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Three-particle scattering theory is reexamined for interactions which contain singular cores in a finite number

of two-body partial waves. It is shown that the Faddeev equations do not possess a unique solution for the

corresponding t matrix, and hence, cannot be used directly to examine "realistic" singular core models of the
N-N interaction. For the special case of a pure boundary condition model, alternative one-dimensional

equations are derived based on the Schrodinger and Faddeev representations. These are shown to be

completely equivalent, and to uniquely specify the three-body observables. The Faddeev version is shown to be

a special case of the author's boundary condition formalism. Equations suitable for realistic models which

include potential tails are presented.
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I. INTRODUCTION

The hard core and its generalization, the bound-
ary-condition model (BCM), provide a useful ab-
straction in describing the short-range behavior
of the nucleon-nucleon (N N) interac-tion. Both
have been employed to construct models of the N-N
potential which are "realistic" in the sense of pro-
viding an excellent fit to N-1V scattering data and
the static properties of the deuteron. ' In order to
assess the effectiveness of this description (e.g. ,
in comparison with soft-core models) one must
probe the off-shell structure by studying systems
of three or more nucleons. However, special
problems arise in performing three- (or more)
body calculations in the presence of singular cores.
This was first noted by the present author almost
five years ago, ' and further explored in two sub-
sequent articles. '

In the first of these papers (SCI), it was shown
that if the three-body wave function is taken to
vanish identically whenever any pair of particles
is within their core radius, then the Faddeev equa-
tions do not possess a unique solution; this as-
sumption is equivalent to requiring a singular core
to be present in each two-particle partial wave. It
was further shown that for a "pure" BCM (no ex-
ternal potential), the r addeev equations could be
reduced to a one-dimensional form (since the
BCM t matrix is not separable, this is a unique
feature of the model). However, due to the ab-
scence of information in the interior (core) region,
this reduction does not lead to a unique solution,
and it was necessary to supplement the BCM by
an auxiliary boundary condition. The choice of this
additional constraint is limited by analyticity and
three-particle unitarity, and the form proposed in
SCI is essentially the simplest consistent with

these requirements. Unfortunately, this procedure
introduced an arbitrary parameter (W, ) into the
problem which was aesthetically unsatisfying, al-
though subsequent numerical work in SCII demon-
strated a complete lack of sensitivity to this pa-
rameter.

On the other hand, the treatment in SCI depended
on some special operator relations and did not ap-
ply to the case where a singular core is present
in only a finite number of partial waves, and
there were indications that this could change the
character of the problem. Thus V. Efimov had
shown that the Schrodinger equation for three iden-
tical bosons interacting only via s-wave hard cores
could be reduced to a unique one-dimensional
form, ' and Kim and Tubis had solved the (two-di-
mensional) Faddeev equations numerically for an
s-wave Herzfeld potential (hard core plus square
well). ' However, these results raised some ques-
tions in that Efimov's derivation did not address
the problem of three-body unitarity, and hence,
might have corresponded to a trivial (and param
eterless) auxiliary condition rejected in SCI. Sim-
ilarly, it can be shown that the Faddeev kernel is
not square integrable (L,) even for an s-wave core,
and thus it was surprising that Kim and Tubis
could achieve a stable numerical result with their
technique. In addition, it was not clear how the
ambiguity demonstrated in SCI could arise in going
from a finite to an infinite number of partial-wave
cores, whether it could be eliminated by following
this limiting process, and whether numerical re-
sults would be stable as cores were added to
p, d, . . . waves.

