z’ of the deformation precesses
aboutT. For a static physical nucleus, defined
to be the classical deformed charge rotating in
only one eigenstate I, M, K of total angular mo-
mentum and momentum components along £ and
2’, these precessions have the effect of reducing
the Born-approximation quadrupole form factor
by the Clebsch-Gordan coefficient factors

(IM20 |IM) and (IK20|IK), respectively. (A clas-
sical time averaging of the motion produces tri-
gonometic expressions which are approxima-

tions to these proper quantum-mechanical factors.)
In the light of these extra factors, we modify the
spherically symmetric shape (17) used to estimate
scattering along q, for a completing aligned nu-
cleus M =I, by replacing (17b) with

c” =c[1+ 20 |INHUK20 |IK )B,.Y,0(2,,)].  (17c)

We leave the skin thickness z unchanged, in ac-
cordance with expression (4), and denote by 0.
the partial-wave cross section to be obtained with
this shape. The unoriented cross section is esti-
mated by o, the partial-wave cross section ob-
tained with p,,,(c,z;7). The further property of
the physical holmium scattering, that of having
only partial alignment to a degree A, (see Sec. II),
involves multiplication by A, of the alignment ef-
fect for complete orientation, so that finally, our
estimate of the observed effect is

A=Ay (0m/0,~1). (19)

Because of the modifications in ¢” due to the nu-
clear motion, the estimate is justified only as a
representation of the monopole-squared and the
monopole-quadrupole interference terms of the
physical scattering situation. It is thus to be be-
lieved only at small g values, where the quadru-
pole-squared terms are not important. (It could
be modified to improve on this last deficiency, but
an estimate of the small-g behavior is sufficient
for our present purposes.)

For a general orientation direction our estima-
tion method would be tedious, but for orientation
along g, 6.,=0, while for orientation perpendicular
to the scattering plane, 6, =7 for all §. Thus in
both of these cases, one partial-wave calculation
with a spherically symmetric p,,,, of appropriate-
ly chosen radius is all that is needed. The well-
known dependence of the small-q cross section on
the charge radius, that a smaller radius results
in a less rapidly falling cross section, then allows
us to predict from Eq. (19) that A will be positive
at small g. Thus simple considerations of this
kind would have given an immediate indication of
an error in the results of Ref. 5. The same argu-
ment relates A, : A, to the relative changes in ra-
dius at the equator and the poles of the deformed
shape, and thus provides a physical explanation of
the — 1:2 ratio of these quantities. This ratio is
obtained by all calculations, but not by the experi-
ments.!’?

It is a simple matter to apply the method to
holmium. To obtain the values of ¢” according to
Eq. (17) we use the nuclear model parameters
contained in the third row of Table II. The polar
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and equatorial half radii of p(¥) in this case are
different from the undeformed values by 22% and
-11%, respectively. For physical holmium in the
M =1 state, these values are reduced by the
Clebsch-Gordan factors of Eq. (17¢) to 10.2% and
-5.1%. Thus for orientation in the Y direction,
the cross section o, of Eq. (19) is a one-channel
zero-spin partial-wave cross section for 200 MeV
electrons on a Fermi shape with a half radius c¢”
decreased by 5.1% from the value given in Table
II, and with unchanged skin thickness. Plotted in
Fig. 4 is the resulting A, obtained from Eq. (19)
with the experimental value A,=0.45, and also the
corresponding result for orientation in the g direc-
tion. The crudeness of the estimate excuses the
fact that A is obtained at 200 MeV and then is
plotted as a function of energy, at 6=36°, under
the assumption of dependence only on the effective
wave number g¢,,, (a procedure discussed in detail
in Sec. VII). In the figure we show also Wright’s
results.®?

When we bear in mind that the validity of the
estimate is limited to ¢ values small enough that
the quadrupole-squared term is unimportant [which
from Fig. 5 correspond to 6 <20°], the comparison
suggests that the results on Ref. 8 are too large
in this ¢ range by about a factor 2. Nothing def-
inite can be deduced at larger ¢ from this compar-

a0

——NAIVE ESTIMATE Ho
30k -=~WRIGHT'S DWBA

(/0 1) (%)

A

FIG. 4. Orientation effect [Eq. (1)] for electrons on
holmium nuclei oriented in the ¥ and ¢ directions. The
dashed curves are those of Wright (see caption to Fig. 1)
and the full curves are from the estimate of Sec. IV.

ison, however. As a check on the estimation
method itself, we have also repeated the above
calculation for the case where g,  is reduced by

a factor vI0. At 30° and 200 MeV we obtain A,
=—2.67%. The DWBA method described in the
next sections gives the value —2.64%. Thus, under
conditions needed to justify it (small g and small
B) the estimate is reliable. It is also very useful
as a simple intuitive picture of the scattering pro-
cess.

V. COMPARISON OF ZENITH WITH OTHER PROGRAMS

The heart of our method is the coupled-channel
program ZENITH. Its structure and mode of opera-
tion are discussed elsewhere.!!'2* Basically it
functions in the same manner as a single-channel
program for elastic electron scattering, except
that for each value of the total angular momentum
there is a separate channel for each allowable
combination of electron and nucleus angular mo-
mentum, as described in Appendix B. The num-
ber of the coupled channels is thus, for large elec-
tron angular momentum, just Ne=Z;n(ZI,,+1) where
I, is the spin of the nth nuclear state. The elastic
and inelastic differential cross sections are ob-
tained by appropriately combining the asymptotic
parts of the channel wave functions. Except for
numerical uncertainties, the cross sections in-
clude the effect to all orders of the inserted cou-
plings between nuclear states. The method is thus
quite different in operation and more inclusive in
scope than the distorted-wave Born approxima-
tion. The latter as customarily used includes only
one non-monopole coupling, between the ground
state and one excited state, and calculates the in-
elastic cross section due to the coupling in lowest
order only. Nonetheless, the difference in results
between the two methods amounts in practice to a
relatively small correction. Since our results are
in disagreement with those of Wright, who used the
version of DWBA contained in the Duke program,*
it is incumbent on us to show first of all that under
appropriate conditions our program ZENITH is in es-
sential agreement with the Duke program. We also
make comparison with the DWBA program
HEINEL.®

