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By use of a time-dependent wave function of the BCS form, we compute microscopically the energy dis-

sipated for a system with a monopole pairing force moving under the influence of a time-dependent single-

particle potential. Quasiparticle generation and coupling of the two-quasiparticle modes of the system are

included automatically and provide contact with the Landau-Zener formula. The single-particle potential is

related to nuclear shapes generated by viscous hydrodynamical calculations of a fissioning 3 U nucleus. We

attempt to determine the energy dissipated between the saddle point and scission point by requiring that at

the scission point the energy dissipated in the microscopic calculations equal that dissipated in the macro-

scopic hydrodynamical calculations. This procedure leads to 34 MeV of dissipated energy, which is almost

twice the value of 18 MeV obtained from macroscopic hydrodynamical calculations that reproduce experi-

mental fission-fragment kinetic energies. The corresponding value of the nuclear viscosity coefficient deter-

mined from the microscopic calculations is 0.04 TP, compared to 0.015+0.005 TP obtained from the mac-

roscopic hydrodynamical calculations. The viscosity coefficient determined from the microscopic calcula-

tions is even larger if the dissipated energies are compared at a finite scission neck radius. As a possible reso-

lution of this discrepancy, we propose that level splittings arising from axially asymmetric and reflection-

asymmetric deformations during the descent from the saddle point to scission reduce the energy dissipation

and make the nuclei only moderately viscous.

NUCLEAR REACTIONS Fission 23 U; calculated microscopically energy dissipated
between saddle point and scission. Monopole pairing force, time-dependent wave
function of BCS form, correspondence with Landau-Zener formula, nuclear viscos-

ity, axially asymmetric and reflection-asymmetric deformations important.

I. INTRODUCTION

The central problem in treating the dynamics of
nuclear systems is similar to one that occurs in

the kinetic theory of gases. This is the isolation
and treatment in detail of a few physically signifi-
cant collective variables describing the system,
while at the same time handling approximately the
behavior and influence of the many other intrinsic
variables which are "swept under the rug. "

Although the problem of choosing the correct set
of collective variables is by no means simple or
even well defined in general, once such a choice is
made we are led immediately to the concept of dis-
sipation, or the flow of energy between the collec-
tive and intrinsic modes. In large classical sys-
tems, which are characterized by such collective
coordinates as density and velocity fields, this en-
ergy flow is irreversible, with organized collec-
tive motion always degrading into "heat. " Such
dissipation can be described in terms of a viscos-
ity coefficient by introducing a dissipative term in-
to the dynamical equations of motion.

In a classical hydrodynamical description of nu-
clear motion, dissipation is introduced convenient-

ly by means of Bayleigh's dissipation function. ' '
This function, which is equal to one-half the rate
at which energy is converted from collective to
intrinsic degrees of freedom, is quadratic in the
collective velocities. This modifies the classical
Lagrange equations of motion by introducing terms
that are linear in the collective velocities. Alter-
natively, one can attempt to solve directly the
Navier-Strokes equation by use of finite-difference
methods. "

In a hydrodynamical approach the nuclear viscos-
ity coefficient can be determined by comparing
calculations that depend upon its value with the
corresponding experimental quantities. For ex-
ample, in the fission of a heavy nucleus, nuclear
viscosity affects strongly the dynamical path from
the fission saddle point onwards and hence the fis-
sion-fragment kinetic energy. A recent corr~pari-
son" of calculated and experimental fission-frag-
ment kinetic energies gives for the nuclear vis-
cosity coefficient p the value 0.015+ 0.005 TP,
where

1 TP = 1 terapoise = 10"poise = 10" dyn s/cm'

= 6.24 & 10 "Me V s/f m' = 0.948 a/fm'.
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This is about 30% of the value that is required to
critically damp the quadrupole oscillations of ide-
alized heavy actinide nuclei. Other estimates' '
of the nuclear viscosity coefficient based on the
damping of the motion from the fission saddle point
to scission, the damping of vibrational states, and
the damping of giant dipole resonances also yield
values of about 0.015 TP. Several other attempts
have also been made to deduce information on nu-
clear viscosity from experimental data on fis-
sion" ' and very-heavy-ion-induced reactions, '
as well as by other means. "'"

While the description of dissipation in terms of
a bulk viscosity coefficient is useful for a wide va-
riety of classical systems, in quantal systems it
is desirable to start from a more microscopic
point of view. Whereas in classical systems the
viscosity coefficient can be derived from micro-
scopic kinetic-theory equations and hence related
ultimately to the interparticle potential, an analo-
gous derivation for quantal systems from the
many-body Schrodinger equation has not yet been
achieved. In fact, because of the relatively small
number of nucleons in the nucleus, fluctuations
from irreversible behavior may be quite large,
allowing energy to be exchanged freely in botk di-
rections between collective and intrinsic coordin-
ates.

Several studies directed toward a microscopic
description of nuclear dissipation have been made
already. " " These include such varied approaches
as a Fermi-fluid model, " "standard reaction
theory, "and linear -response theory. ""However,
the traditional microscopic interpretation of nucle-
ar dissipation is in terms of the mechanism of
slippage at level crossings. " In this approach
the collective coordinates are taken to describe the
shape of the single-particle potential, and the in-
trinsic coordinates to describe the configuration of
the nucleons in this potential. It should be borne in
mind, however, that there is considerable ambi-
guity in such an identification because the shape of
the single-particle potential depends upon the nu-
cleon coordinates, and collective kinetic energy
must arise ultimately from changes in the intrin-
sic coordinates representing the flow of nuclear
matter.

Under certain restrictive assumptions concern-
ing the energies of two levels which in the absence
of residual interactions would cross as the collec-
tive coordinates change, Landau"'" and Zener"
derived an expression for the probability that the
system jumps from the adiabatic path to the ex-
cited state at such a level crossing. Although cal-
culations employing the Landau-Zener formula
have been used to describe dissipation during
heavy-ion fusion processes, " the conditions

necessary for its validity are in fact not well sat-
isfied in nuclear systems.

Among the first attempts at a realistic descrip-
tion of level slippage was an effort by Schutte and
Wilets"'" to relate the residual interaction of the
Landau-Zener formula to the well-known pairing
force that couples pairs of nucleons moving in
time-reversed orbitals. By restricting themselves
to a limited class of two-quasipartiele excitations
of the nucleus, they were able to solve the time-
dependent Schrodinger equation for motion in a
simplified version of a modified spheroidal har-
monic-oscillator potential and thereby demon-
strate the dissipation of energy from collective
modes into intrinsic modes.

