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Solutions of the radial equation for scattering by a nonlocal potential
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Nonlocality is characteristic of potentials describing processes in which degrees of free-
dom are eliminated, and provides for a description of a much wider variety of phenomena
than that encountered with short range local potentials. In this paper, properties of the
radial equation for symmetric nonlocal potentials are investigated, using a configuration
space approach and restricting the analysis to real k. Emphasis is placed on identifying
those constraints associated with a local potential which are relaxed in going from a local to
a nonlocal potential. The Fredholm determinants associated with the integral equations for
the physical, regular, and Jost solutions are central to the development. Unlike the case for
a short range local potential, for a nonlocal potential these Fredholm determinants can van-
ish for real k ~ 0. It is shown that when D'(k) =0 the other Fredholm determiri&~ts are zero
as well. The properties of the solutions at the zeroes of the Fredholm determinants are dis-
cussed in this context, and the concepts "spurious state" and "continuum bound state" are
clarified. The behavior of solutions is illustrated with examples.

[NUCLEAR REACTIONS Scattering by a nonlocal potential, Fredholm deter-
mirl~ritS and their ZerOeS, COntinuum bOund StateS, SpuriOuS StateS.

I. INTRODUCTION

Formalisms whereby an equation of motion for
a many-particle system is reduced to an effective
equation for the relative motion of two particles
invariably result in an effective interaction that is
nonlocal. Thus, the effective nucleon-nucleus
interaction is nonlocal by virtue of its taking into
account excitations of the target nucleus. It is
nonlocal even when target excitations are neglected
if the Pauli principle is imposed. The effective
interaction between composite nuclear systems is
likewise nonlocal for the same reasons. In these
cases, or in any case of an effective interaction,
the interaction is nonlocal independent of the basic
interaction between the constituents of the many-
particle system; rather, nonlocality is character-
istic of processes in which degrees of freedom are
eliminated. In this context, the nonlocality of an
effective interaction provides the means of taking
into account phenomena characteristic of a many-
particle system within the framework of a one-
particle description.

For a short range local potential analytic con-
straints associated with the radial equation pro-
vide an important albeit indirect link between the
potential and solution of the equation for bound
state and scattering wave functions. One conse-
quence of the nonlocality of an effective interac-
tion is that the radial equation obtained from a
partial wave decomposition of the effective equa-

tion is not governed by certain of these constraints.
With this in mind, the purpose of the present work
is to initiate the development of a description of
phenomena characteristic of nonlocal potentials in
terms of the analytic properties of the radial
equation for such potentials. Properties of the
wave functions associated with nonlocal potentials
are developed and the extent to which the behavior
of these wave functions is expanded relative to that
of wave functions for short range local potentials
is discussed. In particular, emphasis is placed on
identifying those constraints associated with a lo-
cal potential which are relaxed in going from a lo-
cal to a nonlocal potential.

Phenomena characteristic of short range local
potentials have been studied extensively in the
past, and at the present time the connection be-
tween these phenomena and the analytic properties
of the radial equation is well understood. " The
approach followed here for nonlocal potentials is
similar to the approach' used for local potentials
in that Fredholm determinants of certain integral
equations are central to the development. In con-
trast to the class of local potentials, where only
one Fredholm determinant is sufficient, several
Fredholm determinants are important to the de-
scription of the analytic properties of the radial
equation for a nonlocal potential. The standard
results for a local potential' are recovered, how-
ever, since all but one of the Fredholm determi-
nants are identically equal to unity in the limit as
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the potential becomes local. Thus, the analytic
constraints specific to the class of local potentials
follow in the usual way from the behavior of the
Fredholm determinants in this limit.

The analytic constraints associated with the ra-
dial equation for a short range local potential are
automatically incorporated in local potential mod-
els of an effective interaction, and such models
have been successful in describing a wide variety
of experimental results. Nevertheless, it is pos-
sible to isolate situations where relaxation of the
constraints is necessary in order to accommodate
experimental results. The unified theory of nucle-
ar reactions' is an example of a general situation
where the nonlocality of the interaction provided
by the theory is necessary. The nonlocal effective
nucleon-nucleus interaction obtained from the uni-
fied theory is able to describe all types of reso-
nant behavior observed in nucleon-nucleus colli-
sions. This would not be possible if the effective
interaction obtained from the theory were a short
range local potential. For a local potential, the
reduced width of a resonance, roughly 3R'/2mR',
depends on the range of the potential. Once the
range has been fixed, the radial equation with a
local potential cannot describe an isolated reso-
nance which has a reduced width very much
smaller than %'/2mR'. The nonlocal effective
interaction of the unified theory encompasses all
types of resonant behavior, from the broad poten-
tial scattering resonances to the very narrow com-
pound resonances. In the vicinity of an isolated
compound resonance, the phase shift for the reso-
nant partial wave undergoes a rapid, almost dis-
continuous, 4

m change of phase. The change of
phase is discontinuous in the limit as the width of
the resonance approaches zero. This type of be-
havior is inconsistent with scattering by a short
range local potential, where the continuity of the
phase shift is a consequence of the analytic prop-
erties of the radial equation.

The resonating group method" of deriving ef-
fective interactions between composite nuclear
systems is another example of a situation where
the nonlocality of an effective interaction is im-
portant. The effective interaction between two 0,

particles is a good illustration since the 'Be nu-
cleus is unstable and the low-lying states show up
as resonances in n-u scattering. Resonating
group calculations" of the relative motion of two
a particles show that the Pauli principle for nu-
cleons requires the wave functions in the S and D
partial waves to have additional nodes at small
distances while the wave functions in the G and
higher partial waves are not required to have ad-
ditional nodes. The ground state of 'Be is a 3S
radial configuration' and the first excited state is

a 2D radial configuration. The 1S, 2S, and 1D ra-
dial configurations for the relative motion of two
n particles are excluded by the Pauli principle.

The connection between the Pauli principle and
the nonlocality of the effective interaction stems
from the fact that excluded radial configurations
are no~ compatible with local potentials. A gen-
eral requirement on the solutions of the radial
equation for a local potential is that the solution
corresponding to the lowest energy eigenstate in
each partial wave does not have nodes within the
range of the potential except for the node at the
origin. " Thus, a local potential model wave func-
tion for the ground state of 'Be is required by an
analytic constraint to be a 1S radial configuration.
Otherwise it would not be a ground state wave func-
tion. Similarly, a local potential model wave
function for the first excited state of 'Be is re-
quired to be a 1D radial configuration. It is the
nonlocality of the effective interaction between two
z particles which provides the means by which this
constraint associated with the radial equation for
a local potential is relaxed and the Pauli principle
for nucleons properly incorporated.

The examples just considered show that the non-
locality of an effective interaction does provide a
description of a much wider variety of phenomena
than that encountered with short range local poten-
tials, and that some of the expanded capabilities
of nonlocal potentials are related to a relaxation
of analytic constraints associated with the radial
equation for a local potential. Work is presently
in progress on understanding the specific mechan-
isms by which nonlocal potentials provide the
flexibility for describing these phenomena. How-
ever, the state of development of the connection
between phenomena associated with nonlocal poten-
tials and the analytic properties of the radial equa-
tion for this class of potentials is not at present
satisfactory. One aspect of this problem has been
discussed by Bolsterli, "who noted the use of dif-
ferent definitions of the phase shift for partial
wave scattering by a nonlocal potential. These
definitions are equivalent for a local potential; for
a nonlocal potential, the phase shifts obtained
from the different definitions lead to quite differ-
ent interpretations. In addition, it is not clear
which of the definitions of the phase shift is related
to the number of excess nodes of the wave function
within the range of the interaction. The present
paper is a report on an investigation of the effects
on the wave function of the relaxation of con-
straints associated with a local potential. The con-
sequences of this relaxation for the phase shifts
will be discussed in a subsequent paper.

Preliminary work has indicated that understand-
ing the effects of antisymmetrization may require
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analysis of nonlocal potentials which are not sym-
metric. " However, in this paper discussions of
the behavior of scattering wave functions are lim-
ited to nonlocal potentials which are symmetric
and real. None of the aspects to be considered
here requires the extension of k to the complex
plane; thus, the analysis is limited for conveni-
ence to real values of the wave number. Further-
more, discussions are limited to the l=0 partial
wave.