We use for comparison the =2 amplitude ob-
tained in holmium at 200 MeV, the energy of the
experiment Stan-Y. For ease of definition the
quadrupole transition charge density is taken to
be the small-g shape, Eq. (9b), associated with
the monopole Fermi shape, Eq. (5), with ¢=5.917
fm, 2=0.6014 fm. The quadrupole strength used
corresponds to @,=7.56 b. These are the param-
eters of the third row of Table II. The ZENITH
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coupling scheme is that of Fig. 2(e), and all calcu-
lations assume zero excitation energy and zero
electron mass. No transverse electric or magne-
tic multipoles are included. Other values needed
to specify the calculations completely are listed

in the captions to Table III, where we list some
differential cross sections obtained from the three
programs.

The accuracy of the present ZEKITH calculations
is limited by the number of terms we can include
in the Legendre series for the inelastic ampli-
tude. The coupled Dirac equations are solved up
to total angular momentum F =%, which for cou-
pling with the spin I’ =2 of the nuclear excited
state includes completely electron angular mo-
menta up to /=32. The uncertainty quoted is esti-
mated from the behavior of the inelastic cross
section as this limit is varied. There is not a
corresponding uncertainty of this magnitude in
the elastic cross section since the elastic phase
shifts may be supplemented by the known point
Coulomb phase shifts. (In a new version of
ZENITH nearing completion, this presentlimitwill
be extended considerably.) The HEINEL cross
sections in Table III are the limiting value ob-
tained by varying the number of partial waves up
to a maximum of 40 at which value there is no
further variation in the digits quoted. The Duke
code quotes cross sections and errors. They are
calculated for 40 partial waves, and the errors
quoted are so small that they do not affect the
digits we give. The close agreement among the
three inelastic cross sections listed in Table III
supports our belief that differences in results for
oriented nuclei between us and Wright® cannot be
due to differences in physical input, or in numer-
ical accuracy between ZENITH and the Duke code.
Compared with the unoriented cross sections of

this section, however, the amplitude recouplings
involved in A afford many opportunities for error,
most of which we have experienced during the
process of arriving at our present results.

As the two columns of elastic cross sections in
Table III show, ZENITH’s results may differ from
other calculations (in this case, one-channel
partial-wave results) when couplings to other
channels are important. The column labeled R,
gives the percentage effect. The column labeled
R,,.,, gives an estimate of the corresponding ef-
fect for the inelastic scattering. It is seen that
for the coupling scheme used in this comparison,
with no diagonal quadrupole potentials, the chan-
nel couplings do not affect the inelastic cross sec-
tion to the accuracy we report it here. Thus they
do not interfere with the comparison we make with
the DWBA calculations.

V1. DEPENDENCE OF DWBA AMPLITUDES
ON NUCLEAR SPIN

As a preliminary to our use of ZENITH amplitudes
to calculate the alignment effect, we recall some
properties of DWBA amplitudes.

The DWBA amplitude relevant to an excitation
of multipolarity / may be written

protins (09)= 3 [ 45 )Y @ )

X fdaxl. . .xA\I,f'M'(xl. . .xA)

XZv(z) %,

Xy (00 x )

(20)

TABLE III. Values obtained for monopole and quadrupole differential cross sections from the Duke code (Ref. 24),
the program HEINEL (Ref. 25), and the coupled-channel program zenrtH, in fm?/sr. The nuclear model is the deformed
Fermi shape, Egs. (4) and (5) of the text, treated in the small-8 approximation, Egs. (9), and using the parameter val-
ues contained in the third line of Table II. From various ZENITH runs, the coupled-channel corrections to elastic poten-
tial scattering R, and to DWBA, R, _,,,, are also given (see Sec. VII).

ZENITH ZENITH ZENITH
HEINEL Duke inelastic R, oy elastic elastic R,
0° DWBA DWBA two channels %) two channels one channel %)
15 5.00(-1) 4.99(-1) 4.99 £0.02(-1) -0.03 1.3216(2) 1.3216(2) -0.0
30 8.44(-2) 8.44(-2) 8.42 +0.03(-2) -0.05 9.976(-1) 1.0006(0) -0.3
45 2.59(-3) 2.59(-3) 2.58 +0.01(-3) —-0.06 2.966(-2) 2.932(-2) 11
60 7.03(—4) 7.02(—4) 7.00 +0.03(—4) -0.08 1.898(-3) 1.870(-3) 14
75 6.32(=5) 6.33(=5) 6.32 +0.03(—5) -0.13 1.142(~4) 1.144 (—4) -0.2
90 1.165(—5) 1.163(=5) 1.154+ 0.007(-5) -0.02 3.277(-5) 3.193(=5) 2.6
105 5.16(—6) 5.15(—6) 5.16 +0.02(—6) —-0.12 1.325(—6) 1.366(—6) -3.8
120 3.28(—6) 3.24(-6) 3.36 +£0.02(—6) -0.19 7.739(=T7) 7.708(=T7) 0.4
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The functions i are positive-energy Dirac spinors
for the incoming and outgoing electrons, properly
distorted (from their plane-wave parts) by the
monopole interactions with the charge distribution
of the initial and final nuclear states I and I’. The
subscripts m,m. on ¥ indicate the spin-directions
of the upper components in the asymptotic part of
the wave, far from the scattering center. The ¥
are Schrodinger A-body wave functions for the
nucleus. The magnetic quantum numbers all refer
to some fixed axis, as yet unspecified. We are not
concerned here with the dependence of f on 6, ¢,
the electron-scattering angle, but only on the nu-
clear-spin coordinates I, M, I’, M’, on the elec-
tron spins mg, m;, and on the direction in space
of the quantization axis. The Wigner-Eckart the-
orem applied to the nuclear matrix element gives
for its entire dependence on nuclear spins the
Clebsch-Gordan coefficient expression
(IMIm |I'M")/(2I'+1)'/?, where the square root
factor is needed because of time reversal invari-
ance. This dependence is an automatic conse-
quence of the DWBA assumption, but for our am-
plitudes, obtained by a quite different calculational
procedure, it is a useful check on our methods.
Moreover, it allows us to approximate I =5 calcu-
lations by others of smaller dimensionality.
ZENITH uses a partial-wave approach in which the
chosen axis is that of the incoming electron, not
a direction of interest for comparison with the
present experiments. The amplitudes f™s:¥ims M
which it produces, as described briefly in Appen-
dix B, are to be used only in the combination

