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The theory of pion-nucleus multiple scattering is developed in the fixed nucleon approximation, using a
separable form for the pion-nucleon t matrices. The solution of the set of equations represents multiple

scattering to all orders. The extension of the theory to describe charge-exchange pion scattering is discussed.

NUCLEAR REACTIONS Pion-nucleus multiple-scattering theory, separable
pion-nucleon f matrices, fixed nucleon approximation.

INTRODUCTION

In this article we describe a method of cal-
culating intermediate energy (Tv=50-250 MeV)
pion-nucleus scattering from light nuclei. The
technique employs multiple scattering to all
orders and incorporates the finite range of the
pion-nucleon interaction. Its main approximation,
shared with many other multiple scattering cal-
culations, is the assumption that the nucleons do
not rearrange themselves during the encounter of
the pion with the nucleus ("fixed nucleon approxi-
mation"). This is separate from the question of
the effect of nucleon motion of the g-X scattering
amplitude, which can be taken into account, at
least approximately.

In our calculation, we make no large A approxi-
mation as is made in most optical models. In
addition, we make no "low density" assumptions
of the kind implicit in the expansion of the optical
potential in successive orders of nucleon-nucleon
correlations. In contrast to the Glauber model, '
which was designed for application in the GeV
range, we make no small angle approximation
and do not require that the pion-nucleon amplitude
be forward peaked. Although it must be admitted
that the optical model has had some success in
describing elastic scattering from nuclei as light
as helium, ' and that the Glauber series, for rea-
sons ill understood, has been used with success
at energies as low as 120 MeV, 4 it would clearly
be advantageous to free the calculation from these
assumptions.

Our method has historical roots in the early
1950's. Following a self -consistency technique
introduced by Foldy, ' Brueckner' extended earlier
impulse approximation work of pion-deuteron elas-

tic scattering to include all orders of multiple
scattering. His solution for the pion wave is exact
within the framework of pure P-wave pion-nucleon
interactions and fixed nonoverlapping scattering
centers. He then averaged the full pion-deuteron
amplitude over the deuteron density. Restricted
to the deuteron, the calculation could be done
analytically and in an elegant fashion. Larger
nuclei pose formidable computational difficulties
because of the large system of equations needed
to describe the multiple scattering and because
of the multidimensional integrals arising from
the integral over the nuclear density.

In a far-reaching treatment of the optical poten-
tial, 7 Foldy and Walecka returned to the problem
of the multiple scattering of projectiles from a
collection of fixed scatterers. By assuming that
the projectile and nucleon interact through sepa-
rable two-body potentials in each partial wave,
they were able to sum the multiple scattering
series to all orders. The next step, integrating
the amplitude over 3A nuclear coordinates, is
extremely complex. Since Foldy and Walecka
were attempting to derive an expression for the
optical potential, they introduced an additional
low density assumption. This approximation al-
lowed them to expand the complete solution in a
multiple scattering series while simultaneously
expanding the A. -particle nuclear density in terms
of increased orders of nucleon-nucleon correla-
tions. This program resulted in an expression
for the first order optical potential plus a series
of correction terms.

Our work parallels that of Brueckner and of
Foldy and Walecka. The multiple scattering equa-
tions developed are essentially equivalent to
theirs, although we choose to work directly with
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the pion-nucleon t matrix instead of with a poten-
tial. Like Breuckner, we use self-consistency
equations to describe the multiple scattering
rather than solving the Schrodinger equation
directly.

We differ from Foldy and Walecka in that we
do the integration of the pion-nucleus scattering
amplitude over the overlap of the initial and final
state waves functions seithout further physical as-
sumptions such as neglect of higher order corre-
lations implicit in low density approximations.
Thus we bypass the introduction of the optical
potential. This is accomplished by using the full
power of large computing machines to evaluate the
many dimensional integrals by Monte Carlo tech-
niques. This integration technique gives us a
great flexibility in the use of nuclear wave func-
tions. Not only can we use actual shell model wave
functions to calculate elastic and inelastic scat-
tering, but we can also treat deformed nuclei,
spin-flip, and charge exchange.