In this paper we first reformulate and extend the
idea of Schutte and Wilets and second treat a real-
istic situation in an attempt to determine the nucle-
ar viscosity coefficient. To these ends we show in

Sec. II how dissipation in a system with a pairing-
force residual interaction may be treated in gen-
eral, allowing in a simple way the simultaneous
inclusion of multiquasiparticle states. Expressions
are derived for the time evolution of the one-body
density matrix and pairing-field matrix, which are
then related to the usual time-dependent BCS pair-
ing amplitudes u and v." Qur expressions for the
rate of energy dissipation show that in general the
dissipation is not irreversible. The latter part of
this section discusses level slippage as embodied
in this formalism and explores the connection to
the Landau-Zener formula. The determination of
the nuclear viscosity coefficient proceeds in Sec.
III, where we treat the descent of "'U from its
macroscopic saddle point to scission. Although we
determine a value of the nuclear viscosity coeffi-
cient which is consistent with the energy dissipated
microscopically, there are certain inadequacies
in the irreversible macroscopic parametrization,
as well as ambiguities in the microscopic calcu-
lation. In Sec. IV we present our conclusions and
indicate possible extensions of the calculations.

II. TIME-DEPENDENT PAIRING EQUATIONS

The simplest microscopic description of nuclear
dynamics during fission is achieved by imagining
that the fissioning system provides a time-depen-
dent single-particle potential U(t) in which the nu-
cleons move independently. Such a description is
within the spirit of (indeed, is the essence of) the
more rigorous time-dependent Hartree-Fock
(TDHF) approximation, "which defines U self-con-
sistently in terms of the instantaneous positions of
the nucleons and the fundamental two-nucleon inter-
action by constraining the many-body wave function
to be a Slater determinant.



MIC ROSCO PIC C A LC U LA TION OF NUC LEAR DISSIPATION 2ii

4)
CP

La
CL
I
tQ

~
C

V)

2 /M/

Time —=

FIG. 1. Typical level crossing for a potential U{t)
that has axial and reflection symmetry. Levels with dif-
ferent values of the projection 0 of the total angular mo-
mentum on the symmetry axis and parity & cross as
dashed lines. The solid lines show the time-dependent
eigenstates of the full Hamiltonian, which mixes the un-
perturbed states with strength l Ml. The residual inter-
action permits a pair of particles initially in 0~ to shift
to O™~after the crossing.

where P, p is the probability that as the time t-~
the system has jumped from the lower level to the

upper level, ~ is the matrix element of the resid-
ual interaction that couples the levels, and die
—e'l/dt is the constant relative slope of the con-
figuration energies with respect to time. Here, as
throughout this paper, we use units in which 8= l.
If lMl is large or if the relative slope is small
(corresponding to U changing slowly with time),
the adiabatic path is favored.

In nuclear systems, the validity of Eq. (1) is a
priori highly questionable. Realistic levels do not

cross as infinite straight lines. In addition, a par-
ticular level usually is crossed successively by

many different levels, so that the problem is in-
trinsically a many-body one. The problem there-
fore cannot be described in terms of occupation
probabilities alone, as is suggested naively by Eq.
(1), but requires instead that we consider the in-

The early work of Landau"'" and of Zener" pro-
vides an important result concerning the behavior
of the system at level crossings, although for a
highly simplified case. If, as illustrated in Fig. 1,
the energies of the crossing levels are linear func-
tions of time and if the residual interaction is con-
stant in time, the two-level time-dependent Schro-
dinger equation may be solved approximately. This

yields the result

2wlM
'

d e —e' dI;

terference of amplitudes.
The time-dependent many-body problem, with a

more realistic treatment of the residual interac-
tion, may be solved in principle within the BCS
formalism by use of the time-dependent Hartree-
Fock-Bogoliubov (TDHFB) approximation. ' The
many-body wave function is constrained to be of
the BCS form at all times, and as such is not a
state of definite particle number. A TDHFB cal-
culation is fully self-consistent in the same sense
as TDHF, and level slippage is treated automat-
ically due to the simultaneous presence of many

different Slater determinants in the wave function.
However, even with a simple effective nucleon-
nucleon interaction such as the Skyrme interac-
tion, "'"such calculations present formidable nu-

merical difficulties. Because of this, it is reason-
able to seek a simple way in which the problems of
TDHFB calculations may be bypassed, so as to ob-
tain a qualitative estimate of the effects of the re-
sidual interaction as would be embodied in a full
calculation.

The treatment of the residual interaction may be
simplified considerably through the use of a mono-
pole pairing force."'" Although this force does
not reproduce more realistic forces in detail, " it
may be adjusted so as to reproduce average effects
correctly, while at the same time offering much in

the way of numerical simplicity.

A. Derivation

We assume for the moment that the time-depen-
dent single-particle potential U(t), as derived for
example from the TDHF approximation, is known,
as are the single-particle eigenfunctions and eigen-
values of the corresponding one-body Hamiltonian.
We may then take the time-dependent many-body
Hamiltonian to be of the form

H(t) = g e&(t)(a; a&+a;a, ) —G(t) Q a, a,a,a&,
i&O &.)&0

(2)

which corresponds to particles with a pairing force
moving in a time-dependent single-particle poten-
tial. Here a& and a, denote operators for creating
and destroying, respectively, a particle in state i,
e, (t) is the time-dependent eigenvalue associated
with the state i, and -i denotes the time-reversed
orbital conjugate to, and degenerate with, i. The
single-particle sum in Eq. (2) runs over only one
partner of each time-reversed pair; the restricted
sum in the two-body force, denoted by a prime,
allows the pairing force to operate over only a fi-
nite number of active levels near the sharp Fermi
surface. The pairing force acts separately between
neutrons and protons; it is understood throughout
the paper that all our expressions include analo-
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p, ,(t) -=(a,'a, ) (3a)

«, , (t) = (a,a-,). (3b)

The brackets ( ) denote expectation value within the
system's full time-dependent wave function.

Dynamical equations describing the time evolu-
tion of these quantities within the TDHFB formal-
ism are derived from Heisenberg's form of the
equations of motion. As discussed in detail in
Appendix A, we obta, in, in matrix notation,

ip =[p, e] —Gpp* —G«Tr «+ Gp*p+ G«Tr«*

and

+i[p, D]

i« =(«, e) —G«p*+ Gp*Tr«+ Gp Tr« —G'Tr«

—Gp«+ i [«,D].

(4a)

(4b)

We denote total differentiation with respect to
time by a dot, complex conjugation by an asterisk,
an adjoint matrix by a dagger, a commutator by
square brackets, and an anticommutator by curly
braces. Furthermore, e is the time-dependent
diagonal matrix of single-particle energies e;(t),
and D is the antisymmetric time-der ivative matrix
for the wave functions, defined for i j as

9 . . 8UD„= i —j = i —j/(e, —e)= D, ,;-(5)

the diagonal elements of D are zero. In addition,
Eqs. (4) are written with the summation convention
that all matrix operations such as trace or pro-
duct occurring in terms proportional to G are re-
stricted to active levels with positive subscript in
intermediate sums.

