Communications

The Communications section is for brief reports on completed research. A Communication may be no longer than the equivalent of 2800 words, i.e., the length to which a Physical Review Letter is limited. (See the editorial in the 21 December 1970 issue of Physical Review Letters.) Manuscripts intended for this section must be accompanied by a brief abstract for information retrieval purposes and a keyword abstract.

Odd parity levels in ¹³³La and the particle-plus-triaxial-rotor model*

E. A. Henry and R. A. Meyer

Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Received 12 January 1976)

Odd parity levels in ¹³³La are studied by β decay of mass separated 5.4-h ¹³³Ce. Good agreement between experiment and theory is found for level energies and transition probability ratios when the particle-plus-triaxial-rotor model is used.

RADIOACTIVITY ¹³³Ce; measured $E\gamma$, $I\gamma$, I_{∞} ; deduced $\log ft$. ¹³³La deduced levels, J, π , ICC, Λ . Enriched targets, mass separation, Ge(Li) and Si(Li) detectors.

The study of odd-mass lanthanum nuclei has revealed the importance of deformation in characterizing negative parity levels in certain neutron deficient nuclei with $A \approx 135$. Leigh *et al.*¹ used the (HI, $Xn\gamma$) reaction to populate an yrast band with spins of $\frac{11}{2}$, $\frac{15}{2}$, $\frac{19}{2}$, etc., built on the $h_{11/2}$ single proton state in the light odd-mass lanthanum nuclei. They observed stretched *E2* γ -ray cascades having energies very close to those occurring in the ground band of the even-even barium core nuclei. Leigh *et al.* showed that the level energies of the yrast bands and the stretched *E2* nature of the observed transitions were consistent with a particle-plus-rotor coupling scheme with a prolate deformation of $0.1 \le \beta \le 0.3$.²⁻⁴

The model proposed by Leigh *et al.* assumed symmetric deformation. However, calculation of deformation parameters from the 2_1^+ , 2_2^+ , and 4_1^+ levels of neighboring core nuclei result in a nonzero γ deformation parameter, suggesting that the nuclear core may have a triaxial shape. Theoretical calculations with the particle-plus-asymmetric-rotor model in this mass region have made predictions of energy level systematics and transition characteristics.^{5,6} In particular, the asymmetric-rotor model predicts a lowering in energy of unfavored and low-spin levels compared with the yrast levels as the γ deformation increases from 0° to 30°.⁵

To date there have been few, if any, experimental data in this mass region to test the triaxial model's predictions on the low-spin levels and their properties. A comparison of the reduced transition probabilities for the $\frac{19}{2} - \frac{15}{2}^{-}$ and $\frac{15}{2} - \frac{11}{2}^{-}$ transitions in ^{129,131}La are quantitatively understood using a model that couples a rotation-aligned $h_{11/2}$ proton to a triaxial core.⁷ In a recent study of ¹³⁷Nd levels,⁸ the experimental energies of the lower-spin states were not in quantitative agreement with predictions of a particle-plus-symmetric-rotor model. Nowicki *et al.* suggested γ deformation may be necessary to account for the ¹³⁷Nd experimental results.

This study of γ rays which follow ¹³³Ce decay, and depopulate excited states in ¹³³La, provides a test of the particle-plus-asymmetric-rotor model in predicting the level characteristics of both lowspin and unfavored states, and in predicting the transition probability ratios from these levels.

Sources of 5.4-h ¹³³Ce for this experiment were made by the (α, xn) reaction on BaCO₃ targets. Cerium was separated chemically from the target material and mass separated onto aluminum foil to provide radioactive sources. A lanthanumcerium chemical separation of one mass separated source, and subsequent counting, provided positive identification of γ rays following ¹³³Ce decay and ¹³³La decay. γ -ray singles counting, conversion electron counting, and a γ - γ -coincidence experiment were performed to study ¹³³Ce decay. Conversion electron data for many transitions in ¹³³La were made available for the first time by use of a trochoid conversion electron spectrometer, which eliminated the positron background from ¹³³Ce decay.