We conclude the introduction with a few heuris-
tic remarks concerning the fixed nucleon approxi-
mation (FNA) since it underlies most multiple
scattering calculations. The FNA rests on the
observation that even at rather low incident en-
ergies the pion moves much faster than the bound-
state nucleons. We take FNA to mean that the nu-
cleons move a negligible distance during the en-
counter with the incident pion. For example, a
pion of kinetic energy 180 MeV has a velocity of
about 0.9c, roughly 4 times greater than the typi-
cal of a bound nucleon, while even a pion with
only 50 MeV moves about 3 times faster than a
bound nucleon. Although a velocity ratio of 3-4
may not seem a priori large enough to justify the
neglect of nucleon rearrangement, it is a rea-
sonable starting point and has proved remarkably
fruitful in practice.

It is interesting that in the very high (GeV) and
very low (50 MeV) regions the FNA is not strongly
tested by experiment. This is because the FNA is
tested only if the pion zescattexs on the same nu-
cleon (triple scattering or higher). In the high
energy regime, where Glauber theory is most
successful, the pion-nucleon amplitude is peaked
in the forward direction. Therefore, although
multiple scattering may be important, backscat-
tering is very unlikely and hence the pion strikes
a given nucleon only once. In the other extreme,
for example at 50 MeV, the pion-nucleon ampli-
tude is quite weak and higher-order multiple scat-
tering contributes relatively small corrections to
single scattering.

In Sec. I we derive the multiple scattering equa-
tions and indicate how they are solved for sepa-
rable interactions. An alternate derivation is

given in Sec. II. Section III briefly discusses the
inclusion of spin and isospin degrees of freedom.
The final section sketches the Monte Carlo meth-
ods used in calculating the matrix elements.

In a latter article we will discuss the effect of
the nucleon motion on the effective g-nucleon scat-
tering amplitude and how it is related to the as-
sumptions made about the precise way in which the
t matrix is assumed to go off shell. In practice
an adequate treatment of this question is essential
for the description of elastic scattering from light
nuclei. We will also discuss the inclusion of Cou-
lomb effects and apply the technique to elastic
scattering of pions from 4He.

I. MULTIPLE SCATTERING EQUATIONS

Let us consider the scattering of a pion wave
from A fixed nucleons having position coordinates
x; (i=1,2, . . . , A). We define an operator g, such
that

g,e'" " = g;(k, x, x,),
where' P, (k, x, x,) is the scattered part of the pion
wave function assuming that the initial pion wave
interacts with an isolated nucleon at x, In the
nucleus, however, the (A —1) nearby nucleons
will distort the wave incident on the nucleon at
x&, changing (&(k, x, x,) into 4, (k, x;g, . . . , x„),
where the dependence of the wave function on
the coordinates of all of the nucleons has been
made explicit. The total scattered pion wave is
given by the sum of the distorted wave functions
over the nucleons:

A

4'( k, xq x~~. . . , xg) = Q 4'( ( k~ xl x~ ~. . . ~ xg)

(2)

We now derive a self-consistency equation which
determines the multiply scattered waves 4, in
terms of the singly scattered ones, $, The in-
cident wave on the ith nucleon consists of two
components —the initial plane wave e'"'" and the
previously scattered waves emerging from the
other scattering centers,

4'&( k, x~ x». . . ~ x&)
jAf

By Eq. (1) the wave emerging from the ith scat-
tering center is found by applying g,. to the incident
wave, hence

4' (k~ xl xg, . . . ~ xg )

=P, e'"'"+ 4'&(k, x;x„.. . , x„), (3)
j
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The plane wave impulse approximation (PWIA) results from assuming only the plane wave part is present.
The second term is a correction which includes multiple scattering to all orders. To evaluate the last
term we first express 4~(k, x; x„.. . , x„) as a Fourier transform,