The general results presented in this paper are
illustrated by specific examples of nonlocal poten-
tials which have wave functions that exhibit dis-
tinctive features associated with nonlocality.

II. BASIC EQUATIONS AND NOMENCLATURE

The radial equation for s-wave scattering of a
particle with wave number k by a nonlocal poten-
tial V(r, s} is

u(k, r)" +k'u(k, r) = V(r, s}u(k, s)ds.
0

(p(k, 0) =0,

rp(k, 0)'=1.
(6a)

(6b)

The integral equation for the regular solution is

qr(k, r)
r

=k 'sinkr+ G(k, r, r')V(r', s)y(k, s)dsdr',
0 0

where

G (k, r, r ') = k ' sink(r r') . — (8)

where

G '(k, r, r ') = -k 'e ' ""&sinkr, .

The asymptotic form of g (k, r) for large r is given
by Eq. (3}with S'(k) replaced by S (k) -=S'(k)*.
The Fredholm determinants associated with the
kernels of Eqs. (4}are denoted by D'(k) for the
physical solution and D (k) for its conjugate.

The regular solution y(k, r) is defined by the
boundary conditions

The condition that there exists a P&0 such that

e" V(r, s)ds&~
0

(2)

The Fredholm determinant associated with the
kernel of Eq. (7) is denoted by D(k}

The conjugate irregular or Jost solutions
f '(k, r) are defined' by the boundary conditions

is imposed on the potential; this condition is suf-
ficient to insure the convergence of all integrals
given in this paper.

Through the use of an appropriate Green's func-
tion the radial equation can be converted to an in-
tegral equation for a solution which, if it exists,
satisfies a given set of boundary conditions. Sev-
eral integral equations, their solutions, and re-
lated quantities are defined in the following para-
graphs. These definitions are a straightforward
extrapolation to the class of non1. ocal potentials of
the standard integral equations and solutions for
the class of short range local potentials as given
by Newton. ' The limitations of this extrapolation
procedure have been noted previously"; they are
essential to the aim of this work and are discussed
more fully in subsequent sections.

The physical solution g'(k, r) is defined by the
mixed boundary conditions that g'(k, r) have the
asymptotic form

lim e" "f'(k, r }= 1 .

The integral equations for the Jost solutions are

f '(k, r)

=e""— ~ G(k, r, r')V(r', s)f '(k, s)ds dr'.

(10}
The Fredholm determinant associated with the
kernel of Eqs. (10) is denoted by 4(k).

Questions about the linear independence of the
solutions defined above for a nonlocal potential re-
quire somewhat more attention than for a local
potential. This is due to the fact that the Wron-
skian of two solutions to Eq. (1) is, in general, r
dependent, whereas the Wronskian of two solu-
tions for a local potential is independent of r. The
Wronskian of the Jost solutions is

W(k, r) =f (k, r)f+(k, r)' f+(k, r)f (k, r)',-
g'(k, r) 2i [e ""-S'(k)e""] (3)

as r-~, and that g'(k, r) be regular atr=0. The
function S+(k) in Eq. (3) is the s-wave scattering
matrix element. The physical solution l(I'(k, r)
and its conjugate l(p (k, r) satisfy the integral equa-
tions

q'(k, r)
=sinkr+ G' k, r, r')V r', s)g' k, s dsdr',

{4)

which can be written" "
W(k, r) = 2i k 1 — V(r ', s)Q(k, r', s)ds dr'

r 0

where

)
f (k, r}f'(k, s) f'(k, r)f (k, s)-

2ik

(12)

{13)
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The value of this Wronskian at r =~ is 2ik; since
only symmetric potentials are considered here,
it has the same value at r =0."'4 While the
Wronskian of the Jost solutions for a nonlocal
potential can be zero for some values of r, r =0
and ~ excepted, it cannot be identically zero for
all r. Thus, the Jost solutions for a nonlocal po-
tential are linearly independent when k 10.

The Jost function 2'(k} and its conjugate 2 (k)
—= 2'(k)~ are defined according to

2'(k) =f '(k, 0) . (14)

Z '(k) e 0 (k e 0) . (15)

This restriction on the behavior of the Jost func-
tion holds for both local and symmetric nonlocal
potentials. The behavior of the Jost function at
k = 0 when Z'(0) = 0 requires special attention"
for both types of potentials and is not considered
in this paper.

When they exist, the physical, regular, and
Jost solutions are related through the Jost func-
tion; i.e.,

8ince W(k, 0}= 2ik, it follows that the Jost function
has the property

conditions

8(k, o) =1

and, as r-~,
8(k, r ) - [2' (k) [

' cos(kr + 6),

where

6(k) = —phase[ 2'(k}] .

(21)

(22)

(23)

It follows that 8(k, r) is real T.he integral equa-
tion for the irregular solution 8(k, r) is

8(k, r) = '.[Z,'(-k) 'e""-+Z (k) '-e "-']-

G k, r, r')Vr', s)8 k, s dsdr'.

(24)
The Fredholm determinant associated with the
kernel of Eq. (24) is 4(k).

The solutions 8(k, r) and qr(k, r) are linearly in-
dependent. Their Wronskian is

We~(k, r) = 8(k, r)y(k, r)' —rp(k, r)8(k, r)', (25)

which can be written

Wsq(k, r)

tj'(k, r) =kg(k, r)/2'(k) (16)
=1+ V(r', s)[8(k, r')rp(k, s)

r 0

and

y(k, r}=g (k)f+(k, r) —2'(k)f (k, r) (17)

These relations follow the linear independence of
the Jost solutions and demonstrate the linear de-
pendence of the physical and regular solutions.

The Jost function has the following integral rep-
resentations:

and

2'(k) = 1+ k ' sinkr V(r, s)f '(k, s)ds dr
0 0

(18)

g~(k) =1+ e" 'V(r, s)cp(k, s)ds dr . (19)
0 0

The first representation given follows from the
definitions (10}and (14), while the second is ob-
tained from Eq. (17) evaluated in the limit as r

Both representations bear a close resem-
blance to the integral representations of the Jost
function for a local potential. '

In addition to the conjugate irregular solutions
f '(k, r) it is convenient to introduce an irregular
solution 8(k, r), defined by

8(k, r) = MS+(k) 'f+(k, r)+8 (k) 'f (k, r)].
(20)

By definition, 8(k, r) obeys the mixed boundary

—p(k, r')8(k, s)]ds dr'.
(26)

The integral in this equation vanishes for a sym-
metric potential in the limit as r 0. Thus

We (k, 0)=We (k, ) =1. (27)

The integral equations for the solutions defined
in the preceding paragraphs are inhomogeneous
Fredholm equations of the second kind. The con-
ditions for which a unique solution to such an
equation exists are well known. In simplest form,
a solution exists and is unique if the Fredholm de-
terminant associated with the kernel of the inte-
gral equation is not zero. The fact that the Fred-
holm determinants D(k), 4(k), and D'(k} may have
zeroes for real k00 when the potential is nonlocal
represents a basic difference between local and
nonlocal potentials. It is a difference which af-
fects even the modest aim of defining a solution
to Eq. (1) by prescribing boundary conditions.
The properties of the Fredholm determinants and
their zeroes are discussed in the next section,
and in the following sections the solutions to Eq.
(1) are considered when some of the Fredholm
determinants are zero.

III. FREDHOLM DETERMINANTS AND THEIR ZEROES

The Fredholm determinants have the following
properties: ReD'(k), D(k), and d(k} are even
functions of k, while ImD'(k) are odd functions of
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k. Both D(k) and 4(k) are real for real k, and
D(k}= 4(k) for local and symmetric nonlocal po-
tentials. " These properties of the Fredholm de-
terminants reflect corresponding properties of
the Green's functions in Eqs. (5) and (8).

For a local potential, the kernels of each of the
integral equations defined previously, with the
exception of those for i('(k, r), become Volterra
kernels, with Fredholm determinants identically
equal to unity. ' Thus D(k) and 4(k) have no ex-
plicit role in the description of the scattering pro-
cess. For a local potential, all phenomena associ-
ated with scattering are determined by the Fred-
holm determinants D'(k) It is .well known that
D'(k} and the Jost functions 2'(k) are identically
equal'.

2'(k) = D'(k} [local potential]. (28)

Since 2'(k) t 0 for real k e 0 [Eq. (15)], it follows
that Dk(k) has this same property for a local po-
tential.

