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Nuclear level densities
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An improved expression for the nuclear level density is obtained by introducing a higher
term in the expansion of the excitation energy in terms of nuclear temperature. The new
term leads to better fitting with the experimental results especially at the high excitation
energy part of the spectrum. The level density parameters were calculated for the nuclei

Ti, 5 Mn, 5 Fe, 5 Co, 5Zn, ~3Sn, and Sb. For the two last nuclei the spin dependent
level density was considered.

t

NUCLEAR REACTIONS New expressions calculated for level density param-
eters derived for Ti, 3Mn, 8Fe, Co, Izn, ' Sn, Sb.

I. INTRODUCTION depends on the excitation energy E,"' and hence
the level density w(E) may be written as

According to the statistical model' ' the differ-
ential cross section for a given nuclear reaction
is given by

tv(E) = —,exp[2 (ao E}'i'], (1 5)

d g = ceo,„„(e}ur(E}-=constantMw(E),
dQde

E=a 0'
0 (1.2)

where ao is the level density parameter. One de-
fines the entropy $ as follows:

S =Inw(E}= dE
(1.3)

Substituting for 8 from Eq. (1.2) into Eq. (1.3) one
gets"

where e is the kinetic energy of the outgoing par-
ticle, o' „(e) is the inverse cross section for the
formation of the compound nucleus from the out-
going particle and the residual nucleus, and w(E}
is the level density of the residual nucleus as a
function of its excitation energy E. c is a constant
and M=eo .(e).

The concepts of the nuclear temperature and en-
tropy were introduced in the derivation of the ex-
pressions for level density. "' Following Weiss-
kopf, ' one may expand the excitation energy, E,
in powers of the nuclear temperature 8, around
0 =0. Since the specific heat is zero for 8 =0, the
power series expansion must start at least with the
term containing O'. Neglecting terms higher than
0', one gets

w(E)=,exp(2[a, (E —nE)]'+].R
(1.6)

In Eqs. (1.1) and (1.6) there is no dependence on
angular momentum and so the spectrum of the
emitted particles from the compound nucleus is
generally isotropic. The situation is not so simple
in case of heavy-ion induced reactions' where
angular distribution of the emitted particle was
found to be anisotropic. "" The angular distribu-
tions depend on the angular momentum in the inlet
and outlet channels, hence the spin dependent level
density should be considered. ""'""The spin
dependent level density for a nucleus at excitation
energy E and spin J, denoted by ur(E, J), was found
to be

where R in Eq. (1.5) is another parameter depend-
ing on the nucleus.

Refinements were introduced to Eq. (1.5) by
taking into consideration shell and pairing ef-
fects.""" Due to residual interactions, pairing
energy ~E is subtracted from the excitation energy
of the nucleus. Pairing energy AE was taken to
be equal to zero, 1.4 and 2.8 MeV for odd-odd,
even-odd or odd-even, and even-even nuclei, re-
spectively. " Introducing pairing energy correc-
tion, Eq. (1.5) becomes

w(E) =E exp[2(a, E)~'], (1.4) (, )= ( )
[ 2, , „[-(+-')'/ '],24+1

where R and a, are parameters depending on the
nucleus whose level density is so and excitation
energy is E. It was found that the parameter R where w(E) is given by Eq. (1.6) and it actually
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represents the total state density summed over all
spins of the nucleus. a' is the spin cutoff param-
eter, given by' "

(1.Ia)

0 is the nuclear temperature of the nucleus and
8 is its moment of inertia which is taken usually
as equal to that of a rigid body, i.e.,

g =5mAR2, (1.Ib)

where R is the nuclear radius given by R =&OA ',
r, =1.5 fm, m the mass of a nucleon, and A is the
mass number of the nucleus. The differential
cross section, which depends now on the angle of
emission 0, was calculated ' ' ~ and found to
run as

= constant (2J + 1)(Tz/Tz)(2S „+1) M)(E)

dQ de J=0 v 2a
00

x g (2l+1)(T?)exp(-[(J+~} +(I+~)2]/2a'j Jo
'

2 W~?(9,E)
1=0

=—constant Mw(E),

where

( )
1 ~ i (J+ ~)(l+ 2} '~( )?,(4~ I) (2k I) '~ s(J+-, )(I+—,')

( g)
4n ' 0' Zi (2k' l)2 2)) a 2 2)?

and

?' =—total w'd(h=p(?$ ?) Q(2? ~?)?"? * ' s — ' '
)0'

(1.8)

(1.8a}

E= J .,„'5/28; (1.9)

Also for each value of J the maximum value for
the orbital angular momentum is J+j,„where
j . is given by Eq. (1.9) for the residual nucleus
with excitation energy E, i.e., Lmgx = J+j,„re-
places the infinity in the upper limit of summation
over l. In fact the replacement of the infinite in-
tegrals by finite sums does not change the results
since it was found by calculations that terms which
are significant in the integrals or the sums are
smaller than the proposed upper limits.