4&(k, x;x„.. . , „)=
(2 )3

d'pe"'"4'&(k, p;x„.. ., x„),

and then use Eq. (1) to evaluate $(e(3'*. This gives the integral equation

d3p
4((k, xq x(q. . . i xg) = (((kq xq x()+ „g((p,xs x()4'&(k~ pi x». . . , xA)

(2&)
(5)

(6)

Knowing g( allows us to solve the system of equations to obtain the full multiple scattered waves.
We shall rewrite Eq. (5) in terms of the scattering amplitudes. As is shown in Appendix A, the ampli-

tude F, is related to the Fourier transform of the wave function by

4'((k~ (g x» . . ' I xA) Go((f)F((k) (I; x~, . . . , x~),
where G& is the pion propagator. When ~k ~=

~ q ~=k, F; is the on-shell amplitude. For arbitrary q,
F, (k, q;x„.. . , x„) is the half-on-shell amplitude. Taking the Fourier transform of Eq. (5) on the pion
coordinate x and using Eq. (6} gives

(6)

F,(k, q; x„.. ., x„)=F,(k, q, x,)+,2 „F,(p, q, x,)G (p)F&(k, p; x„.. . , x„),
7T/

where F,(k, q, x,.) is the scattering amplitude for scattering from a single nucleon at x(. Since F;(k, q, x;)
is usually expressed in terms of a target at the origin, we must consider the displacement properties of
the wave functions and amplitudes.

The wave function is shown in Appendix B to satisfy

(I(((k, x; x„.. . , x„)= e ' ' o (1(((k, x+ D; x, + D, . . . , x„+D)

under displacement D. Its corresponding Fourier transform obeys

4((k, q;x„.. . , x„)=e'" "'n4((k, q;x, +D, . . ., x„+D) .

From Eg. (6) we see that F,(k, q;x„.. . , x„) transforms under displacements in the same way as
4'((k, q; x„.. ., x„). It is convenient to use the centered amplitudes defined by

F;(k, (gx„.. . , x„)=F,(k, q;-x, -x„.. . , x„-x,)=e'" "'"(F((k,q;x3, .. . , x„),

(9)

(10)

where the nucleus is positioned such that the ith nucleon is at the origin. It is clear that F,(k, q, x,}, the

scattering amplitude from a single nucleon i, located at the origin, is independent of x„and thus will be
renamed f, (k, q). In terms of the centered amplitudes, Eq. (7) becomes

3

F;(k, q; x„... , x„)e"'*(=f(k, q)e(~' ~(+, „e"'~ff (p, q)e(3' '(&G, (p)F~(k, p; x„.. . , x„}, (11)

where r,&
=x, —xi. In the energy regime below

300 MeV incident pion energy, we can restrict
ourselves to s and p waves. In this case the in-
tegral equations (11) are most easily solved by
partial wave analysis followed by matrix inver-
sions. F; now requires only as many partial
waves in q as are contained in f„since the only

q dependence in the right-hand side of Eq. (11)
comes from f, . By contrast, F( would typically
require many more partial waves to reproduce
the exponentials which are explicitly extracted
in Eq. (10). Thus the use of F; enormously re-
duces the size of the matrix equations necessary
to invert the set of integral equations. Even so,
for s and p wave pion-nucleon interactions we re-

quire a set of (1+3) &&A equations. For "C this
is 48 simultaneous equations.

After the equations have been solved for the F;,
each amplitude is then shifted so that the center
of mass of the nucleus, denoted by the vector R,
is now at the origin. This yields for the pion-
nucleus half-shell amplitude

F(k qix(

g e((3-3 & ~ (xy-R)Fc(k q. x x ) (12)
f ~1

In the absence of multiple scattering, E& becomes
fj and the expectation of Eq. (12) over the nuclear
density expresses exactly the plane-wave impulse
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approximation to elastic scattering.
As a preliminary to the partial wave analysis,

let us define
f )f ~ X.

