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The spontaneous-fission process for doubly even nuclei with Z =92 is studied in a semi-
empirical WKB framework. One-dimensional fission barrier potentials are established
from theoretical deformation-energy surfaces based on the droplet model and the modified-
oscillator model. The effects of axial asymmetry as well as reflection asymmetry have
been taken into account. Macroscopic (irrotational flow) inertial-mass functions and al-
ternatively microscopic (cranking model) inertial mass parameters have been employed
for the calculation of the fission half-lives. With one over-all normalization parameter it
is possible to fit the experimental half-lives to within a factor of 20 on the average. The
resulting effective inertial-mass functions are used to estimate the stability of the trans-
actinide elements. Only minor differences with previous estimates for the 7 process and

superheavy nuclei are encountered.

[NUCLEAR STRUCTURE Even nuclei with Z = 92; calculated sf Ty, 2.]

I. INTRODUCTION

Since an earlier semiempirical study' of the
spontaneous-fission process for transthorium ele-
ments, improved theoretical deformation-energy
surfaces have been obtained,? based on the modi=
fied-oscillator single-particle model® and thg mac-
roscopic droplet model.* In those calculations the
effect of axial asymmetric distortions as well as
reflection asymmetric distortions are included in
a more accurate way.

On the basis of new calculational material, we
consider in this paper the even-even elements be-
yond thorium, for the purpose of clarifying the ac-
curacy of the theoretical calculations of the spon-
taneous-fission half-lives. The investigation fol-
lows the lines of the semiempirical method intro-
duced in Ref. 1. Let us briefly outline the general
approach.

The fission process is treated as a penetration
through a one-dimentional potential barrier, cal-
culated along an effective path in the multidimen-
sional deformation space. The penetrability is
calculated in the WKB approximation. Thus one
needs the action integral K along the fission path,

K72 f1 " [2B0)(V(r) = E, )27 . (1)

The path is described by the fission coordinate 7.
V(7) is the deformation energy of the shape de-
scribed by » and B(r) is the effective inertial-
mass function corresponding to a motion along the
fission path. Moreover, E,, denotes the fission-
mode zero-point energy in the initial state; it is
taken to 0.5 MeV, following Ref. 3. The integral
limits 7, and 7, are the entrance and exit points,
respectively. From the integrated action K the
half-life T, ,, is given by the relation®

Ty, =10728%x (1 +¢¥) yr. (2)

The fission barrier potential V(#) is calculated
theoretically. In the present study, V(r) is based
on recent calculations presented in Ref. 2, as will
be described in Sec. II.

As present the theoretical calculations of the
effective fission inertial-mass function B(7) are
less accurate than the calculations of the potential
V(). Therefore we introduce one over-all mass-
renormalization parameter which is subsequently
determined by fitting to the known half-lives. In
this paper two trial forms of B(») are studied. One
is based on macroscopic (hydrodynamical) irrota-
tional-flow calculations and is similar to what was
previously studied.!*® In addition to this, we have
calculated microscopic inertial-mass parameters
in the cranking approximation and used these for
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the determination of the effective fission inertia.
This will be described in Sec. II.

In Sec. IV the established fission barrier poten-
tials are used to determine the effective inertial-
mass functions. Subsequently, calculations are
made of the stability of so far unobserved heavier
nuclei.

II. THE THEORETICAL FISSION BARRIER POTENTIALS

According to the semiempirical method intro-
duced in Ref. 1, the fission barrier potential is
generated from the stationary points on the defor-
mation-energy surface (i.e., the minima and sad-
dle points) together with one (or more) additional
point(s) in the exit region beyond the last saddle
point.

The theoretical fission barrier potentials em-
ployed in the present study are based on the de-
formation-energy surfaces underlying Ref. 2. In
these calculations the macroscopic part of the de-
formation energy is given by the droplet model*
with the shape functions B,, B, B,, B,, and B,
obtained by exact numerical integration in the €
parametrization. The microscopic part of the en-
ergy is based on the Strutinski shell-correction
method® applied to the modified-oscillator model®;
the potential parameters are those denoted “A
=242” in Ref. 3, and the pairing strength is as-
sumed independent of deformation.

The basic calculation of the deformation-energy
surfaces was performed in the (e€,) space. In ad-
dition to the quadrupole (€) and hexadecapole (€, )
deformations other types of deformation have been
taken into account as well, as is briefly described
in the following. This part of the study follows
closely that of Ref. 7 and more details may be
found there.