The level density parameter a, was found to be
proportional to the mass number of the nucleus
A."'" It was found that a„=.05A,"

where y refers to the outgoing particle, s to its
spin, and c is the maximum possible kinetic
energy for the outgoing particle. T~ is the trans-
mission coefficient for the Jth partial wave in the
inlet channel. T", is the transmission coefficient
for the lth partial wave in specified outlet chan-
nel, J» denote the spherical Bessel functions, P»
are Legendre polynomials, and 8 is the angle of
emission.

The infinity in the upper limit of the integral
over the energy is replaced by the maximum kinet-
ic energy available, c,„, which is given by
(M, M?? —M, )—C'+E, where Mc' is the energy
equivalent to the mass of the nucleus M. 'The infin-
ity in the upper limit of the sum over J is replaced
by J,„determined by the equation"

a, =A/13 (Ref. 34) and a, =A/8 (Ref. 3).

By plotting the experimental values of Ina?(E)
x (E —r)E}2 versus [(E—EE}]'~, according to Eq.
(1.6)—the relation must be a straight line whose
slope is 2', .

It was found that the relation deviates from the
straight line at high and low excitation energies. "
These were attributed possibly to the cascade
emission and direct reaction, respectively. "'"

II. IMPROVED EXPRESSION FOR LEVEL DENSITY

While the expression (1.2}may be valid for reac-
tions initiated by light projectiles, one might ex-
pect the second term in the expansion, containing
0', to have appreciable values for heavy-ion reac-
tions.

This may be due to the large amount of kinetic
energy carried out by the projectile which will
produce excessive heating on collision. The value
of the nuclear temperature 8 may thus be expected
to be larger than the corresponding value for light-
er projectiles. One may thus be not completely
justified in neglecting higher terms than 6' in the
expansion of the excitation energy E in powers of
the nuclear temperature as was assumed in Eq.
(1.2}above. It is the purpose of the present work
to study, generally, the effect of higher terms in
the expansion of the excitation energy E as func-
tions of 0, on the level density. Thus one may
write
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E =a6 +b6, (2.1a)

where a and b are parameters to be determined.
Dividing Eq. (2.1a) by 8'E one gets

sion (2.2) is replace by expression (2.4) for the
nuclear temperature. If b =0, all the energy
range satisfies Eq. (2.2) and will be given by

——=0 (2.1b)
—= lim2 — cos 3 cos '

b~o 2a'/'

Equation (2.lb) is a cubic equation in I/8, and
its solution will depend on the value of the excita-
tion energy E (see Appendix). The solution for the
whole energy range is as follows:

(a) For values of E less than 4a'/(275'),

1 a '/', bv'2VE—= 2 — cos 3cos 3/Q3E 2a

(b) for E =4a'/(275'),

(2.2)

= 2 (2.3)

(c) and for E larger than 4a /(275~),

g ~&& 5(27E)&s'~—= 2 cosh —', cosh ' +„. (2.4)

It is clear that when the energy inequalities in
Eqs. (2.2) and (2.4) become equalities both of them
will reduce to Eq. (2.3}.

The parameters a and b are expected to depend
on the mass number of the nucleus. Thus for a
given nucleus the factor 4a'/275' defines the range
of excitation energies for which Eq. (2.2), (2.3),
or (2.4) is applied. The excitation energy E which
equals 4a'/275' will be called the critical energy,
E„as it corresponds to the point at which expres-

From Eq. (2.1) one gets

—= (2a+ 358)d8,
dE

lnw =2aO+ &b8'+ lnR. (2.5)

where R is a constant. Substituting for 6 in Eq.
(2.5) by Eqs. (2.2), (2.3), or (2.4) according to
the values of E, introducing the pairing energy
correction &E, and replacing the constant R by
R/(E —&E)' as discussed above one gets,

which is again Eq. (1.2), proposed by Weisskopf'
for light nuclei and may be considered as the zero
approximation for Eqs. (2.1a) and (2.2). As 5/a
decreases, i.e., as 4a'/275' increases, the range
of energies for which Eq. (2.2) is valid increases
until 5/a goes to zero (i.e. , the Weisskopf zero
approximation holds). In this case the critical
value E,=4(r'/(275 ) goes to infinity and Eq. (2.2)
with b -0 holds for the whole energy range. Hence
again, one gets the Weisskopf formula for nuclear
temperature and consequently the level density,
for all the energy range.