Recent results by V. N. Efimov (a, different
Efimov than the author of Ref. 4) have added to the
confusion surrounding this subject. ' Thus, by ex-
tending the method of Ref. 5, he was able to derive
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a unique one-dimensional equation for three identi-
cal bosons interacting via the s-wave BCM (this
differs from the hard core in that the logarithmic
derivative parameter X, is finite). This distinction
enables one to include an attraction, and hence, the
system can bind for suitable values of Xo. If one
takes the (average) nucleon mass, and requires the
two-body system to have the deuteron effective-
range parameters, the core radius r, and A., are
determined and the three-body problem is uniquely
specified. Numerical results for this model have
recently been obtained by V. ¹ Efimov and Schulz,
who quote a binding energy of 7.7 MeV. ' This is
to be compared with results of 18.4 and 12.7 MeV
obtained by this author and Kim and Tubis, ' re-
spectively, using the same values of x, and A . Al-
though the assumptions of SCI (and the resultant
equations) differ from those of Efimov in the sense
noted above, it is nevertheless surprising that re-
sults as different as 18.4 and 7.7 can be obtained
with models which embody essentially the same
physics. Moreover, the model studied by Kim and
Tubis is exactly identical to thai of Efimov and
Schulz, and hence, a discrepancy of 5 MeV (com-
pared to errors of a few percent) is quite disturb-
ing. Inasmuch as all of these authors have taken
some pains to verify their numerics, it is clear
that our understanding of this problem is far from
satisf actory.

The aim of the present article is to clarify this
situation by relating the various approaches taken
to this problem. We begin in Sec. II by considering
the method employed by the Efimovs. " A.s noted
above, this approach has only been carried through
in the very special case of identical particles and
s -wave cores. However, by utilizing the powerful
operator techniques developed in SCI, we are able
to derive a one-dimensional equation for the pure
BCM which is valid in the most general case (no
restrictions except to a finite number of two-par-
ticle partial waves). Moreover, we demonstrate
that this equation provides a unique solution, and

that uniqueness of the wave function does not re-
quire the special symmetry for identical particles
relied on by Efimov. The derivation is also more
general in that it is applied to the scattering state,
rather than the bound state problem, and one can
apply the methods of SCI to explicitly verify three-
particle unitarity.

We next present a completely independent deriva-
tion in Sec. III based on the Faddeev equations; this
again leads to a unique (but different) one-dimen-
sional equation. In the process we prove that a
unique solution to the Faddeev equations does not
exist, even if the singular cores are restricted to
a finite number of partial waves. This clearly
casts some doubt on the numerical work by Kim

and Tubis. The precise relationship between the
different approaches is then examined in Sec. IV,
and the following results a,re obtained: (I) The
three-particle scattering amplitudes T, and T z
defined by the derived integral equations of Secs.
II and III are related by T&= T~, and hence, are
identical; (2} as the number of partial waves is
taken to infinity the latter equation is identical to
the result of SCI (and the same ambiguity reap-
pears); (2) as is the case for conventional poten
tials, there exists suitable input to the author' s
general boundary condition formalism (BCF}which
exactly reproduces the equation of Sec. III.' The
distinction between the equation derived in SCI and
the new equations can thus be expressed as a more
general type of "auxiliary condition" in the sense
of SCI.

The implications of these results are discussed
in Sec. V. In particular, one consequence of Sec.
III is that the Faddeev equations are never suitable
for three-particle calculations if any singular
cores are present. This presents an apparent im-
pediment to the consideration of "realistic" singu-
lar core models (i.e. , with external potentials) in
the three-nucleon problem. However, we demon-
strate that a trivial extension of the derivation
given in Sec. III yields suitable integral equations
for this problem. It should be stressed that the
considerations of this article do not pertain to the
applicability of the BCF as a general approach to
the three-body problem. In fact, it is the only
formalism sufficiently general to incorporate both
conventional potentials and singular cores.

II. SCHRODINGER DERIVATION

In this section we derive a one-dimensional equa-
tion for the pure BCM using the method devised by
V. Efimov' (and extended by V. ¹ Efimov'). This
requires that we begin with the Schrodinger equa-
tion for a model with finite repulsion, and subse-
quently go to the hard-core limit. In doing so we
shall rely heavily on the operator techniques de-
veloped in SCI. This permits us to paraphrase the
Efimov derivation in a more elegant fashion, while
at the same time extending it to a much more gen-
eral situation. Although we ignore spin and isospin
degrees of freedom, these can be included by a
simple extension of the basis states, and thus our
result is quite general.

