
PHYSICAL R EVIEW C VOLUME 13, NUMBER 6 JUNE 1976

Deuteron stripping reaction to unbound states'
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Two features of the (d, p) stripping reaction to the continuum, the parallelism between the excitation
functions of energy-differential stripping cross section d 'o/d Ad E and the total neutron-target elastic
scattering cross section o„,(n, n), and the dependence of the ratio (d'o/dAd E)/a„,(n, n) on transferred

angular momentum (t), are explained satisfactorily by a plane wave Butler approximation for a "S target
nucleus. It appears that the t dependence of the above ratio is so dominant that even the crude Butler
approximation suffices for identification of / values. The (d, p) and (d, n) angular distributions are also
calculated for the targets "C, "C, and ' 0, leading to unbound states by this method. The results are
compared with experiment and with these obtained by distorted wave Born approximation method employing
an extrapolation technique to treat the neutron wave in the continuum.

NUCLEAR REACTIONS Calculated (d 0/d QcK)/0„, (n, n), do(d, p)/d Q, do(d, n)/d Q;
unbound states; E&=6-15 MeV.

I. INTRODUCTION

Deuteron stripping reactions to the bound levels
of the residual nucleus have been the subject of in-
vestigation for a long time. However, within the
last few years an increased amount of effort has
been made to study the deuteron stripping reaction
leading to the unbound states. As a result, some
data on the differential cross section for the strip-
ping reaction of the type A(d, p)B* into the con-
tinuum are available now.

It was first observed experimentally by Fuchs
et al. ,

' that the formation of a target-neutron reso-
nance in the (d, p) reaction is reflected in the spec-
trum of the emitted spectator proton in a way very
parallel to the total cross section of the free neu-
trons. It is also interesting to notice that the
transitions to resonances of high l values are
strongly enhanced in (d, p) reaction with respect to
the neutron scattering. Hence the ratio of the
(d, p} energy differential cross section at some
fixed angle to the total elastic neutron-target cross
section is highly dependent on the orbital angular
momentum l of the transferred particle. ' This is
a very important observation, as it serves to de-
termine the orbital angular momentum of the reso-
nant state without necessarily measuring the cross
sections for all angles.

The purpose of the present paper is to make a
theoretical analysis of some of the recently avail-
able experimental data on (d, p) and (d, n) reac-
tions leading to the unbound states, for target nu-
clei &2, i~C a 0 and S and for incident deuteron
energies in the range 6-15 MeV. The above bom-
barding deuteron energies enabled levels up to
excitation energy F„=9-12 MeV to be reached in

the reaction. The main aim of the present work
is to study the resonance structure of the unbound

system as well as the relationship between the deu-
teron stripping and the elastic scattering with re-
spect to the transferred angular momentum.

There are several theories for the deuteron
stripping reaction to unbound levels. One of them,
developed by Vincent and Fortune' and by Huby and
his collaborators, ' employs the distorted wave
Born approximation (DWBA} in its form familiar
from stripping to bound levels, except that the
wave function used for the captured neutron is pro-
portional to a scattering wave function in a poten-
tial well adjusted to produce an exact resonance.

Another prescription' is to replace the resonant
state by a weekly bound state of the order of a few
keV binding energy without altering the energy of
the outgoing particle and perform the usual DWBA
calculation. In a more refined version' of the
above prescription, the usual DWBA calculations
are carried out for a particular lj state in the neg-
ative energy region, varying it towards positive en-
ergy region. The obtained cross sections are ex-
trapolated into the positive energy region and read
off for the corresponding lj state at various
angles.

In the present calculation (d, p) continuum strip-
ping cross section is expressed in terms of the
phase shifts of the neutron-nucleus elastic scat-
tering and a well-defined "distortion matrix ele-
ment. " The "parallelism" and the "l effect" find
a complete explanation within the framework of
this model. This treatment is similar to that of
Baur and Trautmann' which is based on the earlier
works of Butler9 and Friedman and Tobocman. ~

The contributions from the nuclear interior and the
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breakup process are neglected throughout. A brief
summary of the theory is given below.