G (k q; x„.. . , x„)=—E;(k, q; x». . . , x&)e

(13)

so that Eq. (11) now becomes

G;(k, q) =f,.(k, q)e'"' "
«

f.(p q)G (p)e"'««G. (k, P),
' Sl 27«

(14)

where the x„.. ., x„ in the G; and G,. have been

suppressed. The partial wave expansions of the

quantities in Eq. (14) are

G, (k, p)e" '«i=4««A„(k, p, r«&)Y,"(p)Y„"*(r,«),

(15)

f«(P q) -=k Q f «(P, q) Y«(q) Y«*(p),

(18)

;G(» )«=,q Q Zi' (»)) 4 ) &,. (P)'
g'm' 4m

(1'7)

where gz
' is a function of all of the nucleon co-

ordinates and k is the on-shell momentum. Sub-
stituting Eq. (15)-(17) into Eq. (14) and letting
the incident momentum k lie along the z axis
gives

g«™(k,q) =f,'(k, q)e'" ' "«5„,

where

1/2 OO

+ .
k Z Z Z 2f 1 «- ~. P'dpAi(»»r;;)f«(P q)g," '(k, P)Y", *(r;,),

q Af )t, V l'haft' 0
(18)

G,' . „= dQ Y, *P Y" P Y„'p

To proceed further we now assume that the amplitude f!is separable. As a simple model we choose"

f«(p, q) = X,'((d)v'(p)v'(q),

where for s and p waves we take

(20)

(21)

with the o «range parameters to be determined from experiment, and 1«((()) is evaluated in terms of pion-
nucleon phase shifts. For example, if the incident meson is p, we have

=-'X(S")+-'X(S") X' = -' X(Z")+ -' X(Z")+ —' ~(Z")+ -'X(P")
(22)

2I, 2Z
where X(L'~'~) =(k/k„)(e" ~ —1), the phase
shift being evaluated in the pion-nucleon center-
of-mass frame. The momentum ratio (k/k„)
gives an approximate transformation from the
center-of-mass (c.m. ) to laboratory frame. The
model amplitude which we have used in our cal-
culations also includes a relativistic version of
the angle transformation as will be discussed in

g ™(kq)=-gI (k)v'(q) . (23)

Substitution of this expression along with Eq. (20)
into Eq. (18) yields

a following article.
By inserting (20) into (18) we see that g« factors;

we therefore write

I+ 1/2
g «™(k)= &I((v) & oe'" ' *«+ 2««l(«'((d) g Y „" *(r,.&)GI „„g,". '(k)Z),'„(k, r«&),

'm' g

(24)
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where
OO

Z'„, = —,2', p'd'p v'(p)v'(p}A), (k, p, r„) .

(25)

To evaluate 2"„,, A„ is needed. From Eq. (15),
using the form for the free pion propagator

where it is easily seen that N(k, k) = 1. The func-
tion N(k, p) may be absorbed into v'(p), and so
modifies the off-shell behavior only. Since v'(p},
and hence the off-shell behavior, has been evalu-
ated from experimental data" (v' da-bsorption},
this procedure reduces the arbitrariness.

Substituting (28) into (25) gives

4w
Go(k~ p) =

2 ka

we obtain

(26)
2i " p'dp v'(p)v'(p)j, (pr, ,)i"

r' ' 's vk p —k —i

(30)

( )
4vz' j„(pr,,)

ypy 0 p2
(28)

The form of G, away from its pole at p=k is to
some extent arbitrary since Go is multiplied by
the off-shell amplitude. For example, Walker"
has used

4m 1
2(o(k) (o(p) —ur(k) —iq

'

This may be recast as

2(u(k)[(o(p) —(o(k)]/(p' —k' —iq) p' —k' —iq

4'(p, k)

P —k2 —ig
(29)

= g A„(k,p, r, ,) Y~~( p) Y,"~ (r„). .