Equations (4) constitute an approximation to the
TDHFB equations with a monopole pairing force
which is valid when the pairing is weak and does
not redistribute the nucleons so as to change sig-
nificantly the potential U(t). The full solution of
Eqs. (4) would tell us how the entire system re-
sponds to the changing single-particle potential.
The difference at a given point between the total
energy and the corresponding ground-state energy
for that shape would contain both energy of collec-
tive motion and internal excitation energy. The

gous terms for neutrons and protons. We hence-
forth consider only systems with an even number
of particles (even-even nuclei).

With the Hamiltonian (2), the BCS wave function
for the system is described conveniently in terms
of the Hermitian one-body density matrix and sym-
metric pairing-field matrix defined in terms of the
instantaneous eigenstates of U, namely

crux of the problem is to separate the collective
energy associated with the coherent movement of
the nucleons from the internal excitations associ-
ated with the random motion of the nucleons. No
fully satisfactory method for making this separa-
tion has been developed, and the approximate pro-
cedure that we employ is only a first step in this
dire ction.

Our separation procedure is motivated by the
observation that under certain conditions the pri-
mary contribution to the collective kinetic energy
arises from terms involving the derivative matrix
D defined by Eq. (5). This is true, for example,
for slow collective velocities and high excitation
energies, where the excitations are mainly of sin-
gle-particle character. Then the matrix elements
with respect to the many-body states of the system
that appear in the cranking formula" for the iner-
tia tensor are approximately proportional to linear
combinations of the matrix elements D, ~ with re-
spect to the single-particle states. Therefore, for
this case, use of the approximation D„.=0 would
give approximately zero for the collective inertia
tensor when calculated from the cranking formula.
We therefore attempt to eliminate the major part
of the collective kinetic energy by setting the de-
rivative matrix D equal to zero. The remaining
terms in the equations of motion (4) then should de-
scribe the effect of the residual interaction on the
dissipation. A similar approximation has been
used also by Glas and Mosel. ~'"

When the system is near the ground state at slow
collective velocities, our approximation D;& = 0 is
not sufficient to eliminate the major part of the
collective kinetic energy. In this case the many-
body states are combinations of quasiparticle
states, and the resulting matrix elements that ap-
pear in the cranking formula contain large contri-
butions in addition to the terms that are propor-
tional to D„. Therefore, while the system is near
the ground state a large fraction of the energy that
we later identify as dissipated energy is in fact
collective kinetic energy. But in practice this de-
ficiency is not serious because the total amount of
energy involved is relatively small when the sys-
tem is still near its ground state.

At high collective velocities the cranking expres-
sion for the inertia is no longer valid and conse-
quently it is not possible to say a priori to what
extent the approximation D,, =0 should eliminate
the collective kinetic energy. However, as we
show later in connection with Fig. 9, in the rapid
descent of a "'U nucleus from its saddle point to
the point at which the dissipated energy is a maxi-
~um, the contribution to the "dissipated" energy
from collective kinetic energy is less than 5.1MeV
or 8%. Also, it may be seen later from Eqs. (8)



13 MICROSCOPIC CAI CULATION OF NUCLEAR DISSIPATION 213

that in the absence of pairing the single particles
remain in the same state irrespective of the col-
lective velocity. Therefore, in this limiting case
the dissipated energy should contain only small
contributions from collective effects. Neverthe-
less, the separation that we have employed de-
mands more careful study.

In a system without residual interaction, the
neglect of D would permit particles to change their
energy eigenvalue only and never their orbital (al-
though of course these orbitals are changing with

time). The presence of the pairing force is then

the only mechanism for level slippage, and Eqs.
(4) become equivalent to the assumption of a time-
dependent BCS wave function of the form

I+(t)& = II[ (t)+, (t) ' ',
1 10&, (8)

f&o

where IC(t)& is the many-body wave function for the
system, IO& is the particle vacuum, and v& and u&

are the complex BCS occupation and vacancy am-
plitudes, respectively; these satisfy

Iu, (t}l' + 1., (t)I' = 1.

The one-body density and pairing fields then be-
come diagonal in the time-dependent representa-
tion of single-particle states and are given by

By use of Eqs. (8), E(t) is found to evolve in time
according to

E (t) = 2 Tr(e p) —G [ ITrK I'+ Tr(p')]. (10)

Thus, in a static system, for which i = 0 and G = 0,
the total energy is conserved, even though the in-
dividual elements of p and K may still be varying
with time.

u +v

Rnd

2(e, —X)u, f&, = (u,
' —v, ')(S —Gu, v, ).

The pairing gap 6 is given by

(12)

6 ukVk p

k&0

and the chemical potential A. is adjusted so that

Vk =N
k&o

(14)

B. Limiting cases

Several properties of Eqs. (8) are illuminated by
studying them for the BCS ground state of a static
system. The real ground-state amplitudes uf and

8f then satisfy the well-known gap equations"

Rnd

p; -=p), = Iv, (t) I' where N is the number of pairs of particles in-
volved in the pairing interaction. The ground-
state energy is given by

K, = K„=u&*(t)v&(t).

Thus p is real, while

p,
' + IK, I' = p~.

Equations (4} then become

p, =2G1m(K, TrK*)

ancl

K, = —2i[e,K, —GK, p,. +G(p, ——,')TrK],

(Vb)

(8a)

(8b)

E, =2 P e,v, ' —~'/G —G Q v, ',
f&0f&o

Rnd

p, (t) = p, (0) = v,
'

which is constant by virtue of Eq. (10).
If at time t=0 we insert p, = vf' and Kf =u, vf

as initial conditions into Eqs. (8), we find that at
later times

where

TrK = Kk.
k&0

For inactive orbitals Kf =0, whereas pf =1 for those
below the active region of levels and 0 for those
above.

Equations (8) involve only the single-particle en-
ergies &f(t), which avoids the necessity of dealing
with the details of the eigenstates of U. They con-
serve the average number of particles in the sys-
tem, 2 Trp, as may be verified by taking the trace
of Eq. (8a). The total energy of the system within
the TDHFB approximation is expressed simply in
terms of p and K as

E(t) —= (ff& = 2 Tr(ep) —6 ITrK I' —G Tr(p').

K& ( t) = K& (0}exp[-i(2X —G) t]

= u, v, e p[ xi(2Z —G)-t).

Thus each Kf contains the same oscillating phase
factor. It is precisely this delicate phase coher-
ency which keeps pf constant, as is seen by the
form of Eq. (8a). In a dynamic system, it is the
destruction of this coherency among the various Kf

that is responsible for the shifting of occupation
probabilities as the system evolves in time.