We denote the mass of particle n by m and the
total c.m. energy by W. Three-particle states are
described by the usual Jacobi variables p, q,
which correspond to the relative momentum of
particles P and y, and the momentum of o, relative
to the Py c.m. , respectively. The conjugate vari-
ables in the coordinate representation are taken to



13 SINGULAR CORES IN THE THREE -BODY PROBLEM. III. 1837

be xo, yo. Introducing the corresponding reduced
masses p, ,M, these definitions imply that the
quantities

P'=P, '/2p, +q '/2M

R'=x '+ (M, /p, )y, '

are independent of the index n. The condition for
a physical scattering state (on-shell condition) is
that I 2= W.

In order to rid ourselves of the channel indices,
and to consequently simplify the required manipu-
lations, we follow the method of SCI and introduce
a Hilbert space of states I o.pq& with the normali-
zation

&~p'q'ISpq& = I).&I}(p'-P)h(q'-q),

In general, any observable quantity A (not artifi-
cially decomposed into channels} has the structure

A = (1 -I)A(1 I)-
= —,'(1 f)A-

= BA(1 I).-
We may now define the free Green's function (G,)

and the two-particle t matrix (t) as operators on
this space; thus

&~P'O'ItIPPq&= t'. ~(q'-q) t.(P', P; s.),
(.p q IG, I ppq&= ~,/2-~ q, /2M W

where s = W -q'/2M . Similarly, defining the
potential operator V such that

Q]dpdq~l pt))( pq~l=l. (2) &nx'y'I VIP xy) = t) ~5(y -y')V (x', x),

t satisfies the Lippmann-Schwinger equation
Here the index a implies that p, q are the numeri-
cal values of p,q, and the completeness relation
automatically performs the sum over channels in
an operator product. Although only two of the six
vectors pz. q z(or xz, yz) are linearly independent,
it is convenient to retain all of them in order to
most simply express the corresponding two-par-
ticle operators. The connections between them
can be expressed via an operatorI which "inter-
connects" the Faddeev channels. Thus

&~p q'If IPpq&= —~(p -pl)~(q -ql),

&ax'y' ll Ipxy& = —5(x -x'~)t)(y —y))),

I '= —,'(1+I),
(1 I)' = 3(1 I), --
(1 f)(2+f) = 0.

(4)

where pz, q t (xz, yz) are the appropriate linear
combinations of p', q' (x', y'), and the diagonal ma-
trix elements of I vanish. One can easily verify
that 1 is a, symmetric operator (1=Ir} with the
following properties":

t= V —VGo

= V —tGOV (10)

I )t) &
=

I @& -G V I 4'&,

I g& = (1 -G, t) I @&+G, tfl q&,

iq&= (1 —G, t)[ly& -f Iy&].

(12a)

(12b)

(12c)

Here IP& is an arbitrary incoming (plane-wave)
state in our basis satisfying (H, W) IP& =0;—Eq.
(12b) is the wave function version of the Faddeev
equations. Furthermore, by writing Eq. (11) in
the form

(H, + V —W)lg&=f VIq& (13)

written on this Hilbert sPace. We may now state
the Schrodinger equation as an operator equation
on our basis in the form

[Ho —W+ (1 f)V] lq')-=0,

with G, = (H, —W -ie} '. Substitution of the channel
representation leads to the relations [using Eq.
(10)]

As an illustration, we note that the three-body
state vector is 14&, with the Faddeev channel de-
composition Iq'& =2 Ig ). With the above defini-
tions

0'(x, y ) =&axy lg'&

and employing Eq. (10), we deduce that

I 4& = (1 —Go t)[(1 I) I P&+ G, I-V I 4)&],

and hence, that

V I @'& = t(1 I) I )t) )+ tG, IV 14'& . -

(14)