(27)

Expanding the exponential and equating coefficients
we find

This integral is evaluated as in Ref. 7. By Eq.
(19), only even l+ l'+ X contribute. This result
combined with Eq. (21) implies that v'(p)v'(p)
x j„(pr,z) is an even function of p, hence we

can extend the integration to —~. The spherical
Bessel function is next written as —,[h„"+h'„'],
and the integral done by contour methods. The
semicircular contour at infinity is taken in the
upper half plane for the first term and in the
lower half plane for the second. The poles at p
= + (k+ ip) yield i' h,"(kr,&), independent of n, .
The poles of the v' 's contribute damped terms
which exactly cancel the singularity in h~" at r, z
=0. Except for binding and recoil corrections
these terms contribute all of the off-shell de-
pendence. Their short range [exp(- n, rU)] is in
accord with Beg-Agassi-Gal-Hufner theorem"
which states that only on-shell information is
required for multiple scattering from nonover-
lapping fixed centers.

For the particular form of v' used, we have

=i']h,"'(kr, j}—, , g„,„[(in()'""(k'+ng,') ,h"(i or, ,) —(in()'"'"(k'+ o,') h„"(i og, r,.~)]a, ,'- n g' k"'"
(31)

Using this form for the Z~„„we can now solve
the system of equations (24) for the gI"(k), from
Eq. (23) obtain the g~™(k,q), and then from Eqs.
(12), (13), and (17) the total pion-nucleus ampli-
tude F(k, q;x„.. . , x„). The final step is to
average the amplitude over the nuclear wave

functions, i.e.,
Fu=&gylF(" q'x . .. x~) le'~& (32

The details of this integration process will be in-
cluded in Sec. IV.

II. AN ALTERNATE DERIVATION

The basic multiple- scattering equation which
we have applied, Eq. (7), can also be obtained

directly from formal scattering theory. We begin
with Lippmann-Schwinger equations describing the
pion wave scattered from all nucleons l4'(k)&, and

the pion wave scattered from only the ith nucleon

14 (k)&

ly~(k)&= Ik&+G v ly;(k)&

where lk& is the incident plane wave, V,. describes
the pion-nucleon interaction, and Go is the free
pion Green's function. Subtracting and rear-
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ranging Eqs. (33) and (34),

I
~(k)& —

I O;(k) &

&) I(:;)I»=&))lfil))+$ () )foal »&) IG, I»

Go+'j 4' k + G()Vi 4' k lj i k

(35)

We can formally solve Eq. (35) for the quantity

14(k)& —1$,(k)) «obt»n

&2)G; I»= & 2 lf ))) "g (2 If& I)) () )os)))

+ &2lf, 12& &21G, 11& .
J

(43)

1@(k)& —1(1)((k)& = (1 —G V;) 'G, V,. 14'(k)& .
(36)

«.(p)&pl v 14(k».

From Eq. (34), with k-p,

I I,(p)& =
I p&+ G.v; I c;(p)&

or

lt;(p)&=&1-G.V;) 'lp& .
This expression, along with the definitions

F,.(k, k') = (k'
I v, I

e(k)&,

f((k, k') = ( k'
I v, I

(()(k )&,

when inserted in Eq. (37) yields

(39)

(40)

(41)

F;(k) k')

=f (k, &')+ f, .A(~, k')G. ()'))";(k,)),
j i

the same results as Eq. (7).

(42)

III. SPIN AND ISOSPIN DEGREES OF FREEDOM

The multiple scattering equations discussed in
the previous section can be generalized to include
isospin. This is done by interpreting the scattering
equation Eq. (14), which can be rewritten as G,.