For a nonlocal potential, it has been shown" "
that D'(k) and 2 (k)kare not identically equal;
rather, they are related by

2'(k) = D'(k}/D(k) . (29)

The local potential result, Eq. (28), is a special
case of Eq. (29) since D(k) = 1 for a local potential.
The integral equations with which D(k) and &(k)
are associated have Fredholm rather than Volter-
ra kernels when the potential is nonlocal. In gen-
eral, the Fredholm determinants of integral equa-
tions which have Fredholm kernels may have
zeroes. Thus the Fredholm determinants D(k) and
&(k) for a nonlocal potential may have zeroes for
any real value of k. Furthermore, in contrast to
the results stated above for a local potential, the
Fredholm determinants D'(k) may also have
zeroes for any real k0 when the potential is
nonlocal.

Connection between zeroes of D-' (k) and D(k)

The occurrence of zeroes of D'(k) and D(k) is not
independent since, through Eq. (29), the Fred-
holm determinants are subject to the condition
(15) that the Jost function have no zeroes for kk-'0.
When taken together, Eqs. (15}and (29) suggest
that a zero of D'(k) is always accompanied by a
zero of D{k). A proof of the suggestion follows
from the assertion that at wave number k, w 0,
D(ko)00. This assertion implies that the regular
and Jost solutions are definable at k, without com-
plications which may be associated with a zero of
D(k, ); therefore, the Jost solutions are linearly
independent at k, and the Jost function satisfies
2'(k, ) t 0. It then follows from Eq. (29) that
D'(k, )kk0 since both gk(k„)00 and D(k, )OO. Thus

the condition D(k, ) =0 is necessary in order to
have D'(k, ) =0.

Continuum bound states

A zero of D'(k) for real kkk 0 has been called a
continuum bound state.""As just demonstrated,
D(k) must also be zero when D'(k) =0; thus a con-
tinuum bound state is characterized by simultane-
ous zeroes of both D'(k) and D(k). The nomencla-
ture continuum bound state derives from the fact
that the homogeneous integral equations associ-
ated with Eqs. (4), namely

d„'(k, r)= f f d'(k, r, r')r(r', s)d„'(k, )dsdr',
0 0

(20)

admit discrete normalizable solutions for real
kkk0 when D'(k)=0. Trivial solutions ())k(k, r)=0
are the only solutions allowed when D'(k) a0. The
properties of continuum bound state wave func-
tions are discussed in Sec. IV.

Spurious states

A zero of D(k) for real km 0 has been called a
spurious state. "" There is no local potential
analogy for a spurious state since D(k) = 1 for a
short range local potential. Since D(k) must also
be zero at a continuum bound state, it follows that
a continuum bound state is a special case of a
spurious state. Nevertheless, in order to maintain
existing nomenclature, """ the term continuum
bound state is used in the following discussion to
denote simultaneous zeroes of D'(k) and D(k),
while the term spurious state is reserved for a
zero of D(k) with D'(k) g 0.

IV. SOLUTIONS AT ZEROES OF FREDHOLM
DETERMINANTS

In this section the behavior of the wave func-
tions defined previously is discussed at spurious
state and continuum bound state wave numbers.
It is demonstrated that at a spurious state the
regular solution y(k, r) does not exist, although
it is possible to obtain a solution to Eq. (1) regu-
lar at the origin. In addition, the Jost solutions
f '(k, r) do not exist at a spurious state. On the
other hand, the physical solution g'{k, z), its con-
jugate y (k, r), and the irregular solution e(k, x)
continue to have meaning at a spurious state. At
a continuum bound state the solutions )l)'(k, r) and

y(k, r) always exist, while the existence of 8(k, r)
and f '(k, r) depends upon the circumstances. The
homogeneous solutions associated with the inte-
gral equations for gk(k, r), y(k, r), 8(k, r), and

f '{k,z) are also discussed.
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X(r) = F(r) + K(r I s)X(s)ds .
0

(31)

The homogeneous equation associated with Eq.
(31),

Al

X (~) = K(~ le)Xa(&)«
0

(32)

has a nontrivial solution if and only if the Fred-
holm determinant associated with the kernel
K(r [s) is zero Th.e inhomogeneous equation (31)
then has a solution if and only if the inhomogene-
ous term F(r) is orthogonal to the solution X~(r)
of the transposed homogeneous equation

The question of whether or not an inhomoge-
neous integral equation has a solution when the
Fredholm determinant associated with its kernel
is zero requires closer inspection of the existence
conditions mentioned at the end of Sec. II. For
this purpose, these conditions are now stated
more precisely. " The integral equations under
discussion are of the form

dition involving the inhomogeneous term F(r) and
the solution X~(r) of the transposed homogeneous
equation associated with Eq. (31}. This result is
known as Fredholm's third theorem.

Solutions when D(k) = 0, D*(k+0

The definitions of the physical solution f'(k, r)
and its conjugate tP (k, r) given in Sec. II are un-
altered at a spurious state wave number since
D'(k)» 0. That is, if at wave number k, D(k) =0
and D'(k)» 0, there exists a unique solution to Eq.
(1}which is regular at the origin and has asymp-
totic form in the limit as r ~ given by Eq. (3).

The question of whether or not the inhomoge-
neous equation for the regular solution y(k, r),
Eq. (7), has a solution at a spurious state is now
discussed in terms of Fredholm's third theorem.
The homogeneous equation associated with Eq.
(7) is

00

g~(k, r) = G(k, r, r't)V(r', s)y„(k, s)dsdr'.
0 0

Xs(r) = K(s [r)Xa(e)«
0

Thus the existence of X(r) when the Fredholm de-
terminant is zero reduces to an orthogonality con-

Before taking the transpose of the kernel of Eq.
(34), it is convenient to use the Green's function
identity

r ~g) 40

G(k, r, r')h(r')dr'= G'(k, r, r')h(r')dr'+k 'sinkr e"""h(r')dr',
0 0 0

valid for arbitrary h(r), to rewrite Eq. (34) as
00

P 00
sinkry„(k, r) = G'(k, x, r')V(r', s)dr'+ e" "V(r', s}dr' rp„(k, s)ds.

0 — 0 0

Thus the transposed homogeneous equation with solution y„(k, r) is
~I

y„(k, r) = G ~(k, s, r')V(r', r)dr'+ e"' ' V(r', r)dr' y~(k, s}ds .
0 - 0 0

(35)

(36)

(37)

That the inhomogeneous term of Eq. (7), namely sinkr, is not orthogonal to rp~(k, r) follows immediately
from Eq. (37). If y~(k, r) and sinkr were orthogonal, then Eq. (37) would reduce to

y„(k, r) = G'(k, s, r')V(r', r)yI, (k, s)ds dr'.
0 0

(38)

But Eq. (38) is identical to the transposed homoge-
neous equation associated with Eq. (4) for the so-
lutions g'(k, r), and will have a solution if and
only if the Fredholm determinant D'(k) is zero.
Since at a spurious state D'(k}» 0, it follows that
sinkr is not orthogonal to y„(k, r) and, therefore,
that Eq. (7) has no solution at a spurious state.

Since the regular solution y(k, r) does not exist
when D(k) =0, D'(k)»0, it is convenient to intro-
duce a modified regular solution 4(k, r), related
to g'(k, r) by

(39)g (k, r) =k4(k, r)/D'(k);
4(k, r) is well defined independent of the occur-
rence of zeroes of D(k). Equations (16) and (29)
may be used to show that when y(k, r) is well de-
fined it is related to C (k, r) by 4(k, r) =D(k)y(k, r).
The modified regular solution 4 (k, r} satisfies the
integral equation

4(k, r) =D(k)k 'sinkr
r

+ G(k, r, r')V(r', s}4(k,s)«dr'. (40)
0 0
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The boundary conditions associated with 4 (k, r)
follow from Eq. (40), and are

4(k, 0) =0,

4)(k, 0)' =D(k) .

(41a)

(41b)

y„(k, 0) =0,

cpg(k, 0)' =0;
(44a)

(44b)

it should be noted from Eq. (41}that 4)(k, r) satis-
fies these same boundary conditions when D(k) =0.
Further examination of Eqs. (34) and (43} reveals
that, in fact, the modified regular solution 4(k, r)
is, apart from normalization, identical to q~(k, r)
when D(k) =0. Thus, it follows from these re-
marks and from Eq. (39) that when D(k}=0 the
physical solution (})'(k,r) and its conjugate (}) (k, r}
are related not to the solution of the inhomoge-
neous equation for qr(k, r), Eq. (7), but to the so-
lution y„(k, r} of the associated homogeneous
equation, Eq. (34). In particular, the homoge-
neous solution y„(k, r} is that solution which con-
tributes to the phase shift at a spurious state.