A. Axial asymmetry

We have included the effect of axially asymme-
tric nuclear shapes as described by the y deforma-
tion coordinate. A detailed study of the y defor-
mations in the actinide region is performed in
Ref. 8 and a similar study for the superheavy
region is performed in Ref. 9. Here we put the
emphasis on the most recent results employing a
three-dimensional variation in the (ee€,y) space.

The calculation of the y deformation energies
are refined relative to Ref. 8 by taking into ac-
count the complete couplings between shells N,
N+2, N+4, etc. Moreover, we have used an ex-
tended version of the droplet model code which in-
cludes axially asymmetric shapes.!®

In the actinide and transactinide region the first
saddle point exhibits an instability with respect to
v distortions. The corresponding y reduction of

the saddle-point energy is mainly a neutron effect
in that domain. As can be seen from Fig. 1, the
onset of the axial asymmetry occurs roughly at
neutron number N =140 and the maximum effect
is obtained at N=150-152. Very similar results
were obtained by Pashkevich'* and later on also
by GOtz et al.*? using a Woods-Saxon type poten-
tial.

The y instability can be understood in terms of
mixings of specific single-particle orbitals having
particularly large matrix elements of the asymme-
try operator. This operator couples only states
in the same shell with Q'=Q +2 and n}=n,. The
corresponding matrix elements are given by

(ny, A+2|(x+iy)? |ny, Ay =[n,(n, +2) = A(A+2)] /2.
(3)

In Fig. 2 the neutron orbitals, characterized on
the prolate side by their asymptotic quantum num-
bers [Nn,AQ], are plotted along the y direction for
fixed € =0.40 and €,=0.040. It is seen that some
strongly interacting orbitals bend convexly away
from each other. Most of these orbitals are sit-
uated around neutron number N=150. Hence, for
this neutron number a gap is obtained with in-
creasing y deformation. The mutual repulsion of
the interacting orbitals, which are originally
rather closely spaced, causes a decrease in the
level density which in turn gives rise to a reduced
shell-correction energy.

A further study of Fig. 2 suggests that the bar-
rier between the ground state and the isomeric
minimum (located at approximately € =0.40) should
be y unstable for nuclei with Z =84-86 and N~120.
In fact, there is found a considerable reduction of
the barrier due to axial asymmetry.'3

B. Reflection asymmetry

In the nuclear region considered here, reflection
asymmetric shapes play an important role for
large nuclear distortions. For our present study
we have employed the reflection-asymmetry cor-
rections to the second saddle point given in Ref.
14. They were obtained by calculating a two-di-
mentional map using a combined asymmetrical
coordinate €,, and a combined asymmetrical co-
ordinate €, .

It should be added here that these calculations,**
as well as calculations with the folded-Yukawa
model,'® suggest that the second barrier for some
uranium and plutonium isotopes is split into two
humps separated by a shallow minimum. We have
taken this into account by adding to the usual five
characteristic points two additional ones corre-
sponding to the third minimum and the third
saddle point.
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The reflection asymmetry also plays a role be-
yond the last saddle point by significantly lowering
the fission valley bottom relative to that pertaining
to purely symmetric shapes. Following Ref. 1 we
chose the last point characterizing the fission bar-
rier to have €=1.0 and €,=0.140. The importance
of the reflection asymmetry has been studied. A
neglect of the asymmetry in the exit region leads
toanincorrect isotopic variation of the calculated
half-lives (cf. Ref. 7). Therefore, we have for each
nucleus chosen that value of the asymmetry coor-
dinate €55 which leads to the lowest energy. This
improves the fit to the experimental half-lives
considerably, by a factor of almost 10 on the aver-

age.

C. Hexikontatettarapole ground-state deformations

We have also studied the effect of P, deforma-
tions at the ground-state minimum. The P4 defor-
mation energies used are those given in Ref. 2.
Most of the nuclei considered have some P, defor-
mation in the ground state, and it turns out that
the inclusion of the correction improves the over-
all fit to experiment by a factor of around five.
For this reason we have included this effect in the
employed fission barriers.

As described in Ref. 1, a one-dimensional fis-
sion barrier potential is established by first trans-
forming the characteristic points from the multi-

dimensional deformation space into a single fis-
sion coordinate . Subsequently, appropriate
polynomials are spliced through the transformed
points.