II. FORMALISM

& =(C „-' „' (r„)X'„-'(r, ) I &„,(r„,) I X',-'V, (r.,)) .
nf

(2)

The in- and outgoing scattering wave functions of
deuteron (d) and proton (P) with wave vectors k,
and kf are denoted by X-" and yg, respectively.
4„-' ' (r„) is the neutron wave function in the con-
tinuum. k„ is the wave vector corresponding to the

We consider a reaction of the type

d+A = (A+n)„, +p .
The T matrix for this process is given in the post-
interaction form of DWBA as"

energy of the neutron in the continuum, vf is the
neutron spin projection. The differential cross
section for the stripping reaction to a three body
final state in which the neutron is not observed is
given by"

d o» mgmg 1 k„m„~k ~
dOqdEq )f (2S+1) (2v) kg ~

where I,. and mf are the reduced masses in the
initial and final channels, m„ is the reduced mass
of the neutron-target system, and S is deuteron
spin.

Employing the partia. l wave expansion of 4 f~ „(r„)Rnvf
in Eq. (2) and carrying out the spin algebra, we ob-
tain for a particular resonance (fixed l and j)

d2

de dE =2.a' (2S+i k u'+121+1~ "" '"'f ~'")"j"""'(""&''(")&("~»~' (4)

Here J„and J~ are the total spins of target nucleus
and the resonant state. The symbols f»(r„) denote
the radial wave function for the neutron, p, is the
projection of l, and

d o/dA~~= Q d o»ldQqdEq.
»

The dominant contribution to the DWBA matrix
element will come from the values of radial dis-
tances larger than the nuclear radius. In this
region we can express the neutron wave function
in terms of phase shifts 5,~

in the following way

f»(r„)=j,(k„r„) +el"» sin5»h, "(k„r„), (5

where the spherical Bessel and Hankel functions
are denoted by j, and h,", respectively. The
spherical Bessel function term in Eq. (5) arises
from the unscattered part of the neutron wave
function. This term will be important when we
consider nonresonant deuteron breakup. The three
body model of deuteron breakup and stripping has
been nicely described by Farrell, Vincent, and
Austern. " However, in many applications, this
term is small compared to the scattered part when
the phase shift shows a resonance. This is spe-
cially the case for high l values and low energies.

2J~+1 4m

(u„+1)(2S„+1)k'~ »~ ' (7)

so tha to(ot(n, 'n) =Q»o».
To carry out the integration in Eq. (4), we em-

ploy the addition theorem for spherical Hankel
functions. '~ Thus the transition matrix is ex-
pressed in terms of a single coordinate z and the
form factor D,. Now we can split Eq. (4) into two

parts as

d 0'» = o...(n, n)F, , (6)

where o„,(n, n) is the total neutron elastic scatter-
ing cross section as defined in Eq. (7) and

Hence we can write

f»(r„) = t»h,"(k„r„),
where

t, =ie'5» sin5,

In the interior region, the Hankel function should
be replaced by the correct scattering solution.
The quantity t» is directly related to the total
neutron elastic scattering cross section in the
channel lj as"

'2

4( 5)' (2S+ 1)'k 2l+ 1 ~ X- '*(r)h,"(k„r)Y,* (r)&f~'(r)d'r (9)

with

h' (P+ 2n)'"(P+ n)'"
M ( (P+ o)'+k„'

and

a = 0.2317 fm ' and P = 5.39m .
The quantity F, =(d o»/dA~dE~)/o„, (n, n) is called



13 DEUTERON STRIPPING REACTION TO UNBOUND STATES 2101

"stripping enhancement factor, " which expresses
the "parallelism" between neutron elastic scatter-
ing and deuteron stripping to continuum.

Employing plane waves for ~ ' and yg".f
and taking the transferred momentum k = (k, —kz)
along the Z direction, we obtain

1 m]my ky

(2$+1) (II% )' k

2

j,(kr)h,"(k„r)r'dr

The radial integral, evaluated by introducing a
Butler cutoff radius Ro, is given by"

(10)

j,(kr)h,"(k„r)r'dr
Ro

2 [khI" (k+0)j, ,(kRO)

—k„j,(kRO) hI'~, (k„RO)], (11)

where the integral vanishes at the upper limit, be-
cause of the physical condition k &k„.