Since the regular solution y(k, r) of the inhomo-
geneous equation does not exist at a spurious
state, it seems reasonable to question also the
existence of the irregular solution 8(k, r) Be-.
cause at a spurious state D(k) =0 and D'(k) 0 0, it
follows from Eq. (29) that the inhomogeneous term
in Eq. (24) for 8(k, r) is identically zero, and the
equation becomes

8(k, r) = — G (k, r, r') V(r', s}8(k,s)ds dr'
r 0

[D(k) = 0, D'(k) x 0]. (45)

As pointed out earlier, the Fredholm determinant
&(k) associated with the kernel of Eq. (45) is equal
to D(k) for a symmetric nonlocal potential. Thus
D(k}= 0 is the necessary and sufficient condition
which insures the existence of a solution to Eq.
(45), and 8(k, r) is therefore established as well

It also follows from Eqs. (3) and (39) that, in the
limit as r-~,

4(k, r)-[D (k}e' " D'-(k}e ' "]/2ik. (42}

At a wave number such that D(k) =0, Eq. (40) be-
comes a homogeneous equation for 4(k, r), namely

00

4(k, r) = G(k, r, r')V(r's)4(k, s)ds dr'
0 0

[D(k) = o] (43)

Thus when D(k ) =0 the integral equation for 4(k, r)
is identical to Eq. (34), the homogeneous equation
associated with Eq. (7) for y('k, r) The s.olution

y))(k, r} of Eq. (34) satisfies the boundary condi-
tions

defined at a spurious state by Eqs. (21) and (45).
It follows from the asymptotic behavior given

in Eq. (22) or from Eq. (45) that, as r-~,
8(k, r)-0 [D(k) =0, D'(k) ~ 0]. (46)

ls

)r( rS)= ()))~SI r(', s)(S(d, r )d(d, sl
r 0

—4 (k, r')8(k, s)]ds dr'.
(48)

As in Eq. (26) for Ws~(k, r), the integral in this
equation vanishes for a symmetric potential in the
limit as r -0. Thus,

W()g(k, 0) = W()c, (k, ~) =D(k) . (49)

When D(k) =0, Ws~(k, r) vanishes at r =0 and ~;
however, W()c, (k, r) cannot vanish for all r.

Thus, 4)(k, r) and 8(k, r) form a pair of linearly
independent solutions of Eq. (1) valid even at
spurious s&wtes. A general solution to Eq. (1) can
be constructed according to

u(k, r) = c(4(k, r}+P8(k, r), (50)

where n and P are constants to be determined by
the boundary conditions. However, it is clear that
at a spurious state one cannot impose arbitrary
boundary conditions on u(k, r). For example, it
has already been demonstrated that no solution
u(k, r) exists with boundary conditions given by
Eq. (6).

It is also not possible to construct at a spurious
state the Jost solutions f '(k, r). That this is the
ease follows from the behavior of 4)(k, r) and
8(k, r) in the limit as r- ~. Equations (42) and
(46) clearly show that it is not possible to choose
o( and P such that Eq. (50) satisfies the Jost bound-
ary conditions of Eq. (9) at a spurious state. '4 On
the other hand, the fact that D(k) —= A(k) is zero at
a spurious state implies the existence of a solu-
tion f„'(k, r) of the homogeneous equation associ-
ated with Eq. (10), namely,

f;(k, )= —I f G(S, , ')V(r', )f;(S, )dsdr'.
(51)

Comparison of Eqs. (51}and (45), however, shows
that apart from normalization f„'(k, r) is identical
with 8(k, r).

In the discussion of D(k) the possibility of zeroes
of higher order was not mentioned. If Eq. (32) ad-

The behavior of 4(k, r) as r-~ is established in
Eq. (42). Since as r-~ 8(k, r) goes to zero and
4(k, r) does not, it is clear that they are linearly
independent. The Wronskian of 8(k, r) and the
modified regular solution 4) (k, r), namely

W()~(k, r) = 8(k, r}4)(k,r)' —4(k, r)8(k, r)', (47)
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mits m solutions, then it follows from Fredholm
theory that Eq. (33) admits exactly m solutions
also. In this case, existence of solutions of inho-
mogeneous equations requires that orthogonality
conditions be satisfied with respect to each of the
m solutions of the associated transposed homoge-
neous equation.

Solutions when D(k) = 0, D-' (A') = 0

f,'(k, )= f G'( r, k'lr( ', )f„'(ks)dsd ',
0 0

+k 'e ' " sinkr'V(r', s)
0 0

x f)k(k, s)dsdr'. (53)

Important properties of the solutions (})))(k,r)
and f„'(k, p) can be obtained by multiplying Eq. (30)
by f,"f„'(k,s)V(s, r)ds and integrating over r from
zero to infinity, multiplying Eq. (53) by

f, (I)„'(k, s)V(s, r)ds and integrating over r, and

subtracting the two resulting equations. This
gives, after making use of the symmetry of
V(r, r') and G (k, r, r'),

e"""V(r', s')(l)„'(k, s')ds' dr'
0 0

sinkrVx, s f„' k, s dsdr=0. 54
0 0

As demonstrated in Sec. III, both D'(k) and D(k)
are zero for a continuum bound state. The fact
that D (k) is zero immediately implies the exis-
tence of the solution (})„'(k,r) of Eq. (30). The fact
that D(k) = 2(k—) is zero immediately implies the
existence of a solution f„'(k,r) of Eq. (51). In or-
der to compare Eq. (51) with Eq. (30), it is con-
venient to use the Green's function identity

G (k, r, r ')h (r '}dr '
r

(OQ

G '(k, r, r')h (r')dr'
0

+k 'e'"" sinkr'h(r')dr', (52)
0

valid for arbitrary h(r), to rewrite Eq. (51}in the
form

is zero, in which case the resulting equation for
f„'(k, r) becomes identical with Eq. (30) for
ir)(', (k, r). Thus the validity of Eq. (56} implies that
f„'(k, r) is identical with gkk(k, r), apart from nor-
malization. On the other hand, Eq. (55) would
also be sufficient to satisfy condition (54}. But if
Eq. (55) is true, then substituting

fo V(r', s}gk(k, s)ds for h(r'} in the Green's
function identity of Eq. (35) leads to the condition

G'(k, r, r')V(r', s)g)k(k, s)ds dr'
0 0

J sinkrV r, s „' k, s dscb =0.
0 0

(59)

But if Eq. (59) is true, then this allows
k k exp(+ikr) times the integral in Eq. (59} to be
added to the right-hand side of Eq. (30), in which
case the resulting equation for gk(k, r) is identical
with Eq. (53) for f„'(k, r) Thus th. e validity of Eq.
(55) also implies that, apart from normalization,
g„'(k, r) is identical with fkk(k, r). From Eq. (54}
it therefore follows that

y„'(k, r) (xfkk(k, r) [D'(k) =0, D(k) =0], (60)

and that

r sinkrV(r, s)g)k(k, s)ds dr =0
0 0

[D'(k) = 0, D(k) =0]. (61)

The conditions under which Eq. (55) holds can
be obtained by differentiating Eq. (30) and setting
t =0. The result is

G(k, r, r')V(r', s)(})„'(k,s)ds dr', (57)
0 0

from which it follows that gkk(k, r) would have to
satisfy the integral equation

r
g„'(k, r) = G(k, r, r')V(r', s)(}))k (k, s)ds dr'.

0 0

(58)

Since there exists a real solution (})„'(k,r) to Eq.
(58}, and since if Eq. (55) holds it must hold for
all solutions (})„'(k,r), it thus follows that condi-
tion (55) implies that

Equation (54) implies that either

r e"""V r', s' f„' k, s' ds' dr' =0
0 0

or

(55)

k;(k, ())'= —f f '"'r(r, lr,'(k, s)dsdr
0 0

or, using Eq. (61),
(62)

sinkrV(r, s)f „'(k, s)ds dr =0,
0 0

(56) coskrV(r, s)re„'(k, s)ds dr = y„'(k,0)'-
0 0

or both. If Eq. (56) is true, then it follows that
the second term on the right-hand side of Eq. (53)

[D'(k) =0, D(k}=0]. (63)

Thus Eq. (55) can be expected to hold only for a
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continuum bound state wave function (j„'(k,r)
which has zero slope at the origin. This require-
ment also follows from Eq. (58). Equation (58) is
a conditional equation, true if Eq. (55) is true.
Direct differentiation of Eq. (58) gives ())„'(k, 0)' =0.