PMMY , MIMP) o2 3 fmsbom (6% f ok (g),

'
mgMg

(21)
which is the nuclear-spin density matrix. p is
normalized to have unit trace, as usual, and it in-
volves averaging and summing over initial and final
electron spins, since the electron spin is not ob-
served. To obtain the amplitudes and the nuclear-
spin density matrix corresponding to some other
direction of quantization—the alignment axis of
interest—it is a simple matter to superpose the f
amplitudes with the appropriate D functions®® for
rotation of the nuclear-spin axis:

. - .
£z Urimsiy = 37 DEI(@) f e ims DU, (D).
MM

(22)

The rotated density matrix p,, (M M) ;MM ") is ob-
tained immediately by using Eq. (21). Since the
electron spins are all summed over in p_,, it is a
simple matter of completeness to show that the

electron spins do not need to be rotated.

In these arguments we are concerned only with
rotations in one frame of reference—the center-
of-momentum frame—and do not use Lorentz
transformations. These considerations are thus
formally the same as for nonrelativistic incident
particles. The relativistic nature of the problem
is built into the calculation of the amplitudes f in
a basic way, of course. It affects the DWBA ex-
pression, Eq. (20), in the manner in which the elec-
tron matrix element is evaluated, in that the ap-
propriate small-component parts of ¥ must be in-
cluded. The dependence on electron spin is sim-
ple. Without any approximation, the general am-
plitudes for this process, with the beam direction
as quantization axis, satisfy the parity relationship
expressed in Eq. (B6a) of Appendix B. We can
obtain the m =— 7 amplitude from the m =3 ampli-
tude by using this symmetry. All calculations we
report here were made, for speed and simplicity,
under the approximation of zero electron mass.
The resulting helicity conservation property of the
electrons means that the Z-direction electron spin-
flip amplitude f1/2#i-1/2¥’ jg simply related to the
nonflip amplitude f!/24:1/2¥" 3ccording to Eq. (B6b).
There is thus essentially only one independent
electron-spin amplitude, - 3.

VII. DWBA CALCULATION

The ZENITH calculation of Sec. V provides us not
only with inelastic cross sections, but with an al-
ternative way to obtain DWBA monopole and quad-
rupole scattering amplitudes. There are higher-
order effects in the ZENITH amplitudes, indicated
by the quantities R,, and R,,, . ,, in Table III, but
they are small. We therefore use the ZENITH am-
plitudes to make a calculation of the alignment ef-
fect equivalent in scope to the DWBA calculations
of Wright and Onley.5:%°

Referring to Sec. V and Appendix B we use
ZENITH with the coupling scheme of Fig. 2(e). The
Coulomb monopole potentials ¢i!(r) = ¢2(7) of Eq.
(B4), generated by some charge density p,(r), are
the only interaction diagonal in the nuclear states.
The Coulomb quadrupole potential ¢.*(7), due to
a charge density p,(») normalized to the intrinsic
quadrupole moment @,, is used to couple the 0+
and 2+ states (with no diagonal quadrupole interac-
tion in the 2+ state). The arguments of Sec. VI
allow us to extract monopole and quadrupole ampli-
tudes @}, A=0,2, from the ZENITH amplitudes
fIM: '™ (we suppress the inessential electron spin
indices, and insert instead the spin value of the
nuclear state) according to the relationship

FIMirM(g) = Z G MO)IMA II'M')(ZI' +1)1/2,  (23a)

Ap
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From the elastic scattering amplitude, I=1'=0, we
obtain

£9:930,0(9) = @9( ), (23b)
and from the inelastic amplitude, =0, I'’=2,
FO0H(6) =@ 2(6)/VE by, (23c)

A rotation from the beam (z) axis may be carried
out as explained in Sec. VI, so that the magnetic
quantum number p may be taken to refer to the
chosen alignment axis. The DWBA-like amplitudes
g™ (g) for physical holmium, calculated accord-
ing to the coupling scheme of Fig. 2(c), and includ-
ing the factors y,, contained in Eq. (11), are then
given by

g™ (9) = GO()(IMOO | I' M*) + @, 2(8)y 1 (IM2 11 | I'M").
(24)

The orientation moments of the differential cross
sections for the aligned nucleus o!*”, as defined
in Appendix A, are

o 1(6)= 3 (= 1)I4(IMI - M| n0)|g™ir'(p) |2.
MM

The quantity o~ (6) is just (2I+1)'/2 times the
unpolarized cross section for the indicated transi-
tion, so it follow very simply that o,, the unpolar-
ized unresolved cross section, is given by

0u(8)= 3 Ryal-1'= |a°lz+% ezl (26)
r uw

The disappearance of I in this expression is a re-
sult of the Schiff sum rule for rotational excita-
tion.?® The general moment ¢!*” is easy to calcu-
late. It is

ol ()= E (- 1)"2"“'&’,"(9)*@:‘:,{2 1 1}
Aurrp I x

(27)
X (= p! ! [ 70Yy 1 p(N)y 1),

where Ap and Ay’ run over A=4 =0 (monopole)
and A=2, - 2<p<2 (quadrupole), and {+**}is a
six-j symbol.?® We also indicate by v,,(\) either
Y (X=2) or 1 (Ax=0). The order 7 of the moment
is restricted to 7=0,2,4 by the Clebsch-Gordan
coefficient. For clarity we expand this sum for

(25) the case 7=2, the dominant term:
ol T(6)=2/[5(2I+1)]*/2Re(G°*@,2)y 1101
’ 222
- (= 1) (202]2— |(i_22\2- i622|2+§|6_lzlz+%ialz|2)(%)1/2{ }7",2_ (28)
rriI

The unresolved cross section for oriented holmium o,, as given by the A=2 moment, simplifies to become

0o(0) =~ D R,0%1(6)
"

7=0,2

=g, +R,{2/[5(2I +1)]'/2Re(G°*@?)