To obtain level density, consider a.gain Eq. (1.3)

Inav(E) = dE
0

( ) (E ~).
where

(2.6)

and

2a3 / 8a

for E —~ ~ 7, (2.6a)
4a

, 527E —~'~~ 5%= [3 (h ht)]'~' ssch(~cosh '
~, s—(E —hs) ssch' —,cosh '

4a3for E —~ ~ . (2,6b)27/2

The energy equality signs used in Eqs. (2.6a) and
(2.6b) will replace the substitution for 8 from Eq.
(2.3) as mentioned above. To get the complete
spin dependent level density, ur(E} in Eq. (1.7) is
now replaced by the expressions (2.6), (2.6a), and
(2.6b). Moreover, the nuclear temperature de-
fined in Eq. (1.7a) is now given by Eqs. (2.2), (2.3),

and (2.4), i.e.; one finally gets

R 2J'+ 1 (j+ ~)'-

(@ ~)~ [v(2(p)~]~ &~ p 2(rh

where IV is given by Eqs. (2.6a) and (2.6b).

(2 7)
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TABLE I. Values of parameters.

P ar ameter
values 48T Mn 56Fe 58( o ZIl '"Sn i16Sb

ao MeV (b = 0)
a MeV
bMeU 2

Ec MeV

5
4.25
i.2
7.6

6.5
5.65
2.i5
5.7

6.7
6.5
2.075
9.45

8.7
7.3
3.04
6.25

7
6.25
2.602
5.304

22.95
20.i
4.7

54.45

23.9i
20.25
4.73

54.98

III. CALCULATIONS

To obtain the parameters a and b of the im-
proved new formula of level density, w(E), the
equations (2.6), (2.6a), and (2.6b) are used to fit
the experimental values for level density. Experi-
mental values of level density are obtained by con-
sidering the experimental values for the differen-
tial cross section d'cr /d Ada which is related to
w(E) by Eqs. (1.1) or (1.8). The second equation isused
when the angular momentum effect is taken into con-
sideration; it is clear that the nucleus for which
the level density is obtained is the residual nucleus
in the nuclear reaction under consideration.

The experimental values for the level density as
a function of excitation energy which are chosen
for testing the new formulas, are considered for
the nuclei "Co '5Zn " 'Ti, "Fe, '3Mn ' '"Sb,
and '"Sn." For the first five nuclei Eq. (1.1) was
used in the calculations, while for the two last nu-
clei Eq. (1.8) was used. The representation of
(d'o/dAde) [(E —~)'/M] which is equal to a can-
stant k multiplied by the exponential term in the
level density expressions, versus (E —~}'~' on
a semilogarithmic scale are considered for these
nuclei. Since Weisskopf's formula (i.e., b =0) is
assumed to be a good zero approximation, one
may start the fitting procedure by assuming first
b=0, i.e., we use Eq. (1.6) for w(E). Fitting the
experimental points by a straight line, the con-
stants k and ao are determined. One then takes
these values of a and b as starting points, chang-
ing their values gradually and using Eqs. (2.6a)
and (2.6b) until a good fit to the experimental re-
sults is obtained. The pairing effect is considered
for the nuclei "Zn, "Co, "'Sb, and" Sn where
bE is taken as 1.4, 0, 0, and 1.4 MeV, respec-
tively. The experimental data from Ref. 6 were
multiplied by the square of the corresponding ex-
citation energy so that experimental values of the
level density could be fitted by Eq. (1.6}.

For calculating M the spin cutoff parameters o
given by Eq. (1.7a) were calculated for residual
nuclei in all exit channels for the reaction given
in Ref. 19 where the excitation energy of the com-
pound nucleus '"Te is 71 MeV. The outgoing par-

100 000— 65
ZA

10 000—

1000

100—
a I.

Xp.