The inhomogeneous integral equations associ-
ated with the physical solution () '(k, r) and its con-
jugate ()) (k, r) are given by Eq. (4). Since the
Fredholm determinant D'(k) =0 at a continuum
bound state, it is necessary to examine the exis-
tence of solutions of Eq. (4) under this condition.
In investigating the properties of solutions of in-
homogeneous equations at a continuum bound
state it is necessary, as in the case of spurious
states, to consider the solution of the transposed
homogeneous equation. The equation for g„'(k, r)
1s

y„'(k, r) = G'(k, s, ~')V(r', r)t)„'(k, s)asd~.
0 0

(64}

Following Bertero, Talenti, and Viano, "the ex-
istence of the solutions ())'(k, r) can be established
by multiplying Eq. (30) for () „'(k, r) by V and inte-
grating over r from zero to infinity. The result-
ing equation is

J V(r, s')(I „'(k, s')as'

G' k, s, r' V r', r)
0 0

V s, s' g„' 0, s')ds'ds dr . 65
0

Comparison of Eqs. (64} and (65) shows that

k((k, )"J V(, )Vl(k,
0

[D (k) = 0, D(k) = 0]. (66)

The necessary and sufficient condition that the
physical solution t))'(k, r) and its conjugate t) (k, r)
defined by Eqs. (4) exist is that the solution

t) „'(k, r) of the transposed homogeneous equation
associated with Eq. (4) be orthogonal to the inho-
mogeneous term of Eq. (4}, namely sinkr. But
Eq. (66) demonstrates that this is just the condi-
tion established in Eq. (61). Thus at a continuum
bound state the solutions g'(k, r) of the inhomoge-
neous equations (4} exist in addition to the solu-
tion t)„'(k, r).

However, the solutions (S)'(k, r) are not unique.
From Fredholm theory it is known that when the
solution of the inhomogeneous integral equation
exists it is in general arbitrary with respect to
the addition of any amount of the solutions of the
associated homogeneous equation, consistent with
the boundary conditions. That the solution t'(()k, r)
goes to zero for large r is well known, a fact that
can be seen, for example, immediately from Eq.
(51). This is the origin of the terminology con-
tinuum bound state.

It has been pointed out" that the existence of a
continuum bound state reflects a cancellation be-
tween the Green's function and the potential. That
this cancellation take place at a given wave num-
ber demands a particular relationship between
the potential and Green's function at that wave
number. The boundary conditions on the continu-
um bound state wave function (j „'(k, r) will not be
governed by the properties of the Green's function
G'. Rather, the asymptotic behavior of g)', (k, r)
will depend upon the properties of the residual
kernel after the cancellation between G' and V,
with the boundary conditions at the origin depend-
ing upon the choice of the potential V."

Having established the existence and nonunique-
ness of the physical solution of Eq. (1}at a con-
tinuum bound state, it is convenient to consider
now the existence of the regular and Jost solutions
under these conditions. Equations satisfied by
y„(k, r) and by q&„(k, r) have been given as Eqs.
(36) and (37), respectively. Equation (53) is satis-
fied by the homogeneous Jost solution f„'(k, r),
from which follows for f„'(k, r) the equation

f;(k, )= J G'(k, s, r')V( ', rlf,'(k, sldsdr' ~ k ' J s' kr'V(r', ld '"f„'tk, )ds. '

0 0 0 0
(67)

Multiplying Eqs. (36) and (53) by V and integrating on r from zero to infinity results in equations which
can be written in the respective forms

40 a eo OO

V(r, s')y„(k, s')ds' = G'(k, s, r')V(r', r) V(s, s')y„(k, s')ds'ds dr
0 0 0 0

and

~ k ' s' is"Vt ', )d ' " J Vt, ')V„(k, ')d 'd
0 0 0

(68)
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J V(r, s')f,'(k, s')ds' = 6'(k, s, r')V(r', ) f V(, ')f,'(k, s )ds'ds d'r
0 -0 0 0

+k ' e"""V r', r dr' sinks V s, s' „' k, s' ds'ds.
0 0 0

(69)

Comparing Eqs. (3V) and (69) leads to the conclu-
sion

I

the most general solution rp(k, r) is

y(k, r) =Ay„(k, r) +(})„'(k,r)[(}(„'(k,0)'] ', (73)

S,(k, )"f V(, s)fl(k. )d,
0

(VO) where A is an arbitrary constant. It follows from
Eq. (34) for y„(k, r) that

while comparing Eqs. (67} and (68} leads to the
conclusion

f)', (k, r) ~ V(r, s)rp„(k, s)ds.
0

and

y„(k, 0) =0

y„(k, 0) ' = 0 .

(74a)

(74b)
The regular solution rp(k, r) will exist if and only
if y„(k, r) is orthogonal to the inhomogeneous term
k 'sinkr in Eq. (7). But Eqs. (60}, (61), and (70)
assure this orthogonality, and thus establish the
existence of y(k, r)

In discussing solutions of Eq. (1) at a spurious
state, it was found that cp(k, r) did not exist. Thus,
a modified regular solution 4)(k, r) was introduced.
At a continuum bound state, however, y(k, r) ex-
ists. The relationship O(k, r) =D(k)cp(k, r) shows
that 4 (k, r}, which would still be expected to sat-
isfy Eq. (43), becomes the trivial solution kk(k, r)
-=0.

It has already been demonstrated that |t„'(k,r)
and y„(k, r } satisfy Eq. (1}at a continuum bound
state. Thus the existence of the solution y(k, r)
brings into question the relationships among these
solutions. The discussion of this question de-
pends upon the behavior of (I)„'(k, r) at the origin.
It follows from Eqs. (51) and (60) that (})k(k, 0) =0
in all cases. The investigation of the solutions
can then be separated according to the conditions
}'()k), 0) '

kk 0 and (}„'(k, 0}'= 0.

Since the boundary conditions on (})„'(k,r} at r = 0
have been explicitly chosen such that (})„'(k,0)'e 0,
the solutions rp„(k, r) and (}„'(k,r) of Eq. (1) must
be linearly independent. Equation (73) shows the
most general solution y(k, r) to be a linear com-
bination of these two solutions.

The nonuniqueness of the solution y(k, r) at a
continuum bound state brings into serious question
the validity of Eqs. (19) for 2'(k) under these con-
ditions. After substitution for y(k, r} from Eq.
(73), Eqs. (19) reduce to

d'(k)=d I f s'"'V(, )V„(k, )dsdr. (Sk)
0 0

Thus it follows that if Eqs. (19) for the Jost func-
tions g'(k) are valid at a continuum bound state,
Zk(k) are not unique. The resolution of this diffi-
culty rests in the realization that the Jost solu-
tions f'(k, r) do not exist at a continuum bound
state of this type. The solutions f'(k, r) exist if
and only if f„'(k, r) is orthogonal to e'"", the in-
homogeneous term in Eq. (10). If this is to be the
case, then if follows from Eq. (71) that

Cme (a), ltd„-'P:, O)'m

Using the Green's function identity of Eq. (35),
Eq. (7}for y(k, r) can be rewritten in the form

y(k, r) =k 'sinkr

+ G' k, r, r' Vr', s y k, s dsdr'
0 0

+ k ' sinkr e" " V r', s fIt} k, s)ds dr'.
0 0

(72)

When (C)„k(k, 0)'kk 0, direct substitution of
(})„'(k,r)[ic)„'(k, 0)'] ' for 9)(k, r) in Eq. (V2) and the
use of Eqs. (62) and (30) shows it to be a solution.
To this solution can, of course, be added any
amount of the homogeneous solution y„(k, r) Thus.