+2/[TVB2I+ 1) /2)(| @2 [ - @2 2 - | @2 |2+ 5 @2 2 + 5| @.,? (M)} ar20 | 1) (29)

from which we may calculate A immediately.

At this stage we may compare the interference
term with the results of the estimate of Sec. IV,
so far as the inclusion of all the proper factors
is concerned. For this purpose it is sufficient to
consider the Born-approximation limit. The aver-
age over alignments of the Born-approximation
cross sections of Sec. IV, Eqgs. (14), is easily
shown to be

Uu. Born= OMott {[Fo(q)]z + [Fz(q)]z}' (30)

By comparison with Eq. (26), it is then clear that
in the Born limit, G°- 0y, /2F,(g) and, for ori-

entation in the ¢ direction, @2~ V5 0y, /2F,(q)0 .

If Eq. (A4) is used to replace R, by A,, the actual

r
degree of alignment, we obtain, up to the mono-
pole-quadrupole interference term in Eq. (29),

Uo. Born = ou. Born+ oMottAzz‘/s—Fo(q)Fz(q)(alzo III))2

~ Oport[Fol@) + A,V Fy(g) ({1120 [ IR, (31)

This result says that for orientation in the g di-
rection, the effective form factor is just F (g)

+ A,V B F,(q)({I120 |II))?. The extra factors in the
quadruple term compared to the argument of Sec.
IV, Egs. (14), are all immediately identifiable as
proper to the scattering from physical holmium.
One Clebsch-Gordan coefficient comes from the
quantum-mechanical smearing due to rotation of
T about the alignment axis. The other is the re-
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duced matrix element associated with elastic scat-
tering. The factor A, is the actual degree of
alignment. The factor v'5 comes from the ratio
of Y,,(0) and Y,,. By this comparison, we believe
Eq. (29) to contain the correct numerical factors.

ZENITH amplitudes f obtained using the coupling
scheme of Fig. 2(e), such as those described in
Sec. V [Egs. (33b) and (33c)] give us monopole and
quadrupole amplitudes @°, G 2. A superposition
of the @’s is obtained from the quite different
scheme of Fig. 2(d) with =1, from which the
separate values of G°, @,% may be obtained by the
inverse relationship to Eq. (23a). The agreement
among the different sets of @ so obtained (to an
accuracy limited by small higher-order effects)
demonstrates an internal consistency which checks
the algebra of our physical input. The agreement
with DWBA codes documented in Sec. V checks
the overall scale of the quadrupole effects. The
phase choices associated with the f amplitudes are
checked by the fact that when the nucleus is sub-
jected to rotations according to Eq. (22), the
cross section of Eq. (29) exhibits the angular de-
pendence expected from Sec. IV. These, and the
checks on the physical factors contained in Eq.
(31), leave no possibility for ambiguity or error
that we are aware of.

We are now at the stage where we can repeat
Wright’s calculations.®*® The model used is the
small-g approximation to the nuclear model of
Sec. III, as contained in Egs. (9). The parameter
values are those contained in the second line of
Table II, with an alignment factor A,=0.509. For
scattering from holmium at 200 MeV, the mono-
pole and total quadrupole cross sections nor-
malized to @,=8.0 b are shown in Fig. 5. Their
sum, the unresolved unoriented cross section o,
is also given, and compared with the Stan-Y data.!
The agreement with Fig. 1 of Ref. 8 is complete,
as we expect from the agreement in Table III. The
orientation effect we obtain for these parameter
values is shown in Fig. 6, and is compared with
the results reported in Ref. 8. There is consider-
able difference between the two curves. The dis-
crepancy is about a factor 2 around §=30°, but in
detail, the curves cannot be reconciled by any
such simple manipulation as multiplication by a
constant factor.

We do not believe that there are any significant
errors due to numerical procedures in our result.
We have examined, of course, the effect on A of
the error quoted in Table III in our ZENITH calcu-
lations. It is associated with a necessary trunca-
tion of the Legendre series, and after calculating
A for various limits on the series, we find an ef-
fect too small to show on the graph. The possible
contributions due to higher-order effects in our

1 T T T T T
Ho , 200 MeVv
o STAN-Y
1 MODEL : WRIGHT
0 UADRUPOLE METHOD: ZENITH DWBA]
162+ -
MONOPOLE
-3
= 10 —
N\
E
c ].0_4"‘ -
A
5
©
Tu
-5
10 -
168+
10-7 1 1 1 1 1

o° 20° 40° 60° 80° 100°  120°
8

FIG. 5. Differential cross section and its monopole
and quadrupole components for 200 MeV electrons on
unoriented holmium. The nuclear model is that em-
ployed by Wright (see Sec. III). The calculational meth-
od uses the DWBA method described in Sec. VII.

DWBA-like amplitudes, mentioned at the beginning
of this section, are not negligible. The coupled-
channel calculation described in Sec. IX contains
more fully the higher-order effects associated with
the rotational levels, however, and they are very

30 —— ZENITH DWBA Ho , 200 Mev
B 2
fof 3 stan-y y o \
.D
S0}
\b‘O

FIG. 6. Orientation effect for 200 MeV electrons on
holmium nuclei oriented in the ¥ direction. The nuclear
model is that employed by Wright (see Sec. III). The
dashed curve is that of Wright (Ref. 8) and the full curve
is the present version of the same calculation as ob-
tained according to Sec. VII.
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small compared with the difference exhibited in
Fig. 6.