The portion of the ¹³³La level scheme pertinent to this discussion is shown in Fig. 1; an extensive level scheme has been developed for ¹³³La and will be published elsewhere. Included in the figure are relative photon intensities, β decay intensities to

13

2063

FIG. 1. Shown on the right are the low-lying negative parity levels deduced in this experiment. Included is the $\frac{19}{2}^{-1}$ level deduced by Leigh *et al.* On the left are calculations by Meyer-ter-Vehn using a particle-plus-symmetric rigid-rotor model (Ref. 5), Toki and Faessler using a particle-plus-triaxial-rotor model with a VMI treatment of the core (Ref. 6), and Meyer-ter-Vehn using a particle-plus-triaxial rigid-rotor model with $\gamma=24^{\circ}$ (Ref. 12). (*Nota bene:* the second $\frac{11}{2}^{-1}$ level predicted by the particle-plus-symmetric rigid-rotor model (Ref. 5) is at approximately 2870 keV, well above the $\frac{19}{2}^{-1}$ level.)

the excited levels, and $\log ft$ values. Table I summarizes the experimental conversion electron intensities and deduced transition multipolarities for selected transitions.

The spins of the ¹³³La ground state and the 5.4-h isomer of ¹³³Ce are $\frac{5}{2}$ and $\frac{9}{2}$, respectively.^{9,10} Allowed β decay to the $\frac{3}{2}^+$ 12.33-keV level in ¹³³Ba requires the ¹³³La ground state to have positive parity. From the Nilsson diagrams the $\frac{9}{2}$, 5.4-h isomer of ¹³³Ce has negative parity. The spins and parities of levels at 130.81, 477.24, and 535.61 keV are established to be $\frac{7}{2}^+$, $\frac{9}{2}^+$, and $\frac{11}{2}^-$, respectively, from the conversion data of Gerschel¹¹ and the reaction results of Nakai *et al.*³

From the experimentally determined conversion coefficients, the $\log ft$ values, and the observed transitions, we have determined the spins and parities of the levels shown in Fig. 1. The evidence

supporting these J^{π} values is summarized below: 784.56-keV level. The 784.54-keV ground state transition is E1 and the log ft value for this level is 7.6, requiring $J^{\pi} = \frac{7}{2}^{-}$ for this level. 980.0-keV level. This is the $\frac{15}{2}^{-}$ level observed by Leigh *et al.* and populated in this β decay study. 1045.97-keV level. The log ft value of 6.9, the M1 510-keV transition to the 535.61-keV level, and the observation of a transition to the 130.81-keV level require J^{π} to be $\frac{9}{2}^{-}$.

1153.40-keV level. The K conversion coefficient of the 617.7-keV transition is consistent with that of an M1 transition though precise determination of this conversion coefficient is difficult because of interference from ¹³³La decay. Because the β decay branch deduced for this level is consistent with zero and the level decays only to the $\frac{11}{2}^{-}$ 535.61-keV level, we propose that this level has

TABLE I. Relative conversion electron intensities and deduced conversion coefficients of selected transitions in 133 La.

Εγ	I_k (rel)	α_k^{a} (×10 ³)	Λ
477.22(4) ^b	1000(36) ^c	9.82 ^d	E 2
510.36(7)	643(35)	12.9(12)	M1(<3% E2)
611.83(6)	45.0(3.7)	7.2(8)	M1(<48%E2)
617.7(3)	≈25 ^e	≈6.4	(M1)
784.55(8) ^b	38(3)	1.6(2)	E1 (5 ± 3% $M2$)
829.42(15)	7.5(8)	3.1(4)	$M1(47 \pm 34\% E2)$

^a See Fig. 1 for photon intensities except $I\gamma(475+477)$ =1081, $I\gamma(475)=81$, and $I\gamma(784)=246$.

^b The 477-keV level and 784-keV level to γ -ray singles transitions, respectively.

^c Includes the 475-keV γ ray.

