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The corrections to the heavy-ion scattering cross sections due to the presence of perturb-
ing vacuum polarization and molecular potentials are evaluated. We find effects on the
cross section up to 0.7% in 160 with 2% Pb collisions due to vacuum polarization and up to
2.6% in U with Th collisions due to molecular and vacuum polarization corrections.

NUCLEAR REACTIONS Calculations of modifications of elastic heavy-ion o (f)
due to vacuum polarization and molecular potentials.

Large angle (6, >10°) heavy-ion scattering is
mainly determined by Coulomb, and above the
Coulomb barrier by nuclear forces. However,
with increasing precision of the experiments it
might be possible to measure the deviation from
pure Coulomb scattering at sub-Coulomb barrier
energies due to vacuum polarization and molecular
effects. The former effect has been a recent
matter of interest'+?* and we aim in this note at a
clarification of the possible experimental conse-
quences. The latter effect due to the molecular
potential® is most important for collisions with
Z =Z projectite + Z rarger = 130, Its origin is from the
quasimolecular electrons that are bound to the
combined system of projectile and target nucleus.
The relative importance of the molecular potential
Vmo @s compared with the Coulomb potential of the
nuclei depends heavily on the combined charge Z
of projectile and target in the relativistic domain.
For collisions with (Z, +Z,) ~ 184 the molecular po-
tential reaches — 6.2 MeV at R =15 fm, which is
about 0.8% of the Coulomb barrier.

The method used in this note for calculating cor-
rections to heavy-ion cross sections is the classi-
cal approximation. The heavy ions are assumed to
move on classical trajectories in a given potential.
The well-known solution of the Newtonian equations
of motion will not be reviewed here—but some
practical points pertaining to the numerical prob-
lem are mentioned. Consider the scattering of two
particles interacting via a Coulomb potential V
perturbed by a small additional interaction &V:

(a) Numerically, it turned out that direct calcu-
lation of the influence of an additional potential 6V
on the cross section is more practical than a per-
turbation expansion in 6V/V.

(b) To obtain the classical cross section in the
vicinity of a scattering angle 6, the value of the
corresponding Coulomb angular momentum L. is
used:

13

L= aZ,Z,(u/2T) cot(36,) 1

(u is the reduced mass, T=m,/(m,+m,)E, E is
the lab projectile energy, and « is the fine struc-
ture constant.)

(¢) The scattering angle corresponding to a given
L. (or equivalent, to a given impact parameter) is
obtained from

1oy [ L
3(m=-0)= —[R m(Lcﬂ’z{-"*mlE- Vo] - ch/’l’z}lﬁ ar,

m

(2)

where the distance of closest approach Ry, cor-
responds to the only zero of the square root in the
repulsive, monotone, ion-ion potential. It is found
numerically for any V(»).

(@ The numerical integration in Eq. (2) is cut
off at a suitable value R =R, + 6 to avoid the
1/(r -R_,)'/? singularity. The remaining part is
approximately evaluated analytically (3V/3r is
needed).

(e) The cross section is finally calculated from

do(6)
as

= L0 3L;6§0)/(m2v2 siné), 3

where we now consider do/dQ to be the function of
the calculated angle 6 [Eq. (2)]. 3L./36 is obtained
differentiating Eq. (2) with respect to 6. Again the
cut-off method as mentioned in (d) is employed. To
maintain the appropriate accuracy we need to know
(82V/87%) /R ;..

(f) The above procedure gives us the cross sec-
tion at an angle 6=6,+A0. The cross section at
the point 6. is then obtained from the Taylor ex-
pansion around 6.:
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where the subscript R stands for “Rutherford.”

(g) Numerical tests for precision have shown
that the outlined procedure has sufficient accuracy
to calculate effects of the order of 0.01% of the to-
tal Coulomb cross section after the numerical er-
ror has been minimized by variation of the num-
ber of integration points, their distribution, and
the cut-off value 6. In particular we have used
r=R_,/t, t€(0,1),and 6=1.7X107*R,;,, and we have
found 2000 points of integration to be necessary in
(c) and (e). In the tests we have used a small 1/7
term (of the order of 1% of V) as a perturbing po-
tential.

The classical approximation can be used for an
asymmetric collision whenever the scattering
parameter 7> 1 (n=Z2,Z,ac/v.). However, even in
collisions of identical nuclei, where 12500 (say
U, Th at 1.6 GeV), the oscillations of the cross
section would be averaged in any practical
counter—therefore, our approach is valid also in
this case.