= &nx y I (1 I}I)t)&-
=g $6(x» y))),

where

&»y I)t'&=)t) (x y ). (6)

All of the above equations assume that V is a
typical potential with "normal" convergence prop-
erties. We now specialize somewhat to potentials
of finite range such that V (x, x') vanishes for x
& a (or x' & a ). We embody this constraint into
our formal development by introducing an operator
V such that
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V= VV= VV (17}

(clearly V is a projection operator}. A general
property of such models is that

tG0 = tG o V+ t'Go(1 —V), (18)

where t' has the operator structure of t in Eq. (8),
with

(ax'y' IV!pxy}= 6 rr6(y y'}6(x -x')e(a -x},
(16)

where 8 is the unit step function (this notation is
consistent with SCI). The finite range restriction
can then be expressed as

ties than those that appear in SCI; the notation
here is that of V. N. Efimov}. Consequently, we
deduce that

V(1-I)Vul y)

I rj) = (1 —G,r) lrtr), (26)

= V(1 I)V 1-4'} —V(1 -I)[t(1 I)+-gY] I p) (24)

and that

I g) = [1 —Got(1 —I) —G OVD —G,g Y] I rp) (25)

using Eq. (12a). Equivalently, defining the channel
t-matrix v such that

I'(p', p;s )=g P, (p p')t, (p', rr;s, )
2l+ 1 we have

r = t(1 I) + VS-+ gY. (27)

xG, (p, s ). (19)

"dpp Gar(p, s„)j (xpr)

P —K~

(20}

for x&a [a particular choice is discussed follow-
ing Eq. (24) of SCI]. Physically, Eq. (18) is just
the statement that the wave function of the two-
particle system takes its asymptotic form for
x&a (note that the two-body state vector is given

by I re,) = (1 —G,t) I rtr), and use the symmetry of G,
and t). In practice, the precise form of G, never
matters, since its integrated property [Eq. (20})
is all that is required.

Returning to Eq. (15), it follows that for finite
range potentials

V 14') = [t(1 I)+ VG+g Y] I rtr)-, (21)

where

Sl rtr) = tG VIV I 4'),

gYI rp) —= t'Go(1 —V)IV I@),

and g has the form

(ap'q' Ig I P p q)

6(»»l) 6(p P )
p'

(22)

xQ P, (P P')t, (P', rr„;s ). (23)
4w

With this definition (apq I Y is independent of the
value of p (note that Y and B are different quanti-

Here t„(p', p; s,} is the partial-wave projection
of t, (p', p; s ), and rr is the on-shell momentum
value; rr =(2tr s )rr'. The function G, is arbi-
trary except for the requirements that it be entire
as a function of p (for fixed s ), and satisfy

G~r(K~, s~) = 1,

V(1 I)V&= —V(1 —I—)[t(1 I)+gY]—(29)

in the BCM limit.
To this condition we must add the basic state-

ment of the boundary condition in order to obtain
an equation for the unknown quantity Y, whichvia
Eqs. (27) and (29) is sufficient to determine r (and
hence, 14)). We first recall from SCI that"

Up until this point we have said nothing about
singular cores, and there are no delicacies in-
volved in the above manipulations. Qur motivation
has been to derive certain operator relations [and
in particular Eqs. (24) and (25)] which are valid
for arbitrary finite range modeis (which may in-
clude finite repulsive cores). The basic idea of
the Efimov approach is to take these equations to
the hard-core (or BCM) limit. In doing so, it
should be noted that the potential operator appears
only in the combination V lq') in Eq. (24). All ref-
erence to V can be eliminated by noting that

lim V(1 I)V14') = 0-. (28)
(BCM)

This may be deduced by considering the Schrod-
inger equation [Eq. (11}]. Inside the core region,
that equation can only be satisfied in the limit of
infinite repulsion if 14) -0. Except on the bound

ary, this implies that (H, —W) lg)-0, and the
overall operator V in Eq. (28) projects onto the
interior. In taking this limit, it is important to
note that possible difficulties are avoided due to
the separation achieved in Eq. (21). Thus, al-
though operator products involving t may (and do)
become delicate after the limit is taken, the multi-
plicative nature of g implies that no problems
arise in taking t, (p', rr;s ) to t, (p', rr; s~) in