^d Data normalized to this conversion coefficient. α_k is 3.4% uncertain if the 475-keV γ ray is pure *M*1. This uncertainty is included in calculated conversion coefficients.

^e Corrected for contributions from ¹³³La decay.

 $J^{\pi} = \frac{13}{2}$.

1365.02-keV level. The $\log ft$ value of 7.7 and the M1 829.4-keV transition to the $\frac{11}{2}$ 535.61-keV level restrict J to $\frac{9}{2}$ or $\frac{11}{2}$. Because there is a transition to the $\frac{9}{2}$ 477.22-keV level, but no detectable transition to the $\frac{7}{2}$ 130.81-keV level, the $\frac{11}{2}$ assignment is favored.

1396.50-keV level. The M1 611.83-keV transition limits J^{π} to $\frac{5}{2}$, $\frac{7}{2}$, or $\frac{9}{2}$. Because the β decay branch to this level is consistent with zero, we propose $J^{\pi} = \frac{5}{2}$.

1661-keV level. This level is observed by Leigh *et al.* and has $J^{\pi} = \frac{19^{-}}{2}$.

In addition to the experimental level scheme, Fig. 1 shows the level energies calculated by Meyer-ter-Vehn¹² as well as Toki and Faessler.⁶ Meyer-ter-Vehn used a triaxial rigid-core model and determined the deformation parameters from the energies of the 2_1^+ , 2_2^+ , and 4_1^+ levels of the neighboring even mass core nuclei. The Fermi energy was adjusted to reproduce the $\frac{9}{2}$ - $\frac{11}{2}$ separation. Toki and Faessler determined the deformation parameters in the same manner as Meverter-Vehn. However, they used an asymmetric core with a variable moment of inertia (VMI). Both calculations reproduce the systematics of the observed levels well; Toki and Faessler obtain a closer quantitative agreement with the yrast levels as a result of their VMI treatment of the core.

The energy level predictions of a calculation using parameters similar to those in the present work but with a symmetric core $(\gamma = 0^{\circ})^{5}$ are also shown in Fig. 1. For $\beta = 0.20$, the $\frac{11}{2}$ level rises rapidly relative to the $\frac{11}{2_1}$ level and lies substantially above the $\frac{19}{2_1}$ level. Experimentally, the $\frac{11}{2_2}$ level occurs approximately midway between the $\frac{15}{2_1}$ and $\frac{19}{2_1}$ levels. Similarly, the $\frac{13}{2_1}$ level rises and is at approximately the same energy as the $\frac{19}{2_1}$ level when the symmetric prolate core is used. However, the $\frac{13}{2_1}$ level is found experimentally to be nearer the $\frac{15}{2_1}$ level than the $\frac{19}{2_1}$ level. Thus, the experimental levels are better reproduced by the triaxial-core model than the symmetric core

Table II summarizes a comparison of experimental and theoretical¹² transition probability ratios. The agreement between experiment and theory for these ratios is within a factor of 2 to 3. In cases where only limits can be determined experimentally, they are consistent with the theoretical values. An assignment of $\frac{9}{2}^{-}$ to the 1365-keV level and $\frac{7}{2}^{-}$ or $\frac{9}{2}^{-}$ to the 1396-keV level result in poor agreement between the calculated and observed ratios.

In summary, the present study of ¹³³La levels provide a significant test of the predictions of a particle-plus-asymmetric-rotor model. It is seen that the level systematics found experimentally are reproduced by such a model and quantitative agreement on level energies is obtained when core softness is taken into account. A symmetric core mod-

TABLE II. A comparison of experimental transition probability ratios and theoretical transition probability ratios.