=f, +f; Z,„G,. as a matrix in isospin space.
First let us consid r an incident g' meson and

assume that only one nucleon is allowed to charge
exchange. The isospin state vectors are labeled
by 11) (v' meson, neutron for the valence nucleon)
and 12) (v meson, proton as valence nucleon).
Taking isospin matrix elements and inserting a
complete set of isospin states between f,. and G&,

we have the coupled equations

Multiplying by (k'
I V, , inserting a complete set of

momentum states, and making use of the property
of Go being diagonal in the momentum,

(k'
I v* I

q'(k) &
—&k'

I v( l(c ((k )&

= Ej,&i'[v,&)-G.v, )-')g)

Of course, (2lf, 11) is zero unless i corresponds
to the valence neutron. On the other hand, &21G&11&

is nonzero for all j since the charge exchange
could have occurred on a previous scatter.

Since charge exchange on a single nucleon
doubles the number of equations, the required
solutions become very time consuming. We have
found it convenient to omit the coupling term
(1 lf, 12)(21G~11) in the first equation. With this
term omitted, the first equation may be indepen-
dently solved and then substituted into the second
equation which is then solved. We have calculated
charge exchange cross sections both with and with-

out this coupling term and find only minute changes
(a few percent in the cases tested) in the results.

Assuming now that two nucleons can charge ex-
change, the isospsin state vectors are labeled by
two indices. We label the state vectors by 11)
-=Inn) where both valence nucleons are neutrons,
12) —= lnp) where the first nucleon is a neutron and

the second a proton 13)-=Ipn) and 14& = Ipp) anal-
ogously. The corresponding equations are

&11«l»=&llf;I»+ g P &llf;ln&&nlG~I1&,
n~1, 2, 3 j 4i

&2
I G(11& = &2 IA Il&+ Q g &2 lf( ln& &n IG~ 11&,

n= la2~4 j 8i

&3IG(l» =(3lf;11)+ g P &3lf(ln&&nlG~I1&,
n=ls3a4 j Wi

&41« I» = &4 IA I » Q &41f; In& &. I G; I »
n=2, 3,4 j

(44)

The first equation describes elastic scattering;
the second and third, single charge exchange; and
the fourth, double charge exchange. Again we
ignore back coupling so that n =2 and 3 are dropped
in the first equation and n = 4 in the second and
third.

In similar fashion more valence neutrons can
be accommodated, but the number of equations
rapidly becomes unmanageable. For example,
for only four valence neutrons, 16 equations must
be used to keep track of the charge states.

Spin-flip can be formally included in a similar
way. However, there are important complications
since spin occurs dynamically in the equations.
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This topic is discussed in detail in Ref. 13.

IV. INTEGRATION OVER THE NUCLEAR COORDINATES

In the plane-wave impulse approximation the
nuclear scattering amplitude is

A

(4~)
Hence each term in the sum involves the coordi-
nates of a single nucleon. Supposing the nuclear
density to factor into a product of terms each in-
volving only a single nucleon, the integrals can
easily be computed. Similar comments apply even
if full shell model wave functions are used, al-
though the angular momentum coupling can be-
come complex. In Glauber theory, the nuclear
scattering amplitude is expressible as a product
of factors each of which involves a single nu-
cleon's coordinates and thus the integrals can
again be performed for each nucleon independently.

In contrast, if the multiple scattering series is
summed exactly, the nucleon coordinates in
F(k, q; x„.. . , x„) become inextricably tangled,
and we must compute a 3A dimensional integral.
To get an idea of the magnitude of the problem,
the integrations for "C are 36 (3 && 12) dimensional.
At each integration point in this 36 dimensional
space a 48 [(1+3}x12] dimensional set of coupled
matrix equations must be solved to sum the multi-
ple scattering series provided s and p waves
describe the pion-nucleon interaction adequately.
For reasonable convergence at the back angles
(10-20%}several thousand integration points ap-
pear to be sufficient if the points are chosen prop-
erly. This requires about five minutes on a CDC-
7600 computer for one value of the energy and for
all angles.