(V6)e'""V(r, s)y„(k, s)ds dr =0.
~

~

0 0

But comparison of Eqs. (75) and (76) shows that
this would demand that 2'(k) be zero. However,
this is in contradiction to Eq. (15), which states
that if the Jost solutions f '(k, r) exist, g'(k)
must not be zero. Thus at a continuum bound
state of this type Jost boundary conditions cannot
be imposed upon the general solution of Eq. (1).
Since the derivation of Eqs. (19) depended upon
expressing y(k, r) in terms of the Jost solutions
through Eqs. (17), they are not valid when

(})„'(k,0)'w 0.
Discussion of the solution e(k, r) at a continuum

bound state of this type presents special difficul-
ties in that the defining equation for e(k, r), Eq.
(20), makes explicit use of the Jost functions
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2'(k). Since the Jost solutions f '(k, r) do not ex-
ist, 2'(k) cannot be obtained from them in the
usual manner. For this reason, it is useful to
recast the integral equation for 8(k, r), Eq. (24),
as an equation in which the Jost functions do not
appear. This can be accomplished by evaluating
8(k, 0) and 8(k, 0)' using Eqs. (20) and (24), and
solving for [g'(k}]-'. The result is

[2'(k}] '=I+(ik) '8(k, O)'

8(k, r ) = 6(k, r ) + 8(k, 0) 'y(k, r ), (79)

where 6(k, r} is defined by the integral equation

6(k, r}
=coskr+ G k, r, r')V r', s 8 A, s)dsdr'.

0 0

(80)

The existence of y(k, r) at a continuum bound state
has already been established, and the existence of
8(k, r) at a continuum bound state of this type thus
rests on that of 6(k, r}. The transposed homoge-
neous equation for 6„(k,r) associated with Eq. (80)
is identical with that for y„(k, r). From Eqs. (60)
and (70), then, it follows that the condition for the
existence of 6(k, r) is

(81)coskrV r, s)g„' k, s)dsdr =0.
0 0

Since by virtue of Eq. (63) this would contradict
the assumption g~(k, 0)'o0, 6(k, r) and thus
8(k, r) cannot exist.

Thus at a continuum bound state, when f'„(k, 0)'

a(ik) ' e" "V(r, s)8(k, s)ds dr.
0 0

(77)
If this expression is now substituted for [2'(k)] '

in Eq. (24), the equation for 8(k, r) becomes

8(k, r) = coskr + k '8(k, 0)' sinkr
r

+ G(k, r, r')V(r', s) 8(k, s)ds dr'.
0 0

(V8)

This result must be valid away from spurious and
continuum bound states; it is more difficult to use
than Eq. (24), however, since the value of 8(k, 0)'
must be supplied from other considerations. It
should be noted that 8(k, 0)' cannot be arbitrarily
chosen, but is fixed by the definition of 8(k, r),
Eq. (20). Equation (78) yields no information
about 8(k, 0)', in that direct differentiation leads
only to the identity 8(k, 0) ' = 8(k, 0}'.

However, if 8(k, r) exists at a continuum bound
state, it must have a well-defined slope 8(k, 0)',
and must satisfy Eq. (78). But from Eq. (V8} it
follows that 8(k, r) can be written as

x0 the most general solution u(k, r) of Eq. (1)
can be written in terms of the linearly independent
solutions cp„(k, r) and g'„(k, r) as

u(k, r}=neap„(k, r)+Pq„'(k, r}. (82)

—k 'coskr sinkr'V r', s
0 0

x y„(k, s)ds dr'. (85)

But it was pointed out that Eq. (V6) held if and only
if the Jost solutions f'(k, r) existed. Since it has
been demonstrated that they do not exist under the
conditions imposed, it is clear that the coeffi-
cients of sinkr and coskr in Eq. (85}cannot simul-
taneously be zero. Hence it must follow that
cp„(k, r) oscillates at infinity.

CaSe (b j, lt „'-(k,0)'=0

The condition gi (k, 0)' =0 results in a consider-
able simplification of the relationships among so-
lutions, since then it follows from Eq. (63} that

r coskrV r, s g'„k, s)dsdr =0.
0 0

(86)

As a result, Eqs. (61) and (86) imply that Eq. (36)
for y„(k, r), Eq. (53) for f'„(k, r), and the homo-
geneous equation for 8„(k,r} associated with Eq.
(78) are each satisfied by the continuum bound
state wave function g'„(k, r} Furtherm. ore, Eqs.
(66), (VO), and (71) demonstrate that the solutions
j'„(k,r), rp„(k, r), f'„(k, r), and 8~(k, r) are also
proportional to one another.

The proofs that the physical solution g+(k, r),
its conjugate q (k, r), and the regular solution

The linear independence of rp„(k, r) and g'„(k, r} has
already been established in terms of their bound-
ary conditions at the origin. This can also be
demonstrated in terms of the Wronskian

'W(k, r) = y~(k, r)gi, (k, r)' —g'„(k, r)rp„(k, r)',
(83)

which can be put in the form
a

'VV(k, r) =k ' sinkr'V(r', s')y„(s') ds' rd

0 0
ao eo

coskrV(r, s)
r 0

x q~(k, s)ds dr . (84)

Inspection shows 'W(k, r ) to be zero at r = 0 and r
= ~, but it cannot be zero for all r.

It remains to discuss the behavior of p„(k, r) for
large r. From Eq. (34} it follows that, as r-~,

a ce

y„(k, r) k' s-inkr coskr'V(r', s)
0 0

x p„(k, s)ds dr'
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y(k, r) exist are unaltered by the condition g'„(k, 0)'
=0. However, the additional orthogonality given
in Eq. (86) is sufficient to guarantee the existence
of the Jost solutions as well ~ That is, conditional
Eq. (76), which would insure the existence of the
Jost solutions and which was not true for g'„(k, 0)'
e0, is in fact satisfied for g„'(k, 0)'=0. However,
none of the solutions g'(k, r), y(k, r), or f'(k, r)
is uniquely the solution of its appropriate integral
equation. In each case, the solution is arbitrary
with respect to the addition of any amount of the
continuum bound state solution g'„(k, r).

Since the Jost and regular solutions exist under
the condition g'„(k, 0)' =0, it would be expected that
Eqs. (18) and (19) would be valid for Z'(k). But
as f'(k, r) and y(k, r) are not unique, investigation
is required to determine whether Eqs. (18) and
(19) produce meaningful results Th.at indeed they
do follows from the fact that the term g'„(k, r)
giving rise to the nonuniqueness of f'(k, r) and

y(k, r) is, by virtue of the conditions imposed,
orthogonal to both fo sinkr'V(r', r)dr' and

f, e"'" V(r', r)dr', and thus cannot contribute to
2' (k).

The fact that the expressions for g'(k) are well
defined implies that the equation for 8(k, r) is well
defined, and will be of the form given in either
Eq. (24) or Eq. (78). The existence of the solution
8(k, r) then follows from the assertion that

f, V(r, s)y'„(k, s)ds is orthogonal both to sinkr
and cosh'. As is the case with other solutions at
a continuum bound state of this type, 8(k, r) is
arbitrary with respect to the addition of any
amount of the continuum bound state solution

q,'(k, r).
This concludes the discussion of cases (a) and

(b) for simple zeroes of D'(k). However, as men-
tioned in connection with spurious states, the pos-
sibility of zeroes of higher order of the Fredholm
determinant must be considered. Such considera-
tion would, of course, affect both case (a) and
case (b). If there exists a zero of D'(k) of multi-
plicity m, then there are m solutions of the as-
sociated homogeneous equation at the continuum
bound state energy. Such a situation occurs when
considering the scattering of a nucleon antisym-
metrized with respect to single-particle states of
the target nucleus. In this case the n occupied
single-particle states with respect to which the
wave function of the incident nucleon is antisym-
metrized are said to be "redundant" in that arbi-

trary amounts of these states can appear in the
single-particle scattering wave function. It has
been demonstrated" that these redundant states
are continuum bound state solutions of multiplicity
n which appear for every energy of the incident
particle.

One-term separable potential with Yamaguchi form factor

Yamaguchi" has introduced a one-term sepa-
rable nonlocal potential to describe nucleon-nu-
cleon scattering. In configuration space his poten-
tial is of the form

V(r, r') = A.g(r) g(r'),
where

g(r)=e- ".
For this potential

(87)

(88)

and

D(k) =&(k) =1-
2a(o.'+ k') (89)

sZk
(k) D(k)+( 2 2)2+( 2 k2)2' (90)

From these expressions it is clear that no values
of A. and u will make D' (k) zero, and therefore
that a continuum bound state cannot be associated
with the Yamaguchi form factor. On the other
hand, D(k) can be zero for a wide range of values
of A. and n. Thus, although the values of A, and a
used by Yamaguchi do not generate a spurious
state at any energy, if A. & 2a' a spurious state will
occur.