For the fission coordinate 7 the equivalent cen-
ter-of-mass separation is used, i.e., the separa-
tion between the two fragments created by a cut
through the center of mass. Iu the calculation of
7 the effect of reflection asymmetry is neglected.
It should be pointed out, however, that the effect
of P, (but not P;) deformations is included. This
has not been done previously. It has a large bear-
ing on the value of 7 for large nuclear distortions.
When ¢, is taken into account the value of 7 is
usually reduced. As far as the fit to known fission
half-lives is concerned, this effect of €, on 7 can,
to a large part, be compensated by an increase in
the effective fission inertia. But as far as pre-
dictions for nuclei with less extended barriers,
such as most of the superheavy nuclei or the
r-process nuclei, the effect will be significant,
giving rise to an increase in the predicted half-
life. In Sec. IV previous predictions® are re-
examined in light of this effect.

Before calculating the penetration integral (1)
we have added at the ground state a zero-point
vibrational energy of E,,,=0.5 MeV, in accordance
with Ref. 3.

In Table I we show, for the nuclei used in the
fit, the resulting values of the coordinate » and
the potential V, for the characteristic points cor-
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FIG. 1. Contour plot of the barrier reduction AEy (MeV), due to the axial asymmetry, as a function of N and Z.
Note that the largest reduction occurs in the vicinity of N =152 and Z =102.
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responding to the first minimum (I), the first (C) are also included. For purposes of illustra-
saddle point (A), the second minimum (II), and tion we have displayed in Fig. 3 a few examples

the second saddle point (B). When appropriate of the final fission barrier potentials in terms of
the third minimum (III) and the third saddle point the » coordinate.

SHELL-CORRECTION ENERGY: N=150
,:00635
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FIG. 2. Single-neutron levels in the actinide region appropriate to the first saddle point (¢ =0.40, €,;=0.04) as a func-
tion of the axial-asymmetry coordinate y. The arrows indicate strongly interacting orbitals. In the upper right corner,
the shell-correction energy (without the pairing contribution) is shown for neutron number 150.
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TABLE 1. The stationary points of the deformation-energy surfaces for the nuclei included in the study. The value
of the » coordinate (in units of the nuclear radius) and the deformation energy V (in MeV) is shown for the minima
(I, I, II) and saddle points (A, B, C).

z A 7y 5 TA Va i Vi 7 Vs ”m Vin Yc Ve

92 232 0.85 -1.300 1.06 3.050 1.17 1.460 1.36 4.390 145 4120 1,58 5.560
92 234 0.86 -1.620 1.05 3.380 1.17 1.290 1.40 4.490 1.48 4.000 1.59 5.020
92 236 0.86 -1.760 1.04 3.760 1.17 0.160 1.39 4.630 1.51 3.660 1.61 4.400
92 238 0.87 -1.800 1.03 4.140 1.17 0.440 1.37 4.690 1.54 3240 1.63 3.710

94 236 0.86 -1.980 1.05 3.310 1.17 0.200 1.39 3.040 1.51 2310 1.59 3.220
94 238 0.86 -2.130 1.04 3.680 1.17 -0.310 1.39 3230 1.53 1900 1.61 2.660
94 240 0.87 -2.250 1.04 4.060 1.17 -0.030 1.39 3.350 1.54 1480 1.63 1.920
94 242 0.87 -2.390 1.09 4.310 1.17 0.340 1.37 3.360 1.59 0.920 1.66 1.140
94 244 0.87 —2.785 1.01 3.390 1.18 0.710 1.36 3.400

96 240 0.87 =2.7173 1.04 2.960 1.17 -0.890 1.38 1.670
96 242 0.87 =3.121 1.04 3.050 1.17 —0.600 1.37 1.860
96 244 0.88 -3.342 1.02 3.010 1.18 -0.280 1.36 2.040
96 246 0.88 -3.385 1.01 2.970 1.19 0.060 1.36 1.970

96 248 0.88 -3.323 1.01 2.880 1.23 0.160 1.36 1480
96 250 0.88 -3.058 1.01 2.700 1.25 0.090 1.36 1.660
98 246 0.88 -3.896 1.02 2.620 1.19 -1.110 1.36 290
98 248 0.88 -3.985 1.01 2.540 1.24 -0.890 1.36 390
98 250 0.88 -3.977 1.01 2.430 1.26 -0.890 1.38 340
98 252 0.88 -3.741 1.01 2.330 1.27 -1.050 1.38 150
98 254 0.88 -3.399 1.02 2.300 1.27 -1.290 1.4 -.070

100 244 0.87 -3.352 1.03 2.710 1.18 -2,470 1.33 -1.300
100 246 0.88 -3.882 1.02 2.680 1.19 -2.280 135 -1460
100 248 0.88 —4.256 1.01 2.390 1.25 -2.070 1.36 -1.340