We now discuss how to choose the points "prop-
erly" through a Monte Carlo technique. Let us
suppose the wave function to be of the form
4 „,(y„.. ., y„)Y~(n), where the intrinsic co-
ordinates are measured relative to the center of
mass of the nucleus and relative to a body-fixed
axis n. The intrinsic wave function 4„,may be
found from a (possibly deformed} shell model, for
example. As an illustration, suppose that ~4„,~'

can be written as a product of single particle den-
sities p, (y, ) p„(y„), and that L=M=O. The
labels on the p's allow us to distinguish s from
p shells, neutrons from protons, etc. In gambling
parlance we "throw" a nucleus as follows. We
first choose an axis in space relative to the beam
axis about which to build the nuclear configura-
tion. Since

~

Yoo~' is isotropic, this may be done
by choosing two random numbers; cose between
—1 and + 1 and ft} between 0 and 2p. Nonaxially

symmetric nuclei require a third angle to be
selected about the axis. For each nucleon three
random numbers are picked to establish
(v„e,, Q,)„,relative to n in such a way that the
probability of choosing a point in a given volume
is proportional to p~(y, ) in that volume. " Al-
though at this point Z, y; w 0, this condition will
subsequently be satisfied through the translation
in Eq. (12). Because of this the wave functions
are automatically functions of the intrinsic co-
ordinates and the customary problem of removing
"center of mass correlations" common to most
calculations is absent. From the y,. and n we next
can calculate x„ the coordinates in the space fixed
axes. Using these coordinates the multiple scat-
tering equations are inverted to yield F,(k, k';x', ,
. . . , x'„). The superscript 1 denotes the first
Monte Carlo point. Now another nucleus is
"thrown" by repeating the procedure. Continuing
in this manner, we construct, after N such 3A+ 2
dimensional tosses,

N

(F ) (k, k')) ~ = —Q F( (k, k'; x,", .. . , x"„).
@=1

(46)

For sufficiently large 1V, (F,(k, k')}„approaches
the elastic scattering amplitude. Convergence is
tested by varying N and by using different se-
quences of random numbers.

To apply the Monte Carlo method in cases for
which the transition density 4&4, does not factor
we first write

4f (Xl~. . . , XA)@i(xz, . . . ~ xA)

-=p, (x,) . p„(x„)R(x„.. . , x„), (4 f)

where the normalized single particle densities
p, (x,) p„(x„)are chosen to match the overlap
4&C, as closely as possible. The defined function
R(x&, . .., x„) is then absorbed into the amplitude
F(k, k'; x„.. . , x„). The Monte Carlo procedure
is applied to this modified amplitude and leads to

N

F(k, k') = —Q F(k&k';x~, . . ., x~)R(g, .. . , x~) .
(48)

The method will be most successful (i.e., will
converge most quickly) provided that the function
R(x„..., x„) does not oscillate to produce large
cancellations in the integrand.

As an example of the use of nonfactorizable den-
sities, we next assume a density of the form

p( rl» rQ) = npi(ri) p+( rA) ~&,( r j —r;)

gled

(49)

where g is a normalization factor. Such a density
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puts correlations between all pairs of nucleons.
A common form for Z(r) is 1 —exp[ —(pr) ], the
Jastrow correlation function. Different factors
could be used for n-n, n-p, and p-p pairs, if
desired. The first step is to determine q and
then adjust the rms size of the distribution. This
is done by "throwing" a large number of nuclei to
calculate

1= p ri, . . . , r„dr, dr„

(r') = —f p(r„. . . , „) P r, ')dr dre
i "-j.

(50)

The first of these equations determines q, the
second the rms radius. The p's are then varied,
for example by varying the oscillator parameter if
the shell model description is used, to obtain the
experimental value of (r ') . By using more param-
eters, higher moments could be fixed in a similar
way. The elastic scattering amplitude is now

N

E(k, k') = —g E(k, k'; x"„.. . , x"„) II
n=l i &9

Laboratory and the Schweizerisches Institut fur
Nuklearforschung (SIN) for helpful discussions.