The solutions for the potential defined in Eqs.
(87) and (88) are

V, EXAMPLES

In order to illustrate the behavior of solutions
of Eq. (1) at spurious and continuum bound states,
solutions defined and discussed in the previous
sections have been obtained for cases of one-term
and two-term separable nonlocal potentials. First,
parameters for a one-term separable potential
with a Yamaguchi form factor are chosen such
that it has a spurious state. Next, the two-term
separable potential of the Mongan case IV form is
considered for two choices of the parameters, one
leading to a spurious state, the other to a continu-
um bound state.

Qjj(y2+jP 2

A,

y(k, r) =k ' sinkr+, » —sinkr —coskr+e ""
D(k)(a'+k')' k

(91)

(92)
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and

4 (k, r}= k 'D(k) sinkr+, » —sinkr —coskr + ea'+k' ' k

D(k) kk . Zn
8(k, r)=,„„,„,, si kr+ D k +, , oskr — - ') + (94)

gk fk )
kjkt'

D(k) (n'+k')' (n'+k')' (95)

At a spurious state, since D(k) =0 and D'(k) e0, it is clear that g'(k, r), @(k,r), and 8(k, r) remain well
defined, whereas y(k, r) and f' (k, r) do not. The expression for 4 (k, r) becomes

4(k, r) =, , k, , —sinkr —coskr+e(e'+k'j' 0 [D(k) =0, D*(k}~0], (96)

W (k, r) =D(k)+, +}e "'sinkr . (97)

and as expected this function satisfies the homoge-
neous integral equation for y„(k, r) and exhibits the
boundary conditions 4(k, 0) =0 and 4(k, 0)' = 0. Also
when D(k) =0 the solution &(k, r) is such that
8(k, 0) =1 and that 6(k, ~}=0.

The solutions 4(k, r) and e(k, r) are linearly in-
dependent, as can be seen by inspecting their
Wronskian, which is

merical calculations in this paper the energy-
wave number conversion factor 1/41.47 MeV '
fm ' is used. Note that neither ReD+(k) nor
ImD'(k) experiences a zero at any energy, while
D(k} is zero at 400 MeV.

Two-term separable potential of the Mongan case IV form

A two-term separable potential has been intro-
duced by Mongan" in fitting the 'Sp nucleon-nucle-
on phase shifts. The configuration space repre-
sentation of the case IV Mongan potential is

When D(k) = 0 the Wronskian in Eq. (97) vanishes
atr =0 and r =~, but clearly does not vanish for
all x.

The behavior of the Fredholm determinants
D(k) and D'(k) for this potential is illustrated in
Fig. 1, for which the values

V(r r') =g e~«"+' &+k e ~2&"+" ~

1

For this potential

D(k) =-&(k) =1-
2n, (n, '+k') 2n, (a,'+k2)

(98)

and

A, = 21.219 fm '

+ =1.5 fm ' and

Agg(ug —ng) (gg)4n, a, (n, +n, }'(a,'+k')(n, '+k')

have been selected, giving a spurious state at
E„„=400 MeV. In this and in the subsequent nu-

D'(k) =D(k)+R(k) s if(k),

where

(100)

O

E

tP
Ci

i

4 D{k)
-—-Re[D (k}]
——Im[D (k}]

and

(n, '+ k')' (n,'+ k')'

2a,a, (n, ' + k' }'(n,' + k')' (101)

(a,'+ k')' (n, '+ k')'

io' IO IO~

E, b{Mev)

I

io'

FIG. 1. Fredholm deter~~»nts for a one-term sep-
arable potential with a Yamaguchi form factor, with pa-
rameters given in the text. This potential yields a
spurious state at 400 MeV.

&y Qk(Ay cL2 ) (a,n2 —k )
2n„n, (n, + n, )(a,' + k')'(n, '+ k')' ' (102)

The solutions discussed in the previous sections
can be calculated for the potential of Eq. (98),
ignoring for the moment possible zeroes of the
Fredholm determinants. The physical solution
P'(k, r) and its conjugate ] (k, r) are given by
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where

1(k) „,„1,(k) „,„1,(k) „,„D' (k) D' (k) D' (k) (103)

and

I u- ~,g(o., —a, )k
(~,'+k')' 2n, (a, + o., )(o.,'+ k')'(u, '+ k')

(n, '+ k')' 2a, (o., + o.,)(o.,'+k')(a, '+k')' '

(104)

(105)

It should be noted that

1,(k)+ 1,(k) =1(k) .

The regular solution y(k, r) and the modified regular solution @(k,r) are, respectively,

y(k, r) = k ' sinkr+ [R(k) sinkr —1(k) coskr+1, (k)e &'+1,(k)e 2"]
1

kD(k)

and

(106)

(107)

4(k, r) =k 'D(k) sinkr+k '[R(k) sinkr —1(k) coskr+1, (k)e &"+1,(k)e 2"].

The Jost solutions f'(k, r) are givenby

f'(k, r) =e"'"+D(k) '{R,(k)a i[I,(k)+J(k)]}e "&"+D(k) '[R,(k)+i[I,(k)-J(k))}e "2",
where

)
X,gk(&, —&,)

(a, +k ) (o.,'+k')' '

(106)

(109)

(110}

(o., +k ) (a, +o2)(a,2+k2)(o. '+k )2 2n, (o.,2+k2)2(o.,2+k )
'

and

R (k)
(o.,'+k')' (n, +o., )(o.,'+k')'(u, '+k') 2n, (a,'+k')(a, '+k')' '

The functions R,(k) and R, (k) are related by

R,(k)+R, (k) =R(k),

(112)

(113)

(114)

where R(k) is defined in Eq. (101}. The real irregular solution 8(k, r) follows from the definition givenin Eq. (20) and Eq. (109), and is

8(k, r) =,
} )([D(k)+R(k)] coskr+1(k) sinkr}

D(k)

+D, }f[D(k) +R(k)]R, (k) +[1,(k) + J(k)]I(k)}e
1

+D, }D )([D(k)+R(k)]R,(k)+[1,(k) —J(k)]1(k)}e
1

Spurious state solutions

Mongan finds a good fit to the nucleon-nucleon
phase shifts for the following values of the param-
eters:

A., =3454.8 fm ',
A =-28.293 fm ',

~, = 6.15V fm ',
n, =1.786 fm

Mongan's potential is known to have a zero of D(k}
at a laboratory energy of 19.6 BeV.'4 That D(k)
=0 and D'(k) x 0 at this energy, and that there are
no other zeroes of D(k) for these values of the pa-
rameters, can be seen by examining the expres-
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FIG. 2. Fredholm deters~ants for a two-term sep-

arable potential of the Mongan case IV form, with the
parameters given by Mongan. This potential yields a
spurious state at 19.6 BeV.

nary parts of D'(k) vanish simultaneously. From
Sec. III it follows that for these values of the pa-
rameters D(k) must also vanish at the same value
of k. In principle, a set of parameters which
yields a continuum bound state can be obtained by
setting the real and imaginary parts of D'(k},
given by Eq. (100), equal to zero. A more conve-
nient approach, however, is to use the method of
cancellation of the Green's function for generating
a continuum bound state." When this method is
applied it leads directly to the fact that the poten-
tial of Eq. (98) yields a continuum bound state if
and only if the functions I,(k) and I,(k) defined in
Eqs. (104) and (105) are each identically equal to
zero. Under these conditions

sions for the Fredholm determinants. A plot of
their behavior as a function of the energy is given
in Fig. 2. From the form of D(k) given in Eq. (99)
it is clear that this is not the only set of param-
eters which will lead to a spurious state; a spuri-
ous state can be expected from a wide variety of
values of A.„A„a„and a, .