Another interesting property of Eqs. (8) illus-
trates the many-body nature of the level-slippage
mechanism embodied in them. If, in a dynamic
system, 6 is small enough so that at time t=0
there exists no BCS solution to the static problem,
all p, remain constant in time (1 if the level j was
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initially below the sharp Fermi surface and 0 if it
was initially above), and all x, remain 0. Because
there is no slippage at level crossings, the system
is highly nonadiabatic, despite the existence of the
pairing force. This results from a breakdown of
the BCS approximation for very small values of G.

where A, b, , and v&' are determined by the instan-
taneous solution of Eqs. (11)-(14). The QP oper-
ators are given by

and

C. Definition of dissipated energy

From the above discussions, a reasonable de-
finition of the energy dissipated after time t is

E*(f)=E(~) -&.(~), (16)

D. Relationship to the Landau-Zener formula

The connection between the above time-dependent
pairing equations and the usual Landau-Zener pic-
ture of level crossings is not at all obvious. In or-
der to explore this connection, we describe first
the coupling of the superconducting state to the ex-
cited states of the system, and then derive the ef-
fective Landau-Zener matrix element that couples
crossing quasiparticle (QP) levels.

A convenient representation of the pairing Ham-
iltonian is in terms of the quasiparticle excitations
of the system, in which H(t) takes the form'9'80

H(t) =E,(t)+ pe, (t}(a~ta, + ~,a, )+H„,(t). (17)
i&o

The instantaneous QP energies e, are given by

e. =[(g y Gp. ')'+g']'~2 (18)

where Eo(t) is obtained from Eq. (15) by solving
Eqs. (11)-(14)with the instantaneous values of
e, (f} and G(t). If no superconducting solution exists,
the normal solution is to be used. In addition to the
approximation that we have used to eliminate the
collective kinetic energy, there is a difficulty as-
sociated with the interpretation of the energy that
we identify as dissipated energy. Of course, our
calculation is microscopically reversible in the
sense that if all coordinates are time-reversed the
system retraces its path. However, true dissipa-
tion must be macroscopically irreversible. By
this we mean that the energy must remain as in-
ternal excitation energy if at some point only the
macroscopic coordinates are time-reversed. This
could be investigated in a microscopic calculation
by a randomization of the intrinsic coordinates up-
on time reversal. Although clearly important, a
discussion of the macroscopic irreversibility of
our results is beyond the scope of the present in-
vestigation. %e assume simply that the major
fraction of our dissipated energy is macroscopical-
ly irreversible. In summary, the use of Eq. (16)
to obtain the dissipated energy is a major uncer-
tainty in our work.

~ ] =u;a ]+v]a;.
The instantaneous BCS ground state ~O(t)) is the

QP vacuum. In the usual treatment of the pairing
problem the residual 2QP interaction H„,(t) is ne-
glected, so that the 2QP excitations o.~tat, ~O(t))

are the time-dependent normal modes of the sys-
tem.

A typical spectrum of the system is shown as a
function of time in Fig. 2. From Eq. (18), we see
that the excited states are separated by =26(t) from
the ground state. How is it, then, that the ground
state, which is never crossed by another level, can
be coupled to the excited QP states' The answer
lies in the time dependence of H(t) and hence ~O(t)).
Indeed, (O(t)) has a time dependence given by

—~o(t))= g d—(u, +p, a, a ) II (u, +p,a,a,} (0)
g&o k&g

j&o Q

4l
CJ

O
CL
CA
D

BCS ground stote&

Time

FIG. 2. Typical spectrum of a system with the pairing
interaction as a function of time. The excited states
are separated from the ground state by ~ 24. In the
absence of the residual quasiparticle interaction, quasi-
particle levels cross when the corresponding single-
particle levels cross, as indicated by the dashed lines.
However, as shown by the solid lines, the residual quasi-
particle interaction splits the states, much as in Fig. 1.
Note, however, that whereas Fig. 1 refers to single-
particle levels, this figure refers to excitations involv-
ing the whole system.
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Thus, quasiparticles are generated in orbitals j at
rates proportional to d5&/dt and hence to the veloc-
ity of the system. Note that v,. changes not only in
response to variations in z~ but also because of
changes in the gross parameters d, and A.. Quasi-
particles are excited most easily near the Fermi
surface, where the rapid variation of 5& with sin-
gle-particle energy causes dS(/dt to be large even
for relatively small temporal variations in L or A..

Contact with the Landau-Zener formula is now
achieved by examining the coupling of normal
modes embodied in Eqs. (8). Such coupling may be
investigated by computing the random-phase-ap-
proximation (RPA) modes of the system with a
pairing interaction, which are obtained by linear-
izing Eqs. (8) about the BCS ground state. '""'"
This is done in Appendix B, where we find that the
excited-state energies are given by

(d( = 2~X( ~

where A., is an eigenvalue of the matrix T defined
by

T=g +6 —AGuv+ Gn
+ G[ng + G(N —2N~)n —~uv+ Gu'v']Q. (19)

The matrix T is of dimension N~ by N~, where N~
is the number of pairs of time-reversed orbitals
participating in the pairing interaction. The ma-
trices u, v, n, and g are diagonal, with diagonal
elements given by

therefore consider a case in which two single-par-
ticle levels are degenerate, with common values
of c&, u;, and v;. In this degenerate subspace T
becomes

A B
7

a A„

where

A = (e ( —X )'+ 6' - 26G((( v(

+ G2 [2u('v(' —~ + (N —2N(, )n(]

and

B = 26(((q(+ G (N —~ N~)((( —b, Gu;Ii(+ G'u, 'v('

The corresponding 2QP levels are therefore split,
with frequencies

~, = 2(A ~ (B()"= 2'+ (B (/WA = 2&A+ )t(f,„,),

where we have assumed that ~B~ «A. The magni-
tude of the effective coupling matrix element M, ff

gives one-half the splitting.
To estimate the magnitude of the effective matrix

element we take N=-, N~ for simplicity (this equality
holds exactly for the realistic case considered in
the following section). Then, by dropping terms of
order G/d, , we find that for levels crossing near
the Fermi surface

u)] =u]~

and

j.= Vi

@II =e] —A, —Gnq].

(20a)

(20b)

(20c)

(20d)

I(,. = I/&2, A= a', and ~B~= —,'t(, G,

which leads to

[t(f,) = —,'G.

For levels crossing far from the Fermi surface,
we find instead that

A unit matrix is implicit in the 6' term. The quan-
tity N is the number of pairs of particles included
in the pairing calculation, and Q is a matrix whose
elements are all 1.

For widely separated QP energies, the noninter-
a,cting 2QP states are a good approximation to the
true normal modes of the system. In this case,
the diagonal elements of T give the eigenvalues A,;,
so that the normal-mode frequencies are, neglect-
ing terms of 8(G/n),

2 [(e (()2 ~ g2] 1/2

which is, to within terms of the neglected order,
the standard 2QP result.

However, when the single-particle spectrum con-
tains a level crossing, so that two QP energies are
very close or degenerate, a more careful treat-
ment of the coupling terms in T is necessary. %e

A= (e( —X)' and B= G(e, —X),

which leads to

yf„([= G.

The effective Landau-Zener coupling is therefore
of the order of the pairing strength C.