10—

0.1
1.5 2 )IE 2.5 3 35 4 (E -].4 (~v

FIG. 1. The relation between (d~o/dQd~) f p-b. E)2/
6Ojfly ] and (E —b E)" for Zn: bE is the pairing energy
taken as 1.4 MeV (Ref. 18). The circles represent
experimental data obtained from Ref. 18. The x's repre-
sent calculated values using Eqs. (2.6a) and (2.6b) for
N where a =6.25 MeV and b =2.602 MeV and VE~ =2.3
MeV~2. The straight line represents the results given
by zero order formula (1.6) using a 0 =7 MeV (b =0).

ticles in the exit channels were protons, a parti-
cles, deutrons, tritons, 'Li, and Li. The widths
for last two channels were calculated and found
negligible. The nuclear temperature and the spin
cut off parameters, used in calculating F~ and
H~«(8, E) were calculated using initial values for
the parameter a„ i.e.,

8 = (E/ao)'~' where ao =-'A.

Transmission coefficients for the reaction given
in Ref. 19 were calculated using Eqs. (5.5), (5.9),
and (5.9) of Ref. 1 which are based on the WKB
approximation. The error due to the discontinuity
at the barrier was treated by interpolation of the
results after and before the barrier. From all
these data the values of M were calculated by Eq.
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FIG. 4. Same relation as in Figs. 1-3 for Mn, using

same notation for the experimental data, Ref. 6 and the
calculated values using a =5.65 MeV ' and b =2.15
MeV, WE, =2.38 MeV~~. The straight line relation
gives a0=6.5 MeV (b =0).

0.1
1 1.5 2 2.5 3 3S 4 l Ex (~V~~ IV. DISCUSSION

FIG. 2. The relation between (d4/dQd~)[(E -AE)~/
E oj fly ] and (E —EE)

~ for 5 co DE is taken to be zero
(Ref. 18). The circles represent experimental data ob-
tained from Ref. 18. The x 's represent calculated values
using Eqs. (2.6a) and (2.6b) for N, where a =7.3 MeV '
and b =3.04 MeV WE~ =2.5 MeV~ The straight line
represents the results-given by zero order formula
(1.6) using AD=8 7 MeV (b =0).

(1 6b} for 1~3Sn and ~&()gb

The values of a, b, ao and the critical energy
(E,= 4(r'/27b') are given for the chosen nuclei in
Table I.

From Figs. 1-5 it is clear that if the expression
(1.6) for the level density is used the experimental
data can be fitted by a straight line whose slope is
2Mao multiplied by logype. But the experimental
points deviate from the straight line relation at
high (e.g., Figs. 1 and 4) and low (Fig. 2) excita-
tion energies. Using E(ls. (2.6), (2.6a), and (2.6b)
for level densities, developed in the present work,
we notice that in Figs. 1 and 4 the calculated points
agree very well with the experimental points in the
regions where the straight line, representing the
case with b=0, deviates from the experimental
data. This shows clearly that the above derived
formulas are especially valid for regions of high
excitation energy. This is expected as high exci-
tation energy means high nuclear temperature so
the neglect of the term be' in the expansion (2.1)

56
F6

100 000

10 000
100 000

48T

10 000

(

?.e 2? 2() 2.9 3JF+ 32 33 3~ 35 3.5 V2
/E (MeV )

1p00

FIG. 3. The relation between {d~o/dQd~)(E /e(Tj y) and
vE for Fe. The experimental data (denoted by circles)
are obtained from Ref. 6. The calculated values accord-
ing to Eqs. (2.6a) and (2.6b) for N are denoted by x's,
using a = 6.5 MeV and b =2.075 MeV, WE, =3.07
MeV~~. The straight line zero approximation gives
a 0=6.7 MeV (b =0).

100 I I, I I . I . I, I

~ 2A 25 2.622' 23 29 3 3.1 32 33 3.4 3.5 ~E(~ )

FIG. 5. Same relation as in the previous figures, for
4 Ti using same notation of the experimental data, Ref.
6, and the calculated values using a=4.25 MeV j,
b = 1.2 MeV, and ~~ =2.75 MeV~ . The straight line
relation gives a 0

= 5 MeV ~ (b = 0) .
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may not be completely justified. In the other
graphs (2, 3, and 5) the zero approximation [i.e.,
Eq. (1.6)] and the present expressions for the lev-
el density [i.e., Eqs. (2.6), (2.6a), and (2.6b)]
give nearly the same results. We notice that in
Fig. 3 at low excitation the experimental points do
not agree completely with the calculated values
which may suggest that direct reactions might
contribute to this range.