100 250 0.89 -4.420 1.01 2.270 1.26 -2.030 1.38 -1260
100 252 0.89 -4 .467 1.01 2.040 1.27 -2.070 1.40 -1.320
100 254 0.88 —4.278 1.01 2.010 1.27 -2.250 1.42 -1.520
100 256 0.88 -3.967 1.02 1.960 1.32 -2.510 145 -1.850
100 258 0.88 -3.696 1.02 1.950 1.33 -3.010 1.47 -2.360
100 260 0.88 -3.458 1.03 2.060 1.34 -3.650 1.49 -2.830
100 262 0.88 -3.165 1.04 2.250 135 —4.460 1.51 -3.430

100 264 0.87 -2.657 1.05 2.360 1.35 -5.260 1.51 —4.040

102 252 0.88 —4.564 1.01 1.660 1.28 -3.280 1.38 -2.980
102 254 0.89 —4.692 1.01 1.590 1.30 -3.330 1.39 -3.080
102 256 0.88 -4.567 1.01 1.440 1.32 -3.570 141 -3.390
102 258 0.88 —4.249 1.02 1.480 1.33 -3.900 1.44 -3.760

III. THE EFFECTIVE INERTIAL-MASS FUNCTIONS where BI¢ js the inertial mass associated with a
rigid separation of the two fragments and Bi is
the hydrodynamical inertial mass corresponding
to irrotational flow during the fission process.
The renormalization constant & is a measure of
the nonirrotational flow associated with motion
along the fission path.

For convenience we use a simple analytical ap-
proximation to B (an exponential). The explicit
form of the macroscopic-type trial inertial-mass
function thus becomes

For the calculation of the spontaneous-fission
half-lives we have employed two types of trial in-
ertial-mass functions. One is based on macro-
scopic (hydrodynamical) calculations and is simi-
lar to what was previously employed.! The other
is based on calculated microscopic (cranking mod-
el) inertial-mass parameters. The final results
are relatively similar. We shall discuss below
the two cases separately.

A. Macroscopic inertial-mass functions 17 l: c,s :I 5
Bmacro = + —— -—f =
Following Ref. 1, we employ a one-parameter rr) =1tk 15 exp )\(‘ ”) ()

trial i ial-mass function of form . . . .
1 inertia a ¢ the for Here 7 is measured in units of the nuclear radius

Bmicro = prieid 4 p(Bimet _ prieid ) 4) R=7v,A'/® and B™ is measured in units of u, the
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reduced mass of the final two-fragment system
(which we assume to be symmetrical). Moreover,
X is a numerical constant equal to 1/2.452 deter-
mined from a fit to the exact curve'® for B[

In addition to the renormalization parameter
we have introduced a second parameter ¢ govern-
ing the slope of the mass function. For k=c=1
the irrotational-flow inertial-mass function is ap-
proximately reproduced.

The study of the effect of including the various
refinements in the barriers, discussed in Sec. II
was performed with the macroscopic-type inertial-
mass function with ¢ kept equal to unity. In Sec.
IV we shall discuss the effect of varying the slope
parameter c.

B. Microscopic inertial-mass functions

As an alternative, we have calculated the spon-
taneous-fission half-lives on the basis of inertial-
mass parameters calculated in the cranking ap-
proximation.

For the present semiempirical study we have
only considered the B,, component of the full in-
ertial-mass tensor. A more complete study,
based on calculations of inertia tensor components
within the (ee,y) space, is in progress.!”

The mass parameter B,, is calculated in the adi-
abatic cranking approximation.!® In the BCS ap-
proximation, including the coupling to pairing vi-
brations, the expression for B,, is'®

Cop2 (v18H/8€ | w2 (uv, +u,v,)? :|
BEE zﬁ [uzu (Ev+Eu)3 +PE€ .

(6)

Here H is the single-particle Hamiltonian, in the
present case the modified-oscillator Hamiltonian
with the A =242 parameters.® Furthermore, u,
and v, are the BCS variational parameters and E,
is the energy of the quasiparticle state |v). The
term P, contains the contribution from couplings
to the pairing vibrations. The total mass parame-
ter is a sum of a proton and a neutron contribu-
tion, B,,=B!®+B{. Couplings between all oscil-
lator shells, appearing for €,#0, are taken into
account in the calculations.