The (d, p) angular distribution is given by

Hankel function' h,"(k~~r) with

2m), Ze
R (15)

Here we have assumed that the Coulomb barrier
has a constant height corresponding to radius R.
Z represents the charge number of the target nu-
cleus and k~ is the wave vector of proton in the
continuum.

I.O

III. RESULTS AND DISCUSSION

The l dependence of the "stripping enhancement"
factor (E,), i.e. , the ratio of a neutron resonance
in (d, p) and the total neutron cross section, was
first experimentally observed by Bommer et al.
for "N and "Mg target nuclei. However, the re-
cent experimental data of Bommer et al."for
"S(d,P} reactions to the unbound states of "S re-
veal a similar l dependence. Figure 1 shows the
results of our calculation for F, for the nucleus

do'» d o»
dA~ ~dQ~~ (12)

0.5-
The energy-differential cross section in the inte-
gral contains scattering phase shifts 5» which can
be written near a resonance as

do'~, 47t' m~m~ ~k 2J~+1 Do k„m„
dD~ (2S+1) (2IIii ) k, 2J„+1 n

2

j, kr)h,"k„r)r'dr (14)

where the explicit value of the integral is given by
Eq. (11).

If the captured particle is a proton then this wi11
be subject to the Coulomb field even outside the
radius R, . The wave function of the transferred
proton is then replaced by a Coulomb modified

O„(E„)=cio,'+tan '
2(

"
)ff 0-

under the assumption that only one channel is
open. Here 7'» and F, denote the width and the po-
sition of the resonance, respectively. Since
O„(E„}is the only rapidly varying function in the
energy interval of the resonance, we can easily
carry out the integration over the energy in Eq.
(12}. ln the case of vanishing background phase
shlf t 5

p y
= 0, this leads to the cross section for

stripping to an unbound state. As already men-
tioned, we replace the scattering wave function of
deuteron and proton by plane waves and take the
effect of distortion and absorption into account by
introducing Butler cutoff radius R,. The (d, p) an-
gular distribution is then given by

O.R-

O. l—

~ 0.05
I

L

I

cy O.OR
X
~ O.oi
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I

\
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FIG. 1. Variation of stripping enhancement factor
{F&) for S target with the neutron reso»ace energy
and the orbital angular momentum. The energy-differ-
ential cross section is measured at 10' for 12 MeV inci-
dent deuteron energy. The experimental points are
taken from Ref. 17.
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TABLE I. Kinematics of (d,p) and (d, n) reactions to unbound states.

Nucleus
Type of
reaction

Deuteron
energy
(MeU)

Excitation
energy
(MeU)

Level width
(keU)

Resonance
energy
(Mev)

12C

14(

16O

(d, p)
(d, n)
(d, p)
(d, p)

15.0
6.5
9 ' 3

13.3

9.899
12.097
4.554
5.083

30
1.7

45
94

5.368
2.025
0.442
1.00

"S and their comparison with experimental values.
The only free parameter in our calculation is the
cutoff radius R, . It is taken as

R, = (1.4A' ~'+ a) fm .

To vary R0 we change 4 in our calculation. For
D, we have used the actual form factor dependent
upon k„ instead of a zero range constant as was
done by Baur and Trautmann.

We immediately notice that the stripping en-
hancement factor calculated in plane wave approxi-
mation is strongly dependent upon resonance angu-
lar momentum l. The ratio of the resonance cross
section in (d, p) to that in (n, n) increases by up to
1 order of magnitude if the l value is augmented by
one unit. It is important to note that the l-value
determination of the nucleon resonances from their
formation in deuteron stripping can be made from

C(d, p) C (9.899 MeV)

ED= l5.0MeV

b, =2.0

20—

IO—

0 (5.083 MeV)

3 MeV

=3.2
= 2.8

such a simple theory. The agreement between
these crude theoretical estimates and the experi-
mental values also appears satisfactory. One can
understand the l effect qualitatively as well. The
effect is actually due to the strong I dependence of
the penetrability that governs the magnitude of the
form factor in the barrier region. This remark
has been made both by Lipperheide and Mohring"
and by Vincent and Fortune.