In summary, we have illustrated that Eqs. (8)
contain two distinct processes: (1) the creation of
QP pairs due to the changing ground-state BCS am-
plitudes and (2) the coupling of the 2QP states a-
mong themselves, which causes level slippage at
crossings. In the latter process the effective Lan-
dau-Zener matrix element depends upon the energy
of the crossing levels. It should be stressed, how-
ever, that while these processes describe the dy-
namics of the system near its ground state, the ef-
fects of nonlinear coupling to more complicated
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states are also present in Eqs. (8) and are impor-
tant for nonadiabatic systems.

III. DETERMINATION OF THE NUCLEAR VISCOSITY

We now proceed to a more realistic situation in
an effort to determine the nuclear viscosity coef-
ficient. No completely satisfactory method exists
for incorporating the microscopic treatment of
Sec. II into a macroscopic hydrodynamical model
in order to obtain dynamical equations that de-
scribe simultaneously both types of degrees of
freedom. Our approach is to study microscopical-
ly the energy dissipated as a function of the rate of
descent of a fissioning nucleus from its saddle
point to scission point. The rate of descent is ob-
tained in turn from macroscopic hydrodynamical
calculations that are performed as a function of the
nuclear viscosity coefficient. We then attempt to
determine the viscosity coefficient by demanding
self-consistency between the energy dissipated in
the microscopic calculations and that dissipated in
the macroscopic calculations.

A. Description of the caiculation

We consider the fission of a" U nucleus that ini-
tially is set in motion from its macroscopic saddle
point with 1 MeV of kinetic energy in the fission
mode. The reflection-symmetric and axially sym-
metric system is studied during its descent to the
scission configuration. The total calculation is
divided into five steps: (1) We first perform a
classical macroscopic hydrodynamical calculation
with a given value of the nuclear viscosity coeffi-
cient in order to determine a sequence of shapes
for the fissioning system (2) Fr. om the shapes as
a function of time we determine the instantaneous
single-particle potential U(t) and the single-parti-
cle eigenvalues e,(t). (3}We obtain the pairing
strength G(t) that is required to yield a constant
average pairing gap Z. (4) We integrate the time-
dependent pairing Eqs. (8) for initial conditions at
the saddle point corresponding to the BCS ground
state. Then from Eq. (16}we find the energy E (t)
dissipated microscopically along the fission path.
(6) We compare E*(t) with the energy E~(t) dissi-
pated in the macroscopic hydrodynamical calcula-
tion. By varying the viscosity coefficient in the
macroscopic hydrodynamical calculations until the
two energies are equal we hope to determine the
viscosity coefficient. We now consider each of
these steps in greater detail.

1. Shape sequence

Classical macroscopic hydrodynamical calcula-
tions have been performed for "U as a function of

the nuclear viscosity coefficient. " In these calcu-
lations the nuclear shape is parametrized in terms
of smoothly joined portions of three quadratic sur-
faces of revolution. " The nuclear macroscopic
energy is calculated in terms of a double volume
integral of a Yukawa function, which includes the
surface energy of the liquid-drop model but also
takes into account the lowering in energy due to
the finite range of the nuclear force. ' '"'" The
kinetic energy of collective nuclear motion is cal-
culated for incompressible, nearly irrotational hy-
drodynamical flow. Nuclear viscosity is included
by means of Rayleigh's dissipation function. The
resulting modified Lagrange equations of motion
are solved numerically as functions of time to
yield a sequence of nuclear shapes, as well as the
energy E~(t) dissipated macroscopically. For ini-
tial conditions corresponding to starting at the sad-
dle point with 1 MeV of kinetic energy in the fis-
sion direction, Fig. 3 shows how the nuclear shapes
evolve in time for various values of the nuclear
viscosity coefficient p. . A comparison of calculated
and experimental fission-fragment kinetic energies
for nuclei throughout the Periodic Table yields for
p, the value 0.015+ 0.005 TP.

2. Single-particle energies

We generate a time -dependent diffuse -surface
single-particle potential by folding a Yukawa func-
tion over the uniform sharp-surface shapes"' for
the p. =0.02 TP hydrodynamical path. The total
potential U(t) contains also a spin-orbit term and,
for portons, a Coulomb potential. With this poten-
tial the Schrodinger equation is solved by expanding
the wave functions in deformed harmonic-oscilla-
tor basis functions. "" This yields the single-par-
ticle energies e, (t) as functions of time along the
p, = 0.02 TP hydrodynamical path. Figures 4 and 5
show the resulting level diagrams for neutrons and
protons, respectively. Note in these figures the
rapid variations in the single-particle levels e;(t}
for a»eck radius &0.5RO, followed by relatively
smooth variations down to the scission configura-
tion. Hence, if other conditions are equal, it is
easier to excite the system near the saddle point
than near the scission point.

In order to avoid the large a.mount of computa-
tion which would be required to construct similar
diagrams along shape sequences generated by dif-
ferent values of the nuclear viscosity coefficient,
we perform the following scaling process. For
each hydrodynamical path, the neck radius of the
nuclear shape is computed as a function of time,
as shown in Fig. 6. The single-particle energies
are then assumed to be the same functions of the
neck radius along all paths. This maps all the dy-
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for various values of the viscosity coefficient p. The initial conditions in each case correspond to starting from the
saddle point with 1 MeV of kinetic energy in the fission direction. The scission shapes are shown dashed.

namical paths onto the p. =0.02 TP path, although
of course at different times. The actual levels are
calculated for a sequence of shapes along the p.

=0.02 TP path corresponding to steps of 0.1Ro in
the distance r between the centers of mass of the
two halves of the system, where the radius Ao of
the spherical nucleus is given by Ro =(1.16 fm)A't'
= 7.17 fm. The values of e; needed at intermediate
points are found by cubic interpolation of the neigh-
boring known values.

3. Pairing strength

The magnitude and variation of the pairing
strength G(t) is somewhat uncertain. Although

properties of the ground state and low-lying ex-
cited states permit G to be determined for ground-
state shapes, little is known about the pairing in-
teraction for the highly deformed shapes considered

here. We determine G by requiring that the aver-
age pairing gap b for a uniform distribution of lev-
els be fixed for both neutrons and protons at its
phenomenologically determined value of"'"

Z = c/WA,

where

C= 12+ 1 MeV.

The average pairing gap Z is computed for a uni-
form distribution of active levels whose density of
pairs P(t) equals that obtained by means of a Stru-
tinsky smoothing process at the smooth Fermi sur-
face. The corresponding value of G(t) is then ob-
tained from'~
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FIG. 4. Single-neutron energies of U from the saddle point onwards for the dynamical path corresponding to p

=0.02 TP. The levels are labeled by the projection 0 (or K) of the total angular momentum on the nuclear symmetry

axis and by the parity. In addition, odd-parity levels are drawn dashed. The heavy dotted line gives the location of
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where N~ is the number of active pairs of time-re-
versed orbitals. This leads to pairing strengths
that vary slightly with deformation but that are ap-
proximately G„= 0.09 MeV for neutrons and G~

= 0.12 MeV for protons.