The mass parameters obtained in this way are
equivalent to the parameters calculated in a slight-
ly different way.?°*?! In the latter calculations,
one starts from the multipole moments of the nu-
cleus as the collective variables and subsequently
projects them onto the deformation parameter «.
The equivalence is obtained by including a suffi-
ciently large number of multipole moments in the
projection.?

The basic calculation of B, is carried out for a
70-point grid in (e€,) space. This is sufficient to

Fission potential barriers
T T T T T T T
zszu_

V (MeV)

Potential

y A I~ T R i et T——
1.00 .25 1.50 1.75 1.00 1.25 1.50
Fission coordinate r

FIG. 3. Fission potential barriers for four selected
nuclei, as obtained by splining polynomials through the
five (or seven) characteristic points (namely the station-
ary points I, A, . . . plus one additional point X beyond the
last saddle).

get a good approximation to B, in the region of in-
terest (except in a few cases of very large defor-
mation). The microscopic-type trial inertial-
mass function is then given by

e )T ' ™

o (e, €,

B0 = pB e, <)

The last factor, which gives the approximate
transformation to the »-coordinate matrix, is
evaluated along an average fission path.

One adjustable parameter is introduced in this
case in the form of the overall renormalization
factor p. One should bear in mind that because of
the approximate treatment of the inertial matrix
one cannot expect p to come out exactly equal to
unity, even if the basic inertial-mass parameters
were correct. On the other hand, since the
adopted treatment is expected to include the main
part of the inertia, the factor p should not be too
different from unity. Recalling the empirical find-
ing that the microscopically calculated mass pa-
rameters in the rotational case tend to come out
somewhat too large, it appears satisfactory that
the best fit is obtained for p=0.80.

In Fig. 4, we display as an illustration the de-
termined effective inertial-mass functions for the
same four nuclei as in Fig. 3. The solid smooth
curves are the best hydrodynamical-type mass
functions corresponding to 2=11.5 and ¢=1.0. The
dashed smooth curve corresponds to the best fit
obtained with half the irrotational-flow slope,
namely ¢=0.5. The wiggly curves represent the
effective microscopic-type inertial-mass functions
(with p=0.80). When comparing these different
mass functions one should bear in mind that they
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do not necessarily lead to identical half-lives for
each individual nucleus. Rather, each set leads to
a best overall reproduction of the experimental
half-life data.?®

IV. RESULTS AND DISCUSSION

A. The experimentally known region

With the fission barrier potentials established
as described in Sec. II we have, using the different
sets of trial inertial-mass functions described in
Sec. III calculated the spontaneous-fission half-
lives for the known even-even nuclei ranging from
2321 to 2%8No. (The theoretical deformation ener-
gies for the known isotopes of element 104 are not
very accurate and we have excluded this element
from the test group. This exclusion should also be
seen in the light of the present disagreement be-
tween reported half-lives for isotopes of this ele-
ment.) Minimization of the average logarithmic
deviation A of the calculated half-lives from the
experimental ones determines, for each set of in-
ertial functions, the adjustable parameter(s) en-
tering the trial functions. (For collection of re-
cent half-life data see Refs. 23-25.)

1. Macroscopic inertias

For the hydrodynamic-type inertial-mass func-
tion with ¢ =1 the best reproduction of experimen-
tal half-lives is obtained for 2=11.5. This value
is larger than the previously?® employed value of

Effective inertial- mass functions
T T T T
k=11.5 232
800# c=1.0) 4

600

400
200

2
Inertia B (h7/ Mev)

800

600

400

200

1 1 1 1
.00 125 1.50 175 .00 .25 1.50
Fission coordinate r

FIG. 4. Effective fission inertial-mass functions for
the same four nuclei as in Fig. 3. The solid smooth
curve (k=11.5, ¢ =1.0) is the best macroscopic inertial
function with ¢ fixed to unity. The dashed curve (k& =
11.5, ¢ =0.5) results (approximately) if ¢ is also allowed
to vary in the fit. The best microscopic inertial-mass
function has p =0.80 and is indicated by the solid wiggly
curve.

10.0 This change is mainly due to the inclusion

of the €, dependence of the » coordinate; cf. our
discussion of this point in Sec. II. The average
logarithmic deviation is A=1.7, which corresponds
to a factor of around 50.

In Fig. 4 the solid curves indicate these effective
mass functions. The half-lives obtained with this
set of effective mass functions are shown in Fig.
5, together with the experimental data.