Vacuum polarization in heavy-ion scattering has
been first considered in Ref. 1. Among other re-
sults it was found that with increasing momentum
transfer q between the heavy ions the quantity de-
fined by

zjd—;; / %& =1+e€ (5)
is a rising function of 4%, € ~1n(d®). Subsequently,
Roskies?® pointed out that the expansion in 7 which
has been used to evaluate the scattering amplitude
in Ref. 1 overestimates the effect of the vacuum
polarization for large §°>. The present calculations
therefore aim to determine the behavior of € for
large . Our efforts to calculate this behavior in
the frame set by Ref. 1 failed because of particu-
larly pathological behavior of the scattering am-
plitude for very large 7, g2

We have evaluated the quantity € defined by Eq.
(5), inserting the vacuum polarization potential

eVe+eV,,

(2,2 a/7) (1 2z " f(b) exp(~ Zmrt)dt),
(6)

where
S = (£ = DV272[1 (26271 )

into the code discussed above.

We find that the behavior predicted in Ref. 1 for
small g%is reproduced; for large q2(large 6) we
find a constant €. In particular, consider oxygen
projectiles of 69.1 MeV (lab) in O - Pb collisions
in Fig. 1(a) for which experimental information is
available.® In the interval 60°-160° we have a rise
of 0.15% which is compatible with the results of
Barnett ef al.®° Use of lower energy projectiles
[Fig. 1(a), 30 MeV '°0] will increase the effect if
measured between 20° and 80°, where the relative
change in € is 0.3%—similarly we could employ a
16 MeV “He beam [Fig. 1(a)].

We turn now to the discussion of the molecular-
potential effects. The total Hamiltonian for the
colliding heavy-ion system can be written as the
sum of the electron and nucleon parts:

H=H,(R,7,) +H(R), (8
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FIG. 1. Correction € to the Rutherford cross section
in percent as a function of the lab scattering angle: (a)
vacuum polarization corrections in 69.1 and 30 MeV (lab)
160 scattering on 28Pb and (b) vacuum polarization- and
molecular-potential correction in 1600 MeV (lab) 22Th
scattering on 238y,
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where R is the distance vector between the heavy
ions and T; are the coordinates of the electrons.
Using a wave function

WE, R = v, (Fy, R, (R (9

and assuming the validity of the adiaba_;tic approxi-
mation, the problem of finding ¥,,(¥;, R) is reduced
to a solution of the relativistic two-center Coulomb
potential of the nuclei.* The nuclear part of the
Hamiltonian reduces to

Hepo= Y [ER - E(=)]+H,(B, (10)
i

where E; are the eigenvalue energies of the elec-
trons. Following Ref.3 we define

Vaa(® = 3 [E(R) = E(=)]. (11)
i

The evaluation of the molecular potential, Eq.
(11), requires the knowledge of the electronic en-
ergy eigenvalues for the relativistic two-center
potential.® Although the Hartree- Fock calculations
describing this potential have not been carried out,
an approximate potential originating in the eigen-
energies of 28 innermost electrons has been ob-
tained’ using electron wave functions without
electron-electron interactions:

R
Vmol(R) == Eo(:,._o

>e'R/'l, R>14.5 fm. (12)

In the case of U-U (similarly for other large Z
scattering systems such as Th- U, etc.) we have

E,=3.6 MeV, 7,=100 fm,
7,=10000 fm, and a=-0.27.

(13)

Sin ce the mutual shielding of the electrons is not

taken account of in the above parameters, it is
possible that E, is actually smaller by ~15%. [The
decrease of E, to 3.1 MeV lowers the effects on
the cross sections shown in Fig. 1(b) by 15%.] The
geometrical structure of Vno, Eq. (12), is not
likely to change significantly and has not been
varied.

It is not valuable to consider in this connection
the collision of identical particles, since the iden-
tity of projectile and target will make the cross
section symmetric around 45° (1ab) preventing a
true measurement of backscattering.

As a characteristic example we have therefore
chosen the scattering of *°Th on 2®U at 1600 MeV
(lab). Since the molecular potential is negative®
and has a magnitude larger than the positive vac-
uum-polarization potential, we will find a net de-
crease of the cross section. Furthermore, since
the molecular potential grows more slowly than
the nuclear Coulomb repulsion, the correction to
Rutherford scattering will become smaller with
increasing scattering angle. In Fig. 1(b) the re-
sults of our calculations are summarized.

We find a change of 1.7% in the cross section as
we go from 20° to 160° in scattering angle. This
greater change comes because the addition of vac-
uum polarization and molecular effects enhances
the relative effect at chosen scattering angles.

In view of the above calculations we feel that both
effects can be well established by measuring
heavy-ion differential scattering cross sections.
The measurement of the molecular potential will
increase our knowledge of the binding of quasi-mo-
lecular electrons in very strong external fields.
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