This discrepancy between the present results and
the DWBA calculation of Wright and Onley®® is not,
we believe, due to differences in physical input or
assumptions, or in the published formulas.5:8
Their expression for the DWBA quadrupole ampli-
tude, Eq. (6) of Ref. 5, appears to contain the same
dependence on nuclear spin I and I’ as does our
amplitude Eq. (24), apart from the phase factor
noted in Ref. 8. The comparison of ZENITH and
DWBA inelastic cross sections contained in Table
III, made for the case I=0-~1'=2 which involves
the full quadrupole strength of @,, shows that for
unoriented nuclei our calculational schemes pro-
duce identical answers. This verifies the proper
scale of our quadrupole effects. It therefore ap-
pears that formally the method described in this
section should parallel, and agree with, that of
these authors. We do not know why they do not,
but we believe our results to be correct.

Our numerical results may be reconciled with
those obtained using the plane-wave Born approxi-
mation. Figures illustrating Born-approximation
calculations appear in a number of the papers
cited, and they originate from Greenstein’s
article.’ Translated into our notation, Green-
stein’s expression for the oriented cross section
agrees exactly with what we give here. With the
simple shapes used in those calculations [po(r)

« §(R — 7), p,(7) = 6(r — R)], we obtain an orienta-
tion effect A, in complete agreement with that
given in Fig. 3 of Stan-Y.! To make a further
comment, we show both A and ¢, in Fig. 7. The
first maximum of A, occurs at about 6=33°, where
A,~19%. In this angular range the monopole part
of the Born approximation o, has a diffraction
zero at 6 ~40° which is only partially filled in by
the quadrupole scattering. On physical grounds

it is to be expected that any significant improve-
ment on the Born approximation will fill in the
Born diffraction zero, thus increasing o, and con-
sequently decreasing A. By comparing with Fig.
5, we see that the Born diffraction dip in o, at
around 30° is almost entirely filled in by partial-
wave calculations. The dashed curve in Fig. T(b)
represents crudely this effect. At 6=33°, o, ap-
pears to be increased from its BA (Born-approxi-
mation) value by about a factor 3. (We make the
comparison only crudely, since the whole DWBA
curve is shifted somewhat from the BA result.)
We expect that the DWBA values of A should be
reduced from the BA result at this angle by about
this same factor, and should thus be about 6 or
7%. This is in fact the value that we obtain.
Greenstein® attempted to include distortion effects
by using the Schiff-Tiemann approximation.” From

30

20}—

GREENSTEIN BORN APPROXIMATION
Ho , 200 Mev

10° 20° 30° 40°

PARTIAL WAVE
(APPROXIMATE)

(do/dQ), (fm/sr)
~

FIG. 7. The Born-approximation results of Greenstein
(Ref. 6). (a) Orientation effect, Y direction, 200 MeV
electrons. (b) Unoriented differential cross section (full
curve) with an estimate of the partial-wave result (see
Sec. VII).

Fig. 1 of Ref. 6, it appears that this approxima-
tion does not fill in the Born zero, and from Fig.
3 of Stan-Y,! it appears even to increase A in this
range. One may conclude that, while the Schiff-
Tiemann approximation has the attractive feature
of including some distortion effects analytically,
its linear-trajectory assumption omits just the
parts of the distortion that fill in the Born zero.
Its results for A are thus misleading. Penner’s
BA calculation,* with a nuclear model very similar
to Greenstein’s produces values for A that are
considerably smaller, in fact smaller than those
observed experimentally. We believe, however,
that in the development of the calculation, a factor
of 2I+1=5 has been omitted from Penner’s F,(q).
This may be seen by comparing his Egs. (20) and
(21) with our Eqgs. (30) and (31). If his results are
multiplied by 5, they are in reasonable agreement
with Greenstein’s at around 30°.
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VIII. SENSITIVITY TO CHARGE SHAPE

Since the analyses of Wright and Onley predate
recent experiments on deformed nuclei in the
region near holmium, it is interesting to see if
small but allowable changes in the nuclear model
have any appreciable effect. The ZENITH method
of the previous section, which we shall henceforth
call DWBA, is now applied to the nuclear model
whose parameters are given in the third row of
Table II. This model has intrinsic radii and sur-
face thickness compatible with recent measure-
ments on '52Sm,!” a quadrupole moment in agree-
ment with Coulomb excitation experiments,'s and
its py(») and p,(») are obtained by numerical inver-
sion of Eq. (10). The alignment parameter A, is
taken to be 0.45, the value quoted by Stan-Y.!

The ZENITH DWBA cross section ¢, and align-
ment effect A, are shown in Fig. 8, and A,

is compared with our result for Wright’s model.
The differences are significant, but quite small,
considering the very appreciable changes in the
multipole charge densities shown earlier in Fig. 3.
While our experience is too limited to give much
insight into the general shape dependence of A,
two features seem fairly clear: the first maxi-
mum is dominated by the quadrupole moment; and
the shape dependence becomes more pronounced at
larger angles, i.e., at larger recoil momenta. The
latter point will be important in obtaining a better
fit to the data at the large angles.