At a spurious staie it is evident that, as in the
case of the Yamaguchi potential, g'(k, r), C(k, r),
and ()(k, r) remain well defined, whereas y(k, r)
and f'(k, r) do not. Again, 4(k, r), given for the

Mongan potential at D(k}= 0 by

4(k, r}=k '[R(k}sinkr —I(k) coskr

+I,(k)e "~I,(k}e '"], (115)

satisfies the homogeneous equation for y„(k, r) and

exhibits the boundary conditions 4(k, 0) =0 and

4(k, 0)' =0. Also, as expected and as can be seen
from Eq. (114), when D(k) =0, 8(k, 0)=1 and

e(k, )=0.
Moreover, 4(k, r) and 6(k, r) are linearly inde-

pendent for all k. This can be seen by examining
their Wronskian, which is

2a, (a, + a~)(a,' + k,')
(a, —a, )

(117a)

2a, (a, +a, )(a,'+k, ')

where k, is the wave number at which the continu-
um bound state occurs. If these values of X, and

A, are substituted into Eq. (99}for D(k) and Eq.
(100) for D' (k), they lead to

D(k, ) =R (ko) = I(k, ) = 0, (118)

which is the condition for a continuum bound state.
This behavior of the Fredholm determinants at

a continuum bound state can be illustrated by con-
sidering the following set of parameters, consis-
tent with Eqs. (11'l}, which yields a continuum
bound state at 400 MeV:

A., =105.876 fm ',
g =-499.V52 fm ',
a, =2.0 fm ',
(y, =4.0 fm '.

The Fredholm determinants for these parameters
are given in Fig. 3. As expected, and in contrast

Wec, =D(k)+k '(kR, (k}—a,[I,(k}+Z(k)]}e &" coskr

+k '(kR, (k) —a,[I,(k) —J(k)]}e ' coskr

+(k 'a, R,(k)+I,(k)+&(k)}e- "sinkr

+(k 'a, R,(k)+ I,(k) —J(k)}e

+k '(a, —a, )J(k)e ( " "". (116)

Continuum bound state solutions

When D(k) =0 the Wronskian in Eq. (116)vanishes
at r =0 and r =, but clearly does not vanish for
all r.

lA I
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)

O'(k)]
o'(k)]
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From the form of D'(k) for the potential of Eq.
(98) it is clear that choices of the parameters a„
L, n„and n, exist such that the real and imagi-

FIG. 3. Fredholm dete~&~~nts for a two-term sep-
arable potential of the Mongan case IV form, with the
parameters chosen so as to yield a continuum bound
state at 400 MeV.
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to the behavior of D'(k) at a spurious state, both
the real and imaginary parts af D'(k) pass through
zero at the continuum bound state, in addition to
the zero of D(k) at that energy.

The continuum bound state wave function can be
calculated from either of the defining homogeneous
integral equations, Eq. (30) or (51). It is

(})„'(k,r) =N[e ~)"—e 2"], (119)

where N is a normalization factor. It follows im-
mediately that

(})'„(k,0) ' =N (n, —n, ) . (120)

Thus the potential of Eq. (98}yields a continuum
bound state of the type discussed in case (a) of Sec.
IV [(}'„(k,0)'10] for n, en,

For n, vn, the solution (})„(k,r) of the trans-
posed homogeneous equation, Eq. (64), is easily
obtained from Eq. (66). The result is

P„(k, r) (x: V(r, s)(})')(k, s)ds

=N[(n, '+ k')e ~~" —(n, '+ k')e-~2 "].
(121)

The orthogonality condition of Eq. (61) follows
immediately upon substitution from Eq. (121) and
performing the integration with si~. As expec-
ted, in substituting from Eq. (121) into Eq. (63},
the negative of the slope calculated in Eq. (120) is
obtained.

The solution y„(k, r), which along with (}(k,)r)
forms the linearly independent pair of solutions
to Eq. (1), can be obtained by direct solution of
the homogeneous integral equation, Eq. (34). The
result is

1 1
coskv

Q1 +k Q2 +k

CVj +Q" Q2 + C"

where M is the arbitrary constant of normaliza-
tion. That cp„(k, r) satisfies the boundary condi-
tions of Eq. (74) and oscillates at infinity follows
from Eq. (122).

From Eq. (120) it might be expected that if n,
= n„ the case (a) results would reduce to case
(b}. However, if n, =n, =n, the potential of Eq.
(98) reduces to a one-term potential with a Yama-
guchi form factor and strength A. = A, +A, . When
Eqs. (117) are used, however, a=-4n'(3n'+k, '),
resulting in a situation in which neither D' (k) nor
D(k) is zero; hence only trivial homogeneous solu-
tions can exist. That this is the case is clear
from Eqs. (119) and (122), each of which becomes

identically zero when n, = Q, However, even
though the potential of Eq. (98) does not admit
case (b}, there do exist potentials" which exhibit
a case (b) type [(})'„(k,0)' =0] continuum bound
state.

VI. CONCLUSIONS

In the introduction, we emphasized and demon-
strated with examples that certain analytic con-
straints are relaxed in going from a local to a
nonlocal potential. The discussion of relaxation
of constraints is based on the use of Fredholm
determinants. Unlike the case for a short range
local potential, for a nonlocal potential the Fred-
holm determinants D(k}, &(k}, and D'(k} can van-
ish for nonzero values of k. Furthermore, we
have shown that zeroes of these determinants are
not independent. A zero of D'(k) at k =k, implies
a zero of D(k) at k„whereas a zero of D(k) does
not imply a zero of D'(k). Zeroes of the Fred-
holm determinants have been discussed previously
in association with behavior not possible to a local
potential. In the present paper, based on the de-
pendence of these zeroes we have identified anom-
alous behavior of two types, spurious states
[D(k}= 0, D'(k) o 0] and continuum bound states
[D(k) =0, D'(k) =0].

Limiting ourselves only by the conditions that
the potential V(r, r') be symmetric [in which case
&(k) =D(k)] and satisfy Eq. (2), and considering
only simple zeroes of the Fredholm determinants,
we have compared the solutions for a nonlocal po-
tential with those possible for a short range local
potential. In the case of a short range local po-
tential, the physical solution, regular solution,
and Jost solutions are unambiguously defined for
all ke 0 by integral equations which appropriately
incorporate boundary conditions of choice. For a
nonlocal potential we have shown that these solu-
tions remain well defined as long as D(k)oO. A
more detailed analysis is required when D(k) =0,
in that certain of these solutions cease to exist
and, in addition, solutions to the associated homo-
geneous equations must be considered.

For a spurious state we have pointed out that
since D'(k) W 0 the physical solution g'(k, r) and
its conjugate g (k, r) must exist; on the other
hand, the regular solution cp(k, r) and the Jost so-
lutions f (k, r) do not. However, it is possible to
define for all D(k) a modified regular solution
C(k, r) and a real irregular solution 8(k, r). We
demonstrate the linear independence of these two
solutions. On the other hand, the integral equa-
tions for C (k, r) and 8(k, r) become homogeneous
for D(k}=0. Moreover, at a spurious state it is
not possible to impose arbitrary boundary condi-
tions on the general solution nC (k, r} and P8(k, r)



SOLUTIONS OF THE RADIAL EQUATION FOR SCATTERING. . . 214'T

For a continuum bound state for which the bound
state wave function g'„(k, r) exhibits nonzero slope,
there is a solution to the inhomogeneous physical
equation. This solution, however, is not unique,
but is arbitrary with respect to the addition of any
amount of g'„(k, r). The regular solution rp(k, r}
exists, and is arbitrary with respect to the addi-
tion of any amount of y„(k, r); the modified regu-
lar solution 4 (k, r) is identically zero. Neither
the Jost solutions nor the real irregular solution
6(k, r) exists. We demonstrate that the solutions
y„(k, r} and g'„(k, r) are linearly independent and
that the general solution can be written in the
form oy„(k, r)+ Pg'„(k, r).

For a continuum bound state for which g'„(k, 0) '

=0, all solutions of the inhomogeneous equation
exist; again, however, C(k, r) =0. On the other
hand, all of the homogeneous solutions are equal
to q'„(k, r), and solutions of the inhomogeneous
equations are arbitrary with respect to the addi-

tion of any amount of g'„(k, r)
Thus in this paper we provide a framework for

investigating some of the consequences of relaxed
constraints associated with analyticity. We do not,
however, present an explanation of the phenomena
ascribed in the introduction as requiring a non-
local potential. Such a study requires examination
of the phase shift behavior in the vicinity of the
zeroes of the Fredholm determinants. An investi-
gation of this phase shift behavior is under way. "
Also in preparation is an extension of the gener-
alized Fredholm determinant previously defined
for a one-term separable potential" to the case of
a symmetric N-term separable potential. " Both
areas of inquiry appear fruitful.
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