Eq. (23). Also, D is ta.ken to be the limit of the
product given in Eq. (22), and hence, one expects
Eq. (24) to remain valid in that limit. We thus
obtain
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tsc, (p, x; s )=N„(p)/D, (K ),
N, (p)= (a X, —f)j,(a p)+a pj „,(a p),

D, (zg=twp, x,[(a,X, —l)h, (a x, )

+a,z,h„,(a e,)].

(30)

Here X„ is the (constant) boundary-condition pa-
rameter such that

limp', (a, + e)/g„, (a + e) =X, .
6 ~p

(31)

Furthermore, if N„(x) is the Fourier transform
of N„(p), one can show that

dxx'N~, (x)f, (x)=X~,f,(a )o-f', (ae) (32)
I 0

for an arbitrary function f, (x}. Therefore, defining
an operator b such that

&op'q' I b I P 5 q&

b(1 -I)[1-Got(1 I)--GOVT-GogY] =0

since I P) is arbitrary; or

Y = bIGO t(1 I) —-b(1 -I)GO VS+ bIGog Y

(39)

(40)

using Eqs. (34)-(37). This will clearly become an
integral equation for 1' (and reduce to one dimen-
sion in a partial-wave decomposition) providing
one can uniquely solve Eq. (29) in order to elimi-
nate K) in favor of Y. Technically, Eq. (29) does
not possess a unique solution, but it turns out that
the ambiguity resides in a subspace which is not
required for our purposes.

In order to investigate this point we must be
more precise in defining our model. In the above
we have implicitly assumed that the partial-wave
sums are truncated to values l —l . We may in-
corporate this restriction explicitly by defining a
diagonal projection operator A such that

= 6.,6(q -q') p 4
I'i(p'p'}N. i(p}/N. ((x.),

7
W

A =1, for l~l
=0, for l&l (41)

(33)

the boundary condition can be represented formal-
ly as

(42)

A commutes with all of our basic operators ex-
cept I. The precise statement of Eq. (29) is then

AV(1 I}AVS= —-AV(1 -I)[t(1 I)+gY] . -

bi%�

) =0. (34)
In order to solve for g) it is tempting to define an
inverse y such that

As a consequence of Eqs. (23) and (33), it follows
that

AV(1 I}AV}t=A-V, (43)

bGogA = A, (35)

providing A is an operator such as Y with no p
dependence [see remark following Eq. (23)]. Also,
the nature of N, involves the implicit limit x
-a (+), and hence

vV=0,

R =1, if R&min(az}

= 0, otherwise, (44)

but one can explicitly show that this equation has
no solution. Specifically, if we define a diagonal
projection operator R in the coordinate represen-
tation such that

V t'=0

Vg= 0.
Finally, we observe that

bG, t= b[VG, t+ (1 —V)G, ts ]

(36)
it can easily be shown that

AV(1 I)AVRg, =0- (45)

for a nontrivial subspace It, [note that Eq. (1) im-
plies that R commutes with I, V, and A]. How-

ever, it is possible to define an operator 8 such
that

]BC
0 AV(1 I)AVB = (1 --R)A V. (46)

(37}

using (t'sc) r = t sc (same notation as SCI); the last
step requires the explicit formulas of Eq. (30),
and is implied by the two-particle boundary con-
dition

Thus, although RB is not uniquely determined by
Eq. (46), one can show that (1 R)B is uniq—uely
specified. Here we observe that after a partial-
wave decomposition Eq. (46} reduces to a set of
coupled integral equations in the variables x, y.
However, by making the change of variables

b I g, ) = b(1 —Go t) I @,) = 0. (38}
g =R cosset),

With this background we can complete the deriva-
tion by substituting !4)= (1 I) I t}I} into Eq. (—34),
with I g) given by Eq. (25). We thus obtain