From Figs. 6 and 7 one may observe slight dif-
ferences in the values of the level density obtained
from experimental values of the differential cross
section at high excitation and at different angles
of emission. This difference in values of (d'o/
dQde)[(E —nE)'/M] obtained at the different angles
of emission may be attributed to the fact that using
the WEB approximation in calculating transmission
coefficients may not be accurate enough especially
for kinetic energies far below the barrier, i.e.,
for high excitation energies of the residual nucleus.
From Figs. 6 and 7 one may also observe, how-
ever, that using the improved expression for level
density the calculated points show approximately

N

X: -'
LU

10 000

1000

100-

10

7 7 1 7 2 7,3 7.4 7.5 7.6 7.7 7.8

FIG. 7. Same relation as in Fig. 6 for "Sb. AE = 0.
The open circles represents experimental values, Ref.
19 of level density where 0 =171' and the solid circles
represent same quantity at 8 = 94' same notation for the
straight line and x's as in Fig. 6, where a =20.25 MeV
b =4.73 MeV, vEc =7.41 MeV~ and a&=23.91 MeV
(s) —0)

10 000

the same behavior of the experimental points.
Figure 8 illustrates the variation of the param-

eters a, b, and ao (i.e., when b = 0) with the mass
number A for the first five nuclei used in the cal-
culations.

The authors are grateful to Mr. K. El-Abed for
useful discussion concerning the present work.
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xg b=0
o 3
~ b

FIG. 6. The relation between (d o/dQde)/[M/(E-b, E) ]
and (E -EE)~ for Sn. M is given by Eq. (1.8) and
AE =1.4 MeV. The experimental values of d~o/dQde

are taken from Ref. 19. The open circles represent ex-
perimental values for level density w(E) where 8=33'3
and the solid circles represent same quantity but at
0=89'. The x's s represent the calculated values for
level density using Eqs. (2.6a) and (2.6b) for N where
a =20.1MeV b =4.7 MeV andvE, =7.379 MeV~
The straight line represents the results given by zero
order formula for level density, i.e., Eq. (1.6) where
a0=22.954 MeV (b =0).

5 )

3

2

48 50 52 54 56 58 60 62 64 66 68

FIG. 8. Shows values of a, b, ao versus the mass
number for the nuclei 65zn, co 5 Fe, +Mn, and 8Ti.
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APPENDIX: SOLUTION OF CUBIC EQUATIONS

Consider the cubic equation in Z

Z'+ 3HZ+ G = 0. (Al)

l.e.)

4aE
27b

thus from Eq. (2)
H and G are real values. The solution of Eq. (Al)
has three cases". 8 =2

3E cos 3cos
2 3/2 ~ (A5)

(a) G'+4H' &0, in which case H is negative. The
cubic equation has three distinct real roots, name-
ly,

2K cos8/3, 2K cos(8+ 2w)/3, 2K cos(8+ 4v)/3,

where

The two other roots are excluded as when taking
limit as b tends to zero they give negative or zero
values for 8, while for Eq. (5) when 5 is zero
8 = (E/a)'~', i.e., Weisskopf expression (1.2):

(b) If G + 4H3= —
2 —,=0,

b2 4a

K= v' H, 8-= cos '(-G/2 IH I"'). (A2)

(b) G'+4H'= 0. H must be negative in order to
have real values for G and H. The roots are

4a3

27b '

2v' H, 4 H, -v' H. (A3) thus from Eq. (3)

(c) G'+4H'&0. The equation has one real root,
and when G and H are negative this real root is

(A6)

2l-H cosh 3 cosh '
3/2 (A.4)

The two other roots are excluded as they are nega-
tive:

Consider now Eq. (2.1b}; it is a cubic equation in
1/8 where

a bH= ——and G = ——.
3E E'

It is clear that b must be positive, otherwise,
according to Eq. (2.1a), there will be a value for
0 different from zero for which E, the excitation
energy, is zero which is a contradiction to the
thermodynamical analogy. So G is negative. The
roots of Eq. (2.1b) will be obtained from Eqs. (2),
(3), and (4) as follows:

b' 4a'
(c) If G'+ 4H'= v —,&0.

i.e.,
4a~
27b' 'E)

is negative as stated above, so from Eq. (4}

, bg2PE—=2 cosh 3 cosh '
3/2a (A7)

(a) If G2+ 4H 3 =~ — 3 &0,
b2 4a'E The two other roots are excluded as they are com-

plex.
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