We have concentrated on the Stan-Y data, i.e.,
orientation in the Y direction, for computational
simplicity: partial-wave programs such as
ZENITH spend most of their time computing phase
shifts or channel matrices which depend only on
the energy, so that the angular dependence at one
energy (Stan-Y) requires very much less computa-
tion than the energy dependence at one angle (Stan-
q). The approximate dependence of form factors,
or cross-section ratios such as A, on the effective
recoil wave number q,,,, [Eq. (18)], rather than
on energy or angle separately, permits us to avoid
such a huge calculation for our present purposes.
Shown in Fig. 9 are curves of A, obtained at three
energies, E =150, 200, and 300 MeV, plotted
against ¢,,,. The quantity (4/3)Ze?/c appearing in
Eq. (18) has the value 21.7 MeV for the model we
use, the fully deformed shape whose parameter
values are given in the third row of Table II.
Circled on these curves are the three points which
correspond to the actual experimental situation of
scattering at 36°. The noteworthy feature of the
three curves is that they differ very little from
each other over the range of ¢ we illustrate. This
is not really surprising; the departure from q,,
dependence tends to occur at very large scattering
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FIG. 8. 200 MeV electrons on holmium, using modi-
fied charge-distribution parameters (third row of Table
II). The data is Stan-Y (Ref. 1), the curves are DWBA-
like results of our coupled-channel calculations accord-
ing to Sec. VII. (a) Differential cross section on unori-
ented nuclei, with also the monopole and quadrupole
components. (b) Orientation effect, ¥ direction. The
dashed curve is the shape used by Wright (Ref. 8), cal-
culated by us.

angles, and the angles involved in Fig. 9 are not
very large. The region ¢, <0.7 fm™ is clearly
well determined by our calculations. It is also,
unfortunately, significantly removed from the
experimental values of Stan-q® which are also
shown on the figure. The fact that at 6 ~30° our
model curves show a value of A : A somewhat
less in magnitude than the -1 :2 ratio discussed
in Sec. IV, while the experimental value is some-
what greater in magnitude than —1:2, accentuates
the difference. (Wright’s curves, shown in Fig.



13 ELECTRON SCATTERING FROM ORIENTED HOLMIUM 23317
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FIG. 9. Orientation effect for electrons of 150, 200,
and 300 MeV on holmium nuclei oriented in the ¢ direc-
tion. Curves come from DWBA-like calculations with
the coupled-channel program. The charge-distribution
parameters are from the third row of Table II. The data
is Stan-q (Ref. 2).

1, display the same feature.) These results, and
the physical arguments of Sec. IV, suggest that it
will be very difficult to fit simultaneously both
Stan-Y and Stan-q.

IX. COMPLETE ZENITH CALCULATION

The first few states of physical '**Ho, and the pos-
sible monopole and quadrupole couplings among them,
are shown diagrammatically in Fig. 2(b). We now
present a ZENITH calculation which includes all
of these couplings, for three nuclear states with
the proper spin values. The number of coupled
Dirac equations, N, <2 (2, +1), is 30. This is
twice as big as ZENITH’s previous biggest run,
the three-state run in ***Sm,*® where N,<15. The
computational effort in the coupled-channel scheme
increases even more rapidly than N, ez, so this run
tests ZENITH at a new level of severity. To mini-
mize the computation in nonessential features,
and partly for reason of necessity, the following
simplifications, also a feature of the other
ZENITH calculations reported in this paper, are
made. Electron mass and nuclear excitation en-
ergies are made equal to zero. These approxima-
tions were discussed in Ref. 22, for a very sim-
ilar nucleus, and found to be adequately accurate.
Only Coulomb multipole potentials are included.
For this particular nucleus and these particular
data (energies greater than 160 MeV and angles
less than 70°) neglect of electric and magnetic
multipole effects needs no further justification.
For computational parameters we used the follow-
ing values: the interval in k7 in integrating the
coupled radial Dirac equation was 0.02 out to a
radius kR, =16; relative accuracy of the asymp-
totic series evaluation, and thus of the partial-
wave amplitudes, was better than 1 X108, The
maximum value of F, the total angular momentum,

was 36. The computation, performed in 30 min
sections on an IBM 360-91 computer, took 23 h.
In the superposition of amplitudes to construct
the oriented cross section o,, we include both
o ¥ and ¢l" ¥, so that all appreciable effects due
to the quadrupole couplings shown in Fig. 2(b) are
contained. We show the resulting orientation ef-
fect A in Fig. 10, compared with the DWBA re-
sults of the last section. Numerical values are
given in Table IV. We observe that in A/, and to
a lesser extent A, there is a small difference
between the complete calculation ana DWBA which
increases with angle. The effect is not enough to
influence any comparisons with experiment that
we have made previously. In particular it does
not change the A, : A ratio around 30°. It is large
enough compared with the experimental errors,
however, that a detailed analysis will require its
inclusion. It represents the dispersive correc-
tions to the alignment effect A arising from these
low-lying nuclear levels.

X. DISCUSSION

The effects contained in the treatment of Sec. IX
are not negligible, but the improvement they make
to DWBA is quite small compared with the experi-
mental uncertainty. While any further discussion
concerning a fit of the nuclear model to the data
must include them, they need not affect the quali-
tative remarks we can make on the basis of our
present results, which have not been adjusted to
the data. Figures 8(a) and 8(b) show reasonable
agreement between the Stan-Y experiment! and a
reasonable nuclear model. There is thus no longer
the large discrepancy between theory and experi-
ment that appeared in Ref, 8. It is clear from Fig.
9, however, that the reasonable nuclear model is
still a considerable distance from the experiment
Stan-q.®> We recall the —1:2 ratio that A : A is

30 Fo , 200 MeV, NEW FERMI SHAPE
CALCULATIONS WITH ZENITH
20} — COUPLED CHANNEL

--DWBA

A= (oy /0y - (%)

FIG. 10. Orientation effect for 200 MeV electrons on
holmium nuclei oriented in the ¥ and the ¢ directions
using the nuclear parameters contained in the third row
of Table III. The full curve is the result of the coupled-
channel calculation of Sec. IX, and the dashed curve is
the DWBA calculation of Sec. VIII.
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expected to bear at low ¢, according to the esti-
mate of Sec. IV, because of the quadrupole nature
of the nuclear deformation. The calculations of
Secs. VII, VIII, and IX which successively im-
prove on that estimate to include other effects rel-
evant to the model and the low-lying nuclear
states, also exhibit this ratio. The fact that the
experimental values of A, : A, depart considerably
from it is thus very difficult to reconcile with
well-established nuclear properties. A final theo-
retical conclusion must await our anticipated de-
tailed fit to the data, with inclusion of charge mul-
tipoles higher than quadrupole. It would be very
helpful, however, if the authors of Ref. 2 could re-
consider the overall magnitude of their reported
A,. The rest of the discussion will be concerned
only with Stan-Y,! under the assumption that the
low-g behavior of A is understood.