4. Integration of the pairing equations

Because the pairing equations diverge for an in-
finite number of active levels, a limited number N~

of levels are used in the calculations. We take —,'N~

to be equal to the number of bound levels above the

sharp Fermi surface at time t=0. In this way N~

becomes 48 for neutrons and 38 for protons. Then

N~ levels, with half lying above and half lying be-
low the sharp Fermi surface, are used as the sin-
gle-particle energies e;(f).

Because many levels move out of or into the re-
gion surrounding the Fermi surface, an integration
of Eqs. (8) keeping tra. ck of all levels which at one

time or another pass through this region would be
difficult. Therefore, whenever the highest or low-

est of the K~ active levels is crossed by an intruder
l.evel that is currently not being followed, we switch

from the original level to the intruder level. In

this way we integrate numerically equations for a
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FIG. 5. Single-proton energies of U from the saddle point onwards, analogous to Fig. 4.

constant number of levels that span an approxi-
mately constant region of energy about the sharp
Fermi surface. This procedure limits excitations
of the system to within about 7 MeV of the Fermi
surface. It is a valid approximation as long as the
levels that leave the active region carry little ex-
citation with them, which is found to be the case in
the actual calculations. As a numerical test of this
approximation, we increased N~ to include all lev-
els initially up to e, (0) =+2 MeV (and an equal num-
ber below), with negligible change in the results.
Some details concerning the numerical integration
of the equations are discussed in Appendix C.

5. Comparison of dissipated energies

We attempt to determine the viscosity coefficient
p. by requiring that the energy dissipated in the
microscopic calculations equal that dissipated in

the macroscopic calculations. Such a self-consis-
tency should be possible because as the viscosity
coefficient increases, the energy dissipated in the
macroscopic calculations increases, whereas the
slower rate of descent means that the energy dis-
sipated in the microscopic calculations decreases.

Ideally, the determination of the viscosity coef-
ficent in this way should not depend upon the pre-
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cise position along the descent to scission at which
the dissipated energies are equated. However, it
turns out that the results are sensitive to this posi-
tion. We therefore present our results for the vis-
cosity coefficient as a function of the neck radius
at which the comparison is made.
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FIG. 7. Neutron and proton pairing gaps for the instan-
taneous static BCS ground state of 23 U. The results are
calculated from the saddle point onwards with the single-
particle levels of Figs. 4 and 5, which correspond to the
hydrodynamical path for p =0.02 TP. The horizontal line
gives the average pairing gap 4 =12 MeV/~A =0.781 MeV
for a uniform distribution of levels.

B. Results

Figure 7 shows the variation in the neutron and

proton pairing gaps corresponding to the instanta-
neous static BCS ground-state solution. Here, as

FIG. 8. Energies dissipated in the microscopic calcu-
lations as functions of the neck radius for a rate of de-
scent correspon~~~~ to the hydrodynamical path for p
=0.02 TP. The two lower curves give the energies dis-
sipated by the neutrons and protons separately, and the
upper curve gives the total. The numbers along the upper
curve give the times from the saddle point to the indicated
points, in units of 10~~ s.

well as in the next two figures, the average pairing
gap Z is taken equal to 12 MeV/vA =0.781 MeV. As
can be seen by comparing Fig. 7 with Figs. 4 and 5,
the maxima in the pairing gaps arise from a high
density of single-particle levels near the Fermi
surface, and the minima arise from a low density
of levels.

In Fig. 8 we show the energy dissipated micro-
scopically for a rate of descent corresponding to
the macroscopic hydrodynamical path for p. =0.02
TP. The individual contributions from the neutrons
and protons, as mell as the total, are shown. The
total dissipated energy goes through a maximum
value of 59 MeV at a neck radius of 0.42R, and then
decreases.

The energy dissipated by the neutrons peaks
somewhat later than that dissipated by the protons.
As can be seen by comparing Figs. 7 and 8, the
maxima in the energies dissipated by the neutrons
and protons are correlated with the minima in the
neutron and proton pairing gaps at neck radii of
0 33Rp and 0.44Ro, respe ctively.

The maxima in the dissipated energies arise be-
cause the character of the ground-state solution is
changing so rapidly that the system cannot adjust
itself. Thus, the system appears excited not be-
cause of any large changes in the occupation am-
plitudes, but because of changes in the ground state
to mhich the dynamic state is compared. However,
only a portion of the excitation energy can be ac-
counted for by changes in the pairing gap h. Even
at shapes where ik(t) is relatively constant, the ex-
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gies at zero neck radius are plotted as functions of
the viscosity coefficient. The hatched region in

Fig. 10 and in the next two figures corresponds to
a variation in the average pairing gap 6 from 11
MeV/WA to 13 MeV/VA.

The above procedure of requiring that at the
scission point the energy dissipated in the micro-
scopic calculations equal that dissipated in the
macroscopic calculations leads to 34 MeV of dis-
sipated energy. This is almost twice the value of
18 MeV obtained from macroscopic hydrodynamical
calculations that reproduce experimental fission-
fragment kinetic energies. "For our macroscopic
model that takes into account the finite range of the
nuclear force, the total energy decrease from the
saddle point to scission for the nonviscous descent
of 'U is 53 MeV, whereas in the pure liquid-drop
model it is 35 MeV. '

In the fission of an actual nucleus, the neck is ex-
pected to rupture somewhat before it reaches zero
radius. A simple estimate yields a neck radius of
about 1..2 fm =0.17R, at which the attractive nucle-
ar force can no longer withstand the repulsive Cou-
lomb force." As shown in Fig. 11, when this scis-
sion neck radius is used to compare the energies
dissipated in the two approaches, one obtains a
larger viscosity coefficient of about 0.08 TP. Fin-
ally, in Fig. 12 we show how the deduced value of
the viscosity coefficient depends upon the scission
neck radius at which the dissipated energies are
compared. These values are all considerably larg-
er than the value of 0.015+ 0.005 TP obtained from
a comparison of calculated and experimental fis-
sion-fragment kinetic energies.