Level	Ratio	Theory	Expt.
$1045(\frac{9}{2})$	$\frac{\frac{9}{2}}{\frac{1}{2}} \rightarrow \frac{\frac{11}{2}}{\frac{1}{2}}$ $\frac{\frac{9}{2}}{\frac{1}{2}} \rightarrow \frac{7}{2}$	4.7	11.3
$1153(\frac{13}{2})$	$\frac{\frac{13}{2}}{\frac{1}{2}} \xrightarrow{11}{\frac{2}{2}} \frac{11}{\frac{2}{2}}$ $\frac{\frac{13}{2}}{\frac{1}{2}} \xrightarrow{15}{\frac{2}{2}} \frac{15}{2}$	24.3	>14.7
$1365(\frac{11}{2}_{2})$	$\frac{\frac{11}{2} \xrightarrow{2} \frac{7}{2}}{\frac{11}{2} \xrightarrow{2} \frac{7}{2}}$	0.078	<0.16
	$\frac{\frac{11}{2} \rightarrow \frac{9}{2}}{\frac{11}{2} \rightarrow \frac{13}{2}}$	2.3	1.1
	$\frac{\frac{11}{2}}{\frac{11}{2}} \xrightarrow{\rightarrow} \frac{11}{2}_{1}$ $\frac{11}{\frac{11}{2}} \xrightarrow{\rightarrow} \frac{13}{2}_{1}$	1.6	3.7
	$\frac{\frac{11}{2} \xrightarrow{2} \xrightarrow{15} \xrightarrow{15}}{\frac{11}{2} \xrightarrow{2} \xrightarrow{13} \xrightarrow{13}}_{1}$	0.034	<0.24
$1396(\frac{5}{2})$	$\frac{\frac{5}{2}}{\frac{1}{2}} \rightarrow \frac{7}{2}_{1}}{\frac{5}{2}_{1}} \rightarrow \frac{9}{2}_{1}}$	33	>28

el fails to reproduce the ordering and spacing of levels between the $\frac{15}{2_1}$ and $\frac{19}{2_1}$ levels in ¹³³La. In addition, the triaxial model predictions of transition probability ratios are in agreement with those determined experimentally. Thus, the particleplus-asymmetric-rotor model provides a quantitative explanation for the features of the odd parity ¹³³La levels presented in this study.

- *This work was performed under the auspices of the U.S. Energy Research and Development Administration under Contract No. W-7405-Eng-48.
- ¹J. R. Leigh, K. Nakai, K. H. Maier, F. Puhlhofer, F. S. Stephens, and R. M. Diamond, Nucl. Phys. <u>A213</u>, 1 (1973).
- ²F. S. Stephens, R. M. Diamond, and S. G. Nilsson, Phys. Lett. 44B, 429 (1973).
- ³K. Nakai, P. Kleinheinz, J. R. Leigh, K. H. Maier, F. S. Stephens, R. M. Diamond, and G. L. Løvhøiden, Phys. Lett. <u>44B</u>, 443 (1973).
- ⁴F. S. Stephens, R. M. Diamond, J. R. Leigh, T. Kammuri, and K. Nakai, Phys. Rev. Lett. <u>29</u>, 438
- (1972).
- ⁵J. Meyer-ter-Vehn, Nucl. Phys. <u>A249</u>, 111, 141 (1975).

- ⁶H. Toki and A. Faessler, Nucl. Phys. <u>A253</u>, 231 (1975).
- ⁷P. A. Butler, J. Meyer-ter-Vehn, D. Ward, H. Bertschat, P. Colombani, R. M. Diamond, and
- F. S. Stephens, Phys. Lett. <u>56B</u>, 453 (1975).
- ⁸G. P. Nowicki, J. Buschmann, A. Hanser, H. Rebel, H. Faust, D. Habs, H. Klewe-Nebenius, and K. Wisshak, Nucl. Phys. <u>A249</u>, 76 (1973).
- ⁹S. Ingelman, C. Ekstrom, M. Olsmato, and B. Wannberg, Phys. Sci. 7, 24 (1973).
- ¹⁰E. A. Henry and R. A. Meyer, Lawrence Livermore Laboratory, Report No. UCRL-75347, 1975 (unpublished).
- ¹¹C. Gershel, Nucl. Phys. <u>A108</u>, 337 (1964).
- ¹²J. Meyer-ter-Vehn (private communication).