In agreement with the results of our earlier
study® based on an older set of barriers, it turns
out that a simultaneous variation of the slope pa-
rameter ¢ appearing in the inertial-mass function
leads to a better fit. In a contour plot of the quan-
tity A as a function of 2 and ¢ there is a valley
passing approximately through the points (¢ =11.5,
c¢=1.0) and (£=6.5, ¢=0.5). The variation of A in
the direction perpendicular to the valley is rapid
while along the valley the slope is rather gentle.
The gbsolute minimum is located around (£=6.5,

T T T T T T T T T
10'8F Spontaneous - fission half-lives B

/
!
IOIS_ /D // ) B
/ / m Experimental

o Calculated (k=11.5, |
c=1.0)

* Estimated

Ty (yr)

Holf-life

Ins X 110~

|

L ! I I
140 144 148 152 156 160 164

Neutron number N

FIG. 5. Spontaneous-fission half-lives calculated with
the macroscopic inertial-mass functions havingk =11.5
and ¢ =1.0 (open circles joined by dashed lines). The
experimental values are indicated by solid squares
joined by solid lines. In the lower left corner are in-
cluded some isomeric half-lives. Also included in the
figure are the half-lives calculated with the estimated
approximate barriers for the transuranium elements
(dots joined by dotted lines).
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¢=0.5), with an average deviation of A=1.4, cor-
responding to approximately a factor of 25. In
Fig. 4 this set of inertial functions is indicated by
the dashed lines.

For a smooth inertial function, with two trial
parameters governing normalization and slope,
respectively, there is thus a certain amount of
ambiguity since an increase in normalization can
be compensated for by an increase in slope. This
degeneracy is only present in the studied experi-
mental region where the fission barriers extend
out to large distortions. In less stable regions,

where the fission penetration only involves smaller

distortions, the calculated half-lives will depend
more on the normalization than on the slope. This
feature obviously gives rise to large uncertainties
in the predictions for nuclei with less extended
barriers.

One hint as to which part of the mentioned (&, ¢)
valley is the most appropriate one is provided by
the isomeric half-lives. The isomeric fission
tests a more limited part of deformation space as
it only explores the second barrier region and
this serves to favor one solution. In Fig. 5 we
have included some calculated (with £#=11.5 and
¢=1.0) and experimental isomeric half-lifes.?’"2?°
For the calculated isomeric half-lives there is a
pronounced erroneous trend in going from U
through Pu to Cm. For the two measured U iso-
mers (2%:228() the calculated values are around
five orders of magnitude too long. This may in-
dicate that the second barriers of these isotopes
are too large. One should notice that for 2**U the
calculated value is of the same order as the two
experimental numbers for 2%:2%y, For Pu the
overall agreement is fairly good but the isotopic
variation is in error. This may reflect the sensi-
tivity to the more detailed structure of the second
barrier, which we treat here in a rather crude
manner. Finally, the calculated values for
242,244Cm come out around seven orders of magni-
tude too short as compared with experiment. The
similar calculations with £=6.5 and ¢=0.5 yield
isomeric half-lives which are one to two orders
of magnitude longer [this change can be estimated
on the basis of Fig. 4 and Eq. (8)]. Although the
present results for the isomeric half-lives are
far from satisfactory, the results do seem to
point in favor of the irrotational-type slope, i.e.,
a value of the slope parameter ¢ not far from
unity. In the following discussion we have only
considered the macroscopic-type inertial-mass
function with £=11.5 and ¢ =1.0.

2. Microscopic inertias
Similarly, for the microscopic inertial-mass
functions the renormalization factor p is deter-

mined by fitting to experiment. The optimum fit ob-
tains for p=0.80, corresponding to A=1.3, which
is a factor of around twenty. One should thus note
that the microscopic calculations with one overall
normalization factor leads to a fit which is as
good as that obtained with two parameters in the
case of a macroscopic-type inertial function.
Figure 6 shows the corresponding results for the
spontaneous-fission half-lives. Also in this figure
we have included isomeric half-lives. (As both
the potential V and the inertia B are originally
calculated in terms of the € coordinate it may ap-
pear more natural in the microscopic case to car-
ry through the calculations in terms of €. This
has been done and leads to an almost equally

good fit, the differences being largest for the nu-
clei with very extended barriers.)