We have investigated the sensitivity of our results
to the prescription used to calculate the pairing
strength G(t) by performing additional calculations
with a constant value of G. When G is held con-
stant at its saddle-point value corresponding to an
average pairing gap Z of 12 MeV/u%, the results
differ from those of Figs. 8 and 9 by less than 0.5
MeV. It is also possible to invert the relationship
between the pairing forces and viscosity and ask
what value of 6 is required to reproduce the vis-
cosity coefficient obtained from the comparison
with experimental fission-fragment kinetic ener-
gies. We find that in order to reproduce the upper
limit of 0.02 TP obtained in this way, the average
pairing gap b, must be approximately 30 MeV/WA,
or about 2.5 times the usual value. However, be-
cause of the exponential dependence of the pairing
gap b, on the pairing strength G, the corresponding
increase in the average pairing strength G is only
about 0.05 MeV, or some 5(P/p This repr. esents an
increase in the neutron pairing gap G„ from about
0.09 to 0.14 MeV, and in the proton pairing gap G~
from about 0.12 to 0.17 MeV.
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FIG. 11. Comparison of dissipated energies at a neck
radius of 1.2 fm, analogous to Fig. 10.
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to an average pairing gap Z of 13 MeV/WA, and the
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Why is the viscosity coefficient determined from
the microscopic calculations larger than that deter-
mined from the macroscopic calculations? One
possible answer is that the residual interaction felt
by two pairs of nearly degenerate particles is
somewhat larger than the average pairing strength
G, which would reduce the value of the viscosity
coefficient obtained from the microscopic approach.
Although many important nuclear properties can be
described adequately in terms of a constant average
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pairing interaction acting between a given number
of pairs of particles, nuclear dissipation depends
primarily upon the level splitting between nearly
degenerate pairs of particles, and consequently
may not be describable in terms of a constant pair-
ing interaction.

Although for a 5-function residual interaction it
is not true that the matrix elements for nearby lev-
els are larger than those for well-separated lev-
els,"" it is possible that this could be the case for
a realistic residual interaction of finite range.

It is also possible that for the very deformed
shapes encountered in fission the pairing strength
G should be larger than the ground-state value that
we have used. The early interpretations of fission-
fragment angular-distribution data that suggested
that the pairing gap increases with deformation are
now in doubt, "and the theoretical studies that sug-
gest that the pairing strength should be proportion-
al to the surface area" are inconclusive. Never-
theless, in order to reproduce the larger average
pairing gap ~ in the fission fragments compared to
that of the original system, it is necessary for the
value of G to increase by about 14%() when all the
levels of the system are considered. This is much
less than the 50% increase required to reduce the
dissipated energy to the upper limit obtained in the
macroscopic calculations.

An even more important effect is that the char-
acter of the pairing force should vary with the
shape of the system. Specifically, when the two
fragments have almost separated, states paired in
one fragment should not be coupled to states paired
in the other fragment. Thus, G(t) should be a ma-
trix, varying in time so as to allow such decou-
pling to increase as the fragments separate. "'

The value of p. = 0.015+0.005 TP that was deter-
mined by comparing macroscopic hydrodynamical
calculations with experimental fission-fragment
kinetic energies is an average value appropriate to
the fission of highly excited nuclei, whereas our
microscopic calculations are performed for initial
conditions corresponding to an unexcited BCS
ground state at the saddle point. However, for ini-
tial conditions corresponding to a highly excited
nucleus at the saddle point, the energy dissipated
microscopically should be even larger than in the
present calculations because the pairing interac-
tion is not effective between broken pairs of nucle-
ons.

Possible mechanisms for increasing the effective
splitting at level crossings are axially asymmetric
(y) and reflection-asymmetric (mass-asymmetric)
vibrations of the nucleus as it descends from the
saddle point to scission. If the most probable shape
during the descent is symmetric the most probable
level splittings are zero, but the finite root-mean-

square deviations from axial and reflection sym-
metry lead to finite root-mean-square values of the
level splittings. Of course, for those nuclei whose
most probable shapes during the descent are re-
flection asymmetric, the degeneracies of levels
characterized by the same value of Q are split by
this asymmetry alone. Similarly, axially asym-
metric vibrations alone suffice to split the degen-
eracies for states of identical parity.

An additional contribution to the splitting is pro-
vided by the coupling between the fission degree of
freedom and these asymmetric degrees of freedom.
This coupling should cause the nucleus to avoid re-
gions of near degeneracy and hence high dissipation
(as well as high potential energy and high inertia)
during its dynamical descent. It remains an impor-
tant problem for the future to calculate the dissipa-
tion from saddle to scission for a nucleus with ax-
ially asymmetric and reflection-asymmetric de-
grees of freedom.

However, there are other possibilities that would
reduce the value of the viscosity coefficient ob-
tained from the microscopic approach. For exam-
ple, our separation procedure has not removed all
of the collective energy from E*(t). We have seen
that in the limiting case of zero pairing E (t) con-
tains only small contributions from collective ef-
fects. Also, we showed numerically that in the
presence of pairing the contribution from the col-
lective kinetic energy is less than 5.1 MeV or S%

at the peak in the dissipated energy for rapid de-
scents. It is also possible that a portion of E*(t) is
not macroscopically irreversible and hence is not
true internal excitation energy. Both of these
points clearly demand further study.

It is also possible that the true nuclear inertia
may be sufficiently larger than the nearly irrota-
tional value that we have used to reduce substan-
tially the rate of descent. It is well known that nu-
clear flow is not irrotational for ground-state vi-
brational motion and for the adiabatic penetration
of the fission barrier in spontaneous fission. ' How-
ever, at larger distortions the single-particle lev-
els do not vary as rapidly with deformation, and at
higher internal excitations the energy denominators
in the cranking formula for the inertia'~ are no
longer all of one sign. Both of these effects reduce
the size of the calculated inertias, and for these
cases the assumption of irrotational flow should be
somewhat better.

Finally, starting the system with less than 1 MeV
of kinetic energy in the fission direction would de-
crease somewhat the rate of descent and hence the
energy dissipation. The initial kinetic energy E& in
the fission direction is of course not a specific
value but is a distribution of values. At high ex-
citation energies, where classical statistical me-
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chanics becomes valid, the values of E& are distri-
buted according to the Boltzmann factor exp(-Ez/e),
where 6 is the nuclear temperature. " The initial
value K&=1 MeV is therefore a typical value for
high excitation energies. Although the initial ener-

gy dissipation depends upon E&, the dissipation dur-
ing the later stages is relatively insensitive to this
quantity.

At the other extreme, there are some possibili-
ties that would increase the value of the viscosity
coefficient obtained from the macroscopic approach.
For example, the rupture of the neck somewhat be-
fore it reaches zero radius increases somewhat the

calculated fission-fragment kinetic energies and

hence increases the viscosity coefficient required
to reproduce experimental values. However, use
of the estimate of 1.2 fm for the neck radius at
which the attractive nuclear force can no longer
withstand the repulsive Coulomb force increases
the viscosity coefficient p. by only 0.002 TP or
13% "

At low excitation energies single-particle effects
can increase the kinetic energy relative to that
calculated for a macroscopic potential energy and

hence increase the viscosity coefficient required to
reproduce experimental values. But single-parti-
cle effects are expected to disappear at the higher
excitation energies involved in the determination of
the viscosity coefficient by comparing experimental
fission-fragment kinetic energies with calculated
values.

Finally, it is possible that the shape dependence
of the viscosity tensor is different from that cal-
culated for macroscopic hydrodynamical flow. In

particular, it has been suggested" that Landau
damping, in which the excitation of nucleons pro-
ceeds by means of one-body collisions with a mov-
ing potential wall" rather than through two-body
collisions with other nucleons, could lead to a vis-
cosity tensor in which neck formation is enhanced
rather than hindered. If this were the case, calcu-
lated fission-fragment kinetic energies could re-
main large at the experimental values even for a
large viscosity coefficient. This suggestion is
currently being explored.