In order to establish the practicability of the
method, we have calculated in Butler approxima-
tion the stripping angular distribution for several

50—
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C 2.0-
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a 0
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0(d, p) 0 (4.554 MeV)

ED
= 9.3 MeV

b =2.0

40 80

(d II)

I 20
I

)60

FIG. 2. Angular distribution for C(d,p) C (9.899
MeV) reaction obtained by Butler cutoff method. The
measurements are taken from Ref. 6.

I

40 80

~ ~~ ~ ~~-r-+-~
l20 l60

e, (deII)

FIG. 3. Stripping differential cross section for ~80-

(d,p) 0* reaction for two levels having l =1 and I, =2.
Plane wave calculations are shown for two values of
cutoff radii. The measurements are taken from Ref. 6.
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20-
G(d, n) N (l2.09MeV)
E~= 6.5 MeV

a =2.5
IO.O—

3.0

l.0

0.3

In Fig. 4 the results of calculation for (d, n) dif-
ferential cross section employing Butler approxi-
mation a,re shown along with those obtained by
DWBA calculations which use an extrapolation
method for the evaluation of neutron wave function
in the continuum. It is apparent that the plane
wave calculations discussed here, though they re-
quire the adjustment of the cutoff radius, give re-
sults in a way very similar to those produced by
DWBA.

In a more accurate treatment for the evaluation
of F„one should employ the method suggested by
Huby and Kelvin. According to them the energy-
differential cross section is calculated by the usu-
al DWBA formula except that the bound state wave
function is replaced by a scattering wave function
as follows:

A real Woods-Saxon potential well is adjusted in

depth so that it produces an (fj) orbit resonating
(i.e. , having phase shift —,v) at the neutron energy
which corresponds to the formation of (A+n) reso-
nance. The problem of slow convergence of the
radial integral in DWBA claculations and alterna-
tive methods to circumvent it and also the rele-
vance of spectroscopic factors will be discussed
in a future publication. "

IV. CONCLUSION

20 40 60

e, (deg)
80

FIG. 4. Comparison of stripping differential cross
section for C(d, n) I (12.09 MeV) calculated with
DWBA (dotted line) and plane wave (solid line). The
DWBA results are taken from Hef. 7.

(d, p) and (d, n) reactions leading to unbound states.
The kinematic parameters" of these reactions are
listed in Table I. The results of these calculations
for target nuclei "C and "0 are shown in Figs.
2 and 3, respectively. The experimental points
are from Ref. 6. We notice that results of calcu-
lations are in fair agreement with experiment ~

The main features of the angular distribution are
unaltered by varying the cutoff radius R„as can
be observed in Fig. 3. It is also clear that the
angular distributions for stripping to the unbound
states do not show any l dependence. So it is
favorable to determine the / values of the reso-
nances by calculating the stripping enhancement
factor rather than the angular distributions, since
the former is strongly l dependent. The same
conclusion has been reached by Mohring and Lip-
perheide' in a more sophisticated calculation.

In summary we can say that the simple method
of Butler cutoff discussed here accounts well for
the observed parallelism between the energy dif-
ferential (d, p) cross section and the total neutron-
target elastic scattering cross section. The l de-
pendence of the stripping enhancement factor is
also accounted for. The angular distributions ob-
tained for (d, n) reactions by this method are com-
parable with those obtained by DWBA.

Butler approximation, therefore, seems to be a
good approximation to the real situation. The
agreement between measured and calculated cross
sections strongly supports this too. It should
further be noted that the method described here is
not only conceptually simple but also leads to a
small amount of numerical work. One of the rea-
sons for the success of this method for unbound

stripping may be that the unbound states occur at
relatively higher excitation energies in compari-
son with bound states, and hence the tran sfer red
particle is less sensitive to the nuclear interior.
Thus the approximation of neglecting the contribu-
tions from the nuclear interior seems to be rea-
sonable for such cases. The other reason may be
due to the presence of the factor (k' —k„') ' in Eq.
(11). As k tends to k„, the plane wave part of the
full DWBA matrix element will, perforce, domi-
nate.
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