It is clear from Sec, VIII, especially from Fig.
8b, that the detailed angle dependence of A, be-
yond its first maximum may be modified appreci-
ably by changes in the nuclear shape. From the
viewpoint of the rotational model, however, the
added flexibility of the parameters associated with
higher-multiple deformations requires more in-
formation than o, and the A for one orientation di-
rection can provide. A possible source of this in-
formation is the energy-resolved scattering from
the neighboring nucleus $°Er described in Ref. 16.
The nuclear model fitted to erbium is more com-
plicated than the one we have used, indicating a
somewhat different shape from that of Sec. III. A
mutual fit to the holmium and erbium experiments
is in progress.

A limitation on the information presently avail-
able is imposed by the necessarily rather restrict-
ed range of g covered by both the NBS'® and Stan-
Y! experiments. In anticipation of high-resolution
experiments, perhaps with oriented nuclei, at the
new higher-energy accelerators, we show in Fig,
11 the energy-resolved cross sections expected
for unoriented holmium at 200 MeV. (The model
parameters are those in the third row of Table II.)
Shown in Fig. 12 are the orientation effects pre-
dicted for this model, for resolved holmium ori-
ented in the Y direction. (The alignment degree
A, is taken as 45%.) For the inelastic transitions
A is large, fairly constant, but of opposite sign
for the two transitions., It is also to be noted that
the higher-order effects of our coupled-channel
calculations are relatively somewhat larger than
for the unresolved case. Our limited experience
does not yet allow us to mark the especially signi-
ficant or model-dependent features of these re-
sults, but we shall work on the problem.

We observe for future experiments that the ori-
entation effect A, is both difficult to measure (the
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FIG. 11. Differential cross sections for energy-re-
solved scattering of 200 MeV electrons from unoriented
holmium calculated by the coupled-channel scheme de-
scribed in Sec. IX.

fixed-angle variable-energy requirement introduc-
ing perhaps unsuspected energy-dependent correc-
tions) and a trial to analyze (partial-wave pro-
grams work at fixed energy). Measurement of A,
corresponding to orientation in the scattering
plane, perpendicular to the beam axis, achieves
almost the same effect as A , for small scatter-
ing angles. The expected behavior of A is indi-
cated, for the resolved elastic scattering, in Fig.
13. While on the basis of the estimate of Sec. IV
the ¢ direction, the long axis of the deformed nu-
cleus, provides conceptually the simplest physical
situation, the effects to be discovered in it are
contained to a different degree in A, or in some
similar orientation. Any fixed angle is trivial to
calculate for, In any case, the presence of higher
multipole moments in the deformation strongly
suggests that more than just two orientations
should be explored.

We acknowledge helpful conversations with col-
leagues, especially P. Axel and L. S. Cardman,
The development of the estimate of Sec. IV owes
much to discussions with R, L. Schult.

APPENDIX A: POPULATION MOMENTS

An equivalent and revealing way'* to describe
the nuclear orientation is in terms of the moments
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FIG. 12. Orientation effects for energy-resolved
scattering of 200 MeV electrons by holmium nuclei ori-
ented in the Y direction. The full curve is the result of
the coupled-channel calculation of Sec. IX, the dashed
curve from the DWBA method of Sec. VIII.

R, of the populations P, with respect to the ortho-
normal polynomials (-1)""#(IMI - M|R0). (Here
(jymyjm,lJM) is the angular momentum Clebsch-
Gordan coefficient as defined in Ref. 20.) Thus

Py=) R (-1F(IMI -MIa0)

R, =;PM(-1)"”(IMI - MIm0). (A1)

Associated with the population moments are the
corresponding moments o,(/ -I’) of the oriented
cross sections

o I ~1") = (=1Y"¥IMI - M |.70) oM ~I'M")
MM
(A2)

which possess convenient spherical-tensor pro-
perties. Moments of the relative orientation ef-
fect A, may then be defined by

A,:Z: o I~1")/0, -1 (A32)

30k Ho , 200 MeV
NEW FERMI SHAPE

A=’UO /a'u-l)(“/a)

FIG. 13. Dependence of orientation effect on orienta-
tion direction for 200 MeV electrons on holmium. The
three directions are X, in the scattering plane perpendi-
cular to the beam direction; ¥, the normal to the scat-
tering plane; and g, the recoil-momentum direction.

and the experimental orientation effect A is given
by

A=) R,A, . (A3b)

The explicit form for A,, the degree of alignment
quoted in Refs. 1 and 2, is then

A2=;Pu[3M2 I+ 1)]/[121 -1) z’;Pu] .
(A4)

APPENDIX B: COUPLED-CHANNEL METHOD

The complete equations and methods used by the
coupled-channel program ZENITH are presented
elsewhere.'! A simplified set of equations ade-
quate for the present calculation is given here.
We consider the scattering of an electron of negli-
gible rest mass from an infinitely massive nucleus
characterized by a finite number N of degenerate-
energy eigenstates [nM), each an eigenstate of
spin I, z component of spin M, and parity p,,
where 1 =n=N. Eigenstates of the orbital angular
momentum and spin of the electron, |LM;) and
I%Ms>, are combined into eigenstates of the total
angular momentum of the electron in the usual
manner®;

|JL py= ; (LMpsm | Tu)| LML) |smy) .
meM

The phases of the various kets are chosen so that
under time reversal T |LM,)=(-1)**¥L|L -M,),
etc. Thus(6¢ |LM,) =iLY(6p). J and the two
possible corresponding values of L may be com-
bined into a single quantum number y such that

J=1X' —% ’
L=J+3%sgny .