As can be seen from Figs. 5 and 6, the different
sets of effective inertial-mass functions lead to
rather similar results for the calculated fission
half-lives. The similarity of the discrepancies
with the data to a large part appear to reflect in-
accuracies in the common effective barrier poten-
tials employed. Below we shall point out some of
the sources of error.
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FIG. 6. Spontaneous-fission half-lives calculated with
the microscopic inertial-mass functions having p =0.80.
Similar to Fig. 5.
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One problem associated with the construction of
the fission barrier potentials arises from the fact
that the available deformation energy surfaces
only extend out to deformations with e=1.0. For
the lighter elements (U, Pu, and Cm) the fission
penetration explores larger deformations. More-
over, for some isotopes of U and Pu the second
barrier region has been found theoretically'*S to
have a double-hump structure; this further com-
plicates the situation for these nuclei. These dif-
ficulties, in combination with the additional prob-
lem of ascertaining the effective fission path be-
yond the last saddle point, gives rise to a rather
poor accuracy for the outer barriers of these
nuclei.

The problem of extrapolating the barrier poten-
tial beyond € =1.0 becomes particularly difficult
for the two isotopes 24%:244Pu, The emerging bar-
rier is by far too extended. These two isotopes
have therefore not been included in the fit. A sim-
ilar problem arises also for the elements U and
Cm but to a more moderate extent, as can be seen
from the half-life plots in Figs. 5 and 6.

Another problem associated with the theoretical
fission barrier potentials is connected with the
shell effect occurring at neutron number N =152,
Experimentally >3:2%3° it is found that the ground-
state mass corrections in this region exhibit a
pronounced minimum at N=152 for Fm and No
isotopes. This effect is only in part reproduced
in the calculations. Consequently, the calculated
half-lives are expected to exhibit a less pro-
nounced peak around this neutron number than is
observed experimentally. This effect is clearly
seen in Figs. 5 and 6.

A delicate theoretical problem arises from the
interplay between the ground-state shell correction
and the second barrier height for the elements
from Fm and beyond. This problem is not special
to the modified-oscillator model. The same cri-
tical situation occurs when the folded-Yukawa
model is employed for the calculation of the de-
formation energies.!®

As was already pointed out in Ref. 1, the sinking
of the second barrier below the ground-state en-
ergy (including the 0.5 MeV vibrational energy)
leads to a drastic decrease of the fission half-life
(up to a factor of 10°) due to the sudden and ap-
preciable decrease in the amount of barrier that
needs to be penetrated. Theoretically this effect
occurs for fermium at N=160, whereas the drastic
experimental drop occurs at N=158. This may
suggest that the variation of the calculated ground-
state energy is too gentle. This also seems to be
the case for nobelium. The calculated half-lives
exhibit a too smooth behavior around N =152, but
if, as an example, the difference between the mass

corrections for the two isotopes ?*?No and ?%*No is
taken from experiment, the ratio of the calculated
half-lives comes out in agreement with experi-
ment.

The problem remains present also for heavier
elements as is discussed below.

To remedy this situation various effects have
been investigated, such as a redetermination of
the parameters k and p in the A= 255 region and
a consideration of particle-number-fluctuation
corrections in the BCS wave function; they are
found to be of minor significance. The inclusion
of nonisotropic pairing, as yet untried, may re-
duce this discrepancy.

In concluding this part we remark that the two
types of inertial-mass function lead to rather sim-
ilar results on the whole, for the region of nuclei
considered. The microscopic-type inertia gives
the best reproduction of the half-life data, namely
a mean factor of error of around 20. This set of
inertial functions is associated with less ambiguity
and it is probably better suited for predictions
concerning more distant nuclei (for example, it
takes into account possible local shell-structure
effects in the inertial mass).

B. Stability predictions

We turn now to the question of predicting the new
stability properties of so far unobserved heavy
and superheavy nuclei.

1. Transactinide elements

We have made preliminary estimates of the
spontaneous-fission and « decay half-lives for
the elements with Z between 104 and 110. For
this purpose we have estimated the fission barrier
potentials by calculating the deformation energy
in five deformation points fixed a priori. The
first has €=0.23 and €,=0.010 and corresponds
approximately to the ground state, judging from
the systematics of the preceding elements. Simi-
larly, the point (€ =0.40, €,=—0.005) is approxi-
mately the axially symmetric saddle point. The
results for this point have been duly corrected for
the effect of axial asymmetry. In addition to these
two approximate extreme points three deformation
points have been chosen along an approximate ef-
fective fission path: (0.45,0.015), (0.55,0.030),
and (0.65,0.080). The first of these lies close to
the estimated saddle point and the y corrections
have also been applied there.

Of course, this prescription leads only to ap-
proximate barriers but we can hope to infer the
over-all systematics of the half-lives. In Figs.