IV. SUMMARY AND CONCLUSION

scent corresponding to different viscosity coeffi-
cients in the macroscopic calculations.

We attempted to determine the nuclear viscosity
coefficient by requiring that the energy dissipated
between the saddle point and the scission point in
the microscopic calculations equal that dissipated
in the macroscopic hydrodynamical calculations.
This procedure led to a viscosity coefficient of 0.04

TP, which is substantially larger than the value of
0.015+0.005 TP determined from macroscopic hy-
drodynamical calculations that reproduce experi-
mental fission-fragment kinetic energies. The vis-
cosity coefficient determined from the microscopic
calculations is even larger if the dissipated ener-
gies are compared at a finite scission neck radius.

We discussed several possibilities for resolving
this discrepancy. To us the most likely explana-
tion is that during the descent from the saddle
point to scission axially asymmetric and reflection-
asymmetric deformations provide additional split-
tings at level crossings and hence reduce the ener-
gy dissipation. Thus, whereas in the absence of
level splittings nuclei would be very viscous, we
propose that the level splittings arising from ax-
ially asymmetric and reflection-asymmetric de-
formations make nuclei only moderately viscous.
It remains an important problem for the future to
check this suggestion by means of detailed calcu-
lations of energy dissipation involving these asym-
metric deformations.
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We have studied the excitation of the internal de-
grees of freedom of a "'U nucleus as it moves from
its saddle point to scission along a path determined
from macroscopic hydrodynarnical calculations.
This is done for the single-particle states in a
realistic diffuse-surface potential along this path,
with a residual pairing interaction. Time-depen-
dent equations that determine the occupation pro-
babilities were solved for different rates of de-

APPENDIX A: DETAILS IN THE DERIVATION OF THE

TIME-DEPENDENT PAIRING EQUATIONS

In this Appendix we derive Eqs. (4), the time-de-
pendent pairing equations. By use of Heisenberg' s
form of the equations of motion, the total time
derivatives of Eqs. (3) are given by

(A 1a)
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and

i K, , = ([a(a „H])+ i —(a,a, ) .
at

(A lb)

which, when written in matrix notation, become
Eqs. (4).

APPENDIX 8: DETERMINATION OF THE RPA MODES

(The use of the same symbol i to denote v'-I and a
matrix index should cause no confusion. ) Because
the single-particle states are time dependent, the
Fermion creation and destruction operators must
be differentiated as well.

With the Hamiltonian (2), the commutator terms
become

[a; a(, ff] =a; a, (e„—e;)

We linearize Eqs. (8) about the BCS ground state
in order to obtain the RPA modes. The time-de-
pendent quantities p and K are treated as vectors of
dimension N~, where N~ is the number of pairs of
levels participating in the pairing force. Upon
writing

p, (t) = v('+5P((t)

and

and

+G (a, a,a«a, +a a«a«(a ()
A' &0

(A2a)
K, (t) =[u( v, + 5K, (t)]exp[ —i(2X —G) t],

Eqs. (8) yield, to first order in 5p and 5K,

[a,a (,H] =a(a, (e(+e()

—G a fa;aka k-afa;aka k . A2b
k&0 and

dip
dt

= 2b Im5K —2GuvQ Im5K

The partial-derivative terms are
3—(a, a() = g(a(a«D» —D;«a«a, )

k&0

(A3a)
d&K

dt
= —2i(q+ GnQ)5K —2i(6 —Guv)5p.

The matrices u, v, n, g, and Q are defined in Eqs.
(20) and in the lines that follow them.

We assume harmonic time variations for 5p and
6K, namely,

and

k&0
fk kf

—(a (a, )= Q (a (a«D«(-D(« -«()
k&0

where the real antisymmetric matrix D is defined

by Eq. (5); we use the fact that D, (=D((.
In taking the expectation value of Eqs. (A2), we

encounter terms such as (a aaa) and (a a aa),
which are factorized in the usual BCS manner, e.g.

(a(a,a,a „)=(a, a", )(a„a „) -(a(a«}(a"(a «)

= —Kf ~Kkk —p~k pfko

The assumed time-reversal symmetry of the wave

function means that such terms as (a, a «) vanish

and that the normal and time-reversed density ma-
trices are equal.

Upon inserting Eqs. (A2) and (A3) into Eqs. (Al}
we obtain

'p(( = p(((e(. —e()
I

G (p(«p(«+K((K««p«(p«( K««K(()
k&0

+(Q (P(«D«, D(«P»)—
A' &0

and

(K(( =
K( ((+e(6 (}

I—G [P(«K(« —P((K«« —(p(( —5(()K««+P(«K«(]
k&0

and

5p(t) = 5p, cos(((t+5p, sin(vt

5K(t}=5K,exp(i(vt)+5K exp( —i(ot),

where ~p, and 5p, are real. After equating positive
and negative frequency components, we obtain

tu5p, = —2(4 —GuvQ) lm(5K, —5K ),

(((5p, = 2((a —GuvQ) Im(5K, + 5K ),

(d5K, = —2(q+GnQ}5K —(t(. —Guv)(5p, —i5p, ),

and

—= Tim(5K, +5K ). (Bl)
The form of the matrix T given in Eq. (19) is ob-
tained by expanding Eq. (Bl) and by realizing that

G'nQnQ = G'(Trn)nQ = G'(N —,'N«)nQ. —

(d5K =2(@+GnQ}5K +(6 —Guv}(5p, +i5p, )

Under the assumption that u is real, these may
be solved to yield the eigenvalue equation

—,'((('Im(5K++ 5K )

= [((I + GnQ)'+ (t(, —Guv)(a —GuvQ)] Im(5K, + 5K )
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APPENDIX C: NUMERICAL METHODS

Equations (8) present, for N~ active levels, a set
of 2N~ nonlinear first-order coupled differential
equations for the real quantities p and complex
quantities ~. These equations were integrated
numerically by means of a fourth-order Adams-
Moulton predictor -corrector method, "with a
Runge-Kutta starting procedure as outlined by
Zonneveld. ' At all times, the absolute error in
all dependent variables was required to be less
than 5 x10-'. A time grid of 5&10 "s was found

to be sufficient for both neutrons (N~ =48) and pro-
tons (N~ =38); halving the step size gave negligible
changes in the results. The integration was check-
ed further by computing E*(t) after Eqs. (8) had
been integrated an equivalent number of steps for
a comparable static system (the saddle-point
shape). Finally, we remark that a substantial im-
provement in integration efficiency was achieved
by redefining the zero of the single-particle ener-
gies e, (t) so that the chemical potential X(t) was
approximately zero, as this avoided integrating
the superfluous winding phase of the pairing-field
elements «, (f) discussed in Sec. IIB.
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