For a given total energy E, the wave function of
the scattering system satisfies the wave equation

[—ia: T+ e@D]¥(F) = E¥(F), E=(° °> ., (B1)
o0

where <p(;) is the Coulomb field of the nucleus, the
only electromagnetic interaction needed here.
With F=1+J the total angular momentum, we wish
to expand \11(;) in eigenfunctions of fz, F,, and P,
the total parity operator for the system. One such
set of eigenfunctions is

[ £ mgpxm) =§(JIJJ,,M [Fms)| x wy |nar)

for which p=p,(~1)*. In general, to a pair of ei-
genvalues f and p, there correspond several pos-
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sible pairs (x,n). Let N(f,p) be the set of such
pairs, and let N(f,p) be its cardinality. It is clear
that if (x,n)eN(f,p) then (=x,n)eN(f,p). As a nota-
tional convenience, we introduce a single quantum
number j, such that as j ranges from 1 to N(f, p),
(x;,7n;) ranges over all of the pairs in N(f,p). Fin-
ally, if j is the quantum number corresponding to
the pair (x,%) in N(f,p), let j_ be that correspond-
ing to the pair (-x,%) in X(f, -p). We may now ex-
pand the total wave function as

‘y(r) Z afm ’ gfp(r) |fmfp.7> (BZ)

fm;’ —Sanjfnj,("’) lfmf i

where the coefficients G n.p are constants which
must be chosen to satisfy tfhe scattering boundary
condition. Substituting this expression into Eq.
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(B1) we obtain, in terms of the dimensionless ra-
dial variable p=7E, the differential equations

d
(dp p) PO £ 10 =TS e 5

(83)
(~‘L+"~l) 250 —£H(0)

ap p

X, Xj')sj ,'(p)f ( ),

in which

I‘P(

S%dp) = fmypj | fspi’y

The matrix element (nM| @(r)|n’M’) may be ex-
panded in spherical harmonics, in the form

- .1
(nM| <p(r)|n'M'>=;(_1)"‘<1'M'l -m |M4)(7+’-1)WE e )Y (69) .

The coupling potential S;,,(p) may now be expressed in terms of the multipole potentials <,0§"' ):

8% (p)=(e/EN-1)"11/ (2L +1)(2J + 1) (27" + 1)]* /2

’ ’
XZ(_1)(LI+L+1)/2<LOZO|L,0>{J J Z}{JJ !
7

L'L ¥

2

It follows from time reversal invariance that
8% 4(p)=sgn(xx")S?%_;. (o) .

The superscript ¢ on the functions f and g above
distinguishes among the N(f,p) solutions of Eqs.
(B3) which are regular at the origin, according to
their particular behavior at the origin, as follows:

Um[f7(p)p™]=0,;, lim[g (p)p™i]=
X;> 03

lim [£53p)p%]=0, lim [gi(p)p*i]=0

X;<0.

The major part of any coupled-channel scheme is
the numerical integration of Eqs. (B3) from the
origin out to some large radius, where they may
be compared with standard solutions. In ZENITH,
these standard solutions are defined by asympoto-
tic expansions of the asymptotic forms of Eqgs.
(B3), including all multipole potentials S% . (p).
The analytic and computational details are de-
scribed in Ref, 11 and will not be gone into here.
By such a method, it is possible to determine
completely the asymptotic behavior of £/, g*/ in

}[(2z+ 1)/4n] 20 (r) | (B4)
rif

the form
gHp)~Allsin(p+yIn2p - L m/2+6%) ,
fi(p)~A}lcos(p+7In20 -Lm/2+6}) ,

where y=Ze?, We refer to the (numerically deter-
mined) quantities A » and 6 » as the amplitudes
and phase shifts, respectlvely, of the (f,p) par-
tial wave. Considered as an N(f,p) by N(f,p) ma-
trix, Aﬂ{exp(-zé J) has an inverse which we de-
note by 1.

The constants @ £, _, may be chosen so that the
spherically incoming portion of ¥(r) is asymptoti-
cally equal to the spherically incoming portion of
a plane wave approaching the electron from the
negative z axis. For definiteness, we suppose
that initially the nucleus is in its ground state
I1M) and the electron spin has projectior m, on the
z axis. Then

a ;,mf,:};[zn(u g+ DI (T m 1M [fim )

X<L10é_ms |ijs>6

lnj .

The scattering amplitudes fTs¥¥1¥s(g¢) are defined
in terms of the asymptotic behavior of \ll(r) by the
equation
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Y(r)~ e | 3my) | 1M)

+(e/p) 3 FTeh(60) 01| vy .

I%s

(BS)

In Eq. (B5) the logarithmic terms have been omit-
ted from the exponents and only the upper compo-
nents of \ll(;) have been included. In terms of the

partial-wave phase shifts and amplitudes

J Rra(09)= 30 M I3, (2L 4 12T m L M | i)
]
XL 05m, | m ) TpM 11, My | frg)

X<LkML%Ms‘JkMJ>YLkML(9¢) ,
where My =m +M - M, - M, and

* - : £ A id Hibh)
M,"——Z iV i A e r8,,5,,, .

Note that although the partial-wave phase shifts
and amplitudes depend upon the particular set of
regular solutions of Eqgs. (B3) that is chosen, M,
and, hence, fms¥¥I¥s(6p) do not. The scattering

-7

amplitudes have the following symmetries:

frugtrs(, ~ o)

=pupy (=10l L fTMMIMs(0, ) (p6a)
which reflects parity conservation and
FA2MI2(, ) = tan; 6et OF 112U /2(6, ) (B6D)

which represents helicity conservation, a conse-
quence of neglecting the mass of the electron.
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