(47)y= (p /M )'~'R sing,

and recalling that I, V, A conserve R, these can
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be reduced to a set of one-dimensional equations
in the variable Q. Furthermore, these equations
can be solved analytically in the special case of
identical particles and s-wave cores, as was first
shown by Efimov. 4

We therefore define B by Eq. (46), and write
the solution of Eq. (42) as"

S= BV(1--I)[t(1 I)+g-Y] . (48)

This is possible because R only has support in the
region interior to all the cores, and hence

R= VR=RV.

Also, Eq. (18) implies

t I p) = [IG,V+ t'G, (1 —V)]GO
'

I p)

(49)

(50)

for an on shell stat-e I P}. Therefore, by Eq. (36)
we have

[t(1 I)+gY] I@-}= (1 —V)[t(1 I)+gY] I @-)

= (1 -R)[t(1 I)+gY] lg-), (51)

and since our derivation requires that Q is ulti-
mately to act on Ig), we find that Eq. (48} requires
only the unique (1 -R) portion of B It is. useful
to define an operator Q such that

nates the need for the symmetry argument relied
on by Efimov in the identical boson problem.

7 = t(1 I}+iIG-07' . (58)

As in SCI, we assume that this equation holds when
t and v are replaced by their respective BCM
limits (due to the presence of G, in the product
tIG,7 there is enough convergence to 3ustify this
assumption). However, unlike SCI we regard t as
being restricted to the truncated angular-momen-
tum space defined by A, and thus Eq. (58) is to
hold with t -A t = tA. The three -particle state vec-
tor is then

III. FADDEEV DERIVATION

We consider in this section a completely inde-
pendent derivation based on the Faddeev equations.
In the process we demonstrate that the Faddeev
equations as they stand do not possess a unique
solution in the presence of singular cores, but that
the full three-particle t matrix is nevertheless
uniquely determined by a reduced equation in one
dimension. Again for simplicity we consider only
the pure BCM (no exterior potentials}.

The Faddeev equations can be stated as an oper-
ator relation on our Hilbert space by substitution
of Eq. (26) into Eq. (12b). We thus obtain

Q = 1 —AVB(1 I);-
we can then write Eq. (40} in the form

Y= 0+KY,

where

(52)

(53)

14') = (1 -I)(1 -Gp) i P)

= (1 -I)(1 —G AT) i p }. (59)

Using the explicit form of the BCM t matrix we
have

0= bGO[1 —(1 -I)Q]f(1 I), -
K= bGO[1 —(1 I)Q]g. - (54)

VG() t tG()V V

and thug we obtain

(60)

Due to the nature of b, Eq. (53) reduces to a set
of coupled integral equations in a single continuous
variable (q).

We have thus derived a one-variable equation
for the operator Y. Using Eqs. (27), (48), and

(52) we find that the channel I matrix is given by

7 = Q[t(1 I)+gY] . -
However, the complete three-body t matrix is
given by

r =(1-I)v
and the three-body wave function is

(axy1%) =(axy I1 G,T I P}. -

(55)

(56)

(57)

We thus conclude that Y is completely sufficient
to specify a unique solution to the problem. In this
context we note that Eq. (51) again implies that the
ambiguous part of B (or Q) is annihilated in con-
structing v from Eq. (55). This observation elimi-

AV I 4) = 0

I e) = (1 -I)M I y),
AV(1 I)M = 0. - (62)

As in the previous section, we require the op-
erator Q defined in Eq. (52). Using Eq. (62), we
deduce that

QM=M (63)

[Eq. (46) implies that B=BAV]. Furthermore,

(61)

by applying AVG, to Eq. (58). Physically, Eq. (61)
implies that the three-particle wave function van-
ishes if any two particles are within their core,
providing that a core is present in the correspond-
ing channel suave function. " In this context we
observe that the projection (1 —A) I @) is nontrivial,
since scattering can occur in those states due to
the two other Faddeev channels (recall that A and
I do not commute}. Defining M= 1 -Gor, we have
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QQ(1 -R) =Q(1 -R),
[(1 -I}Q]'=(1 -I}Q,
QVA= VAR.