5 and 6 we have included the spontaneous-fission
half-lives calculated with these estimated barrier
potentials. The smooth behavior exhibited may in
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part reflect the employed prescription.

Beyond nobelium the theoretical fission barriers
have only one peak. Consequently, the calculated
fission half-lives are relatively short (at most
milliseconds) and, moreover, exhibit a smooth
variation with neutron number. As follows from
our remarks above, the existence of a shell at
N =152 could drastically change this behavior in
the neighborhood of that neutron number.

Taken at their face value, the present calcula-
tions indicate that the isotopes of the element 106
generally have spontaneous-fission half-lives
which are shorter by a factor of around 30 than
the 104 isotopes with the same neutron number.
This suggests that even 106 isotopes may exist
with a spontaneous-fission half-life not much
shorter than that of 2°*Fm. Because of the uncer-
tainty arising from the discussed N =152 problem
it is not possible to predict with confidence which
neutron number will give the largest stability.

The calculated half-lives for the element 108
show the same trend as those for 106 but are gen-
erally a factor of around 10? shorter. The half-
lives of the 110 isotopes are further reduced by a
factor of 10%, approximately.

For experimental guidance, we have also calcu-
lated the corresponding a-decay energies and
half-lives, using the semiempirical formula of
Taagepera and Nurmia.®! The results are dis-
played in Table II. We have used the calculated®
ground-state masses as well as the “estimated”
masses obtained as described above on the basis
of the first of the five fixed deformation points.
The mismatch between the two sets of results re-
flects the large uncertainty associated with these
estimates.

It appears that more accurate theoretical predic-
tions for this particular region of nuclei cannot be
made until more accurate deformation-energy
surfaces have been established.

2. r-process region

The nuclei in the »-process region are relatively
short-lived and have a realatively narrow fission
barrier. Hence, for these nuclei, the inclusion of
the €, dependence of the » coordinate can have a
significant effect via the effective inertial-mass
function. As the €, dependence is most important
for large distortions, we may for an estimate of
the effect in the »-process region neglect the €,
shrinkage of the barriers. The effect on the half-
lives is then due solely to the increase in the re-
normalization factor 2 or p and may be estimated
by the following formula:

15B
=

6logT, ,, =3 B

20.5 +10gT, ,, (sec)]. (8)

TABLE II. @ decay energies and half-lives as obtained
on the basis of the calculated ground-state minima (left
columns) as well as on the basis of the “estimated”
ground-state minima based on a deformation point fixed
a priovi (right columns). The kinetic energy of the «
particle is denoted @,. The « half-life, Ty/,, is obtain-
ed by use of the semiempirical formula of Taagepera
and Nurmia (Ref. 31).

Mother Qy MeV) log Ty, yr)
%2No 8.46 -8.24

254No 8.66 —8.86

258No 8.53 —8.47

28No 8.66 —8.89

256104 9.75 8.59 -11.45 —8.00
258104 9.63 8.70 -11.14 -8.38
260104 9.43 8.69 -10.57 ~8.34
262104 8.41 —7.42
260106 10 45 9.64 -12.70 -10.57
22106  10.01 9.61 -11.59 —-10.50
264106 9.68 9.43 ~10.69 -9.97
266106 9.25 —9.45
260108 10.45 -12.18
262108 10.54 -12.39
264108 10.49 -12.28
268108 10.32 -11.83
268108 10.15 -11.39
210108 10.02 -11.06

For the macroscopic-type inertial-mass functions
the relative increase in k is 15%. Thus, for a
half-life of one second the predicted half-life
should increase by 13 orders of magnitude.

3. Superheavy elements

In our previous calculations®® of the spontaneous-
fission half-lives for the superheavy elements the
€, dependence of the 7 coordinate was not included.
As already discussed in Sec. II, a consistent in-
clusion will lead to longer half-life predictions for
nuclei with less extended barriers. We have
therefore reexamined the superheavy region, with
the present more complete treatment.

On the whole, the resulting effect is small, par-
ticularly so for the most stable nuclei near the
center of the superheavy island. For nuclei with
half-lives of around one year the increase in the
stability only amounts to less than half an order of
magnitude. The general conclusions of our pre-
vious study in the superheavy region®® are thus not
significantly altered by the present investigation.

Note added in proof: Since the present paper
was submitted new half-life data for the nucleides
22Fm, 20102, and #*-26°104 have been reported
in Ref. 32. These data points are added in the
Figs. 5 and 6.
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