APPENDIX A

To derive Eq. (6) and to identify E as the usual
scattering amplitude, we rewrite the Lippmann-
Schwinger equations as

=4),+ G, Vq' -=(t&, + GQ, (A1)

(x )q()()=f (x(G, (
'xx&'&( (Xk &dx (A2)

&qlpl"& f &qlp. l
q'&&q'lxlk& x, (r&x)

Using (xJG, ~x') = G,(x- x') and its Fourier trans-
form, ( q~G,

~

q') =G, (q)(2v)'6(q —q'), (Al) and

(A2) become, with a slight notational shift,

p(k, ) f 6 ( —x')E(k, x')dx' (A4)

where 4r is the full (incident plus scattered) state
vector and E -=V%~ is the scattering operator. "
The scattered part of the wave function is then
4 = G, E. Taking matrix elements of this expres-
sion and suppressing all nucleon coordinates we
get

x j;,(x", —x", ) . (51)
and

4 ( k, q) = G, ( q)E(k, q) . (A5)
In this fashion correlations are accounted for
exactly and to all orders, within the computational
limitations imposed by available computer time.

As a final example we consider the pion excita-
tion of a nucleus from a L = 0 ground state [4((y„
. . . , y„)Y,'(a) ) to a low-lying" (L, M) rotational
level [q(y„.. . , y„)Y~(a)]; a is the body-fixed
symmetry axis. We assume for simplicity the
internal wave functions to be the same for both
states. Using Eq. (48) the amplitude for the pro-
cess is

N

E~(k, k') = —g E(k, k'; x,", . . . , x"„)Ys~(a")/Y,'(a") .
(52)

The convergence is good provided L is 0 or 2, but
deteriorates for larger values of L where the can-
cellations in the sum become more serious. This
technique provides automatically the population of
the different M states and hence also the spin den-
sity matrix of the residual nucleus.

One of us (WBK) would like to thank the members
of the theory groups at Los Alamos Scientific

The second of these is Eq. (6). To identify F as
the scattering amplitude we use

~iAx
G (x x') e '"""'

lxl~ ~

where k'=—k x, in (A4) to get

(A6)

P(k, x)- f e '"'"d(k, x')d

(A7)

the usual expression for the scattered wave being
the product of an outgoing spherical wave and a
scattering amplitude.

APPENDIX B

The translation property (8) is easily proven for
the case of fixed scattering centers described by
(possibly energy dependent and nonlocal) potentials.
Let the potential V, (x, x') describe the fth scat-
tering center when located at the origin. The pion
wave satisfies

(Bl)(;P, )= '"x',+ 2 ff P.(x-"')«("'-" ""-*i)P,(x ;x",*,)d"'d""",
i =&

where x„.. . , x„, assumed fixed but arbitrary, are the positions of the scattering centers. We now shift
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the positions of the scattering centers by a displacement D, at the same time evaluating the wave function
at the point x+9:

)1),(x+D;x, +D, .. . , x„+D)

A

=e "' e "' + g fG (x+D —x')V&(x' —D —x&, x"-D —x&)d'(x";x +D, . . . ,x +D)dx dx" '(22).
g =1

Shifting the dummy variable by D, the equation becomes, after multiplying by e '"

[e '" n)))t (x+D; x, + D, . . . , x„+D]

=e "'*+ G x —x' V& x'-x&, x" —x& e ~" g-„x"+D;x,+D, ... ,x„+D dx'dx".
i=1

Treating the bracketed quantity as the unknown function, Eqs. (Bl) and (B3) are identical. By the unique-
ness of solutions of integral equations, assuming well behaved potentials, we have

())(x;x„.. . , x„)= e '" n
PB ( x+ D; x, + D, . . . , x„+D), (B4)

which is Eq. (8).

*Work performed under the auspices of the U.S. Energy
Research and Development Administration.
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