(64)

We also recall the following property of the BCM
t matrix from SCI'4:

Go t = V+ (1 —V)Go t,
IV=0.

(65)

Eq. (46) can be used to demonstrate that B= B
[this is required for (1-R)B and can be imposed
on RB]. By combining Eqs. (46} and (52), one can
easily prove the following useful properties of the
Q operator:

AV(l -I)Q = AV(1 I)R-,

A
~ e& = (1 I)ARZ,

= V(1 I)-AVR)to, (71)

and hence, this produces no change in A14'). To
prove uniqueness for (1 -A)14') is more difficult;
however, the on-shell value of T (not just AT)
does not require the ambiguous part of M.

This leads us to suspect that a unique equation
does exist from which to determine T, and in fact
it is quite simple to derive. We define

X= tIM, (72)

which implies that

Therefore, if M is a solution of Eq. (69), M'=M
+ ARg, is also a solution. We note that the corre-
sponding contribution to l4) is

(tr Bc
)
r (66)

This can be established from the above by using
Eq. (60) and taking the transpose of Eq. (18). We
thus identify

X= tIQM

= tIQ(1 —Got+ G otIM}

= tIQ (1 —Got+ GoX) (73)

in terms of the operator t' defined in Eq. (19}.
Noting that

tR=t VR=O, (67)

using Eqs. (65), (68), and (69). Due to the separa-
ble form of t, this provides a one-dimensional
equation from which to determine X. Similarly,
we have

we may apply the above properties to show that

tIQVA = tIUAR

= tRIVA

M=1 A+ AM,

AM= AVM+ A(1 —V)(1 —Got+G+},

and hence

(74)

=0. (68)

With this result we easily prove our assertion
concerning the nonuniqueness of the Faddeev equa-
tions, which are equivalent to the relation

(1 -I}M= (1 -I)Q(1 —R)(1 -Got+ G X )

+ (1 I)QRM . - (75)

We thus observe that X is sufficient to determine
everything except AVM. Also,

M = 1 -Got+GotIM. (69) A(1 l)QRM = A V-(1 l)M-
(76}

=0. (70}

Let )to be a nontrivial solution of Eq. (45), then

(1 -Gotl)AR)t = [1 —AVI (1 V)Gotl]VARXo

= A V(1 I)AVRy,

=0,
so that X uniquely determines A~4).

In order to relate X to ~ we adopt the procedure
(and notation) of SCI and define operators t, F such
that

(~P'q'ItiPP4) =6.a5(q'-ll) g 4 &,(I p'K. ,(p),
4w

5(' )(~o'i') ))I))oi) =&.s5(o'-)o p. 2 4 )&,o ) ')o. , (l ', *.8&., '( .) .
l

(77)

Thus

tV =0,

g =Ft,
tGOFE =E,

(V8) (79)

the last relation being similar to Eq. (35). Given
the form of Eq. (73}, we may then define a new
operator X such that

X=F(t +X).
It follows that X satisfies



1842 D. D. BRAYSHAW

X = t (IQ —1)+tIQGOFX

or

t (1 —I )Q(1 +G,FX) = 0 .
Moreover, from Eq. (74) we deduce that

(1 —V)G,v = (1 —V)A(1 —M)

= -(1 —V)G,FX,

(80}

(81)

(82)

uniquely, as in Sec. II. We thus arrive at an al-
ternative formulation of the problem, having ob-
tained two rather different looking integral equa-
tions [Eqs. (53) and (80)]. In the next section we
demonstrate that these two equations are in fact
equivalent.

IV. COMPARISON OF BCM FORMALISMS

and thus

tGOT = -X. (83)

It is therefore clear that if we go on shell from
the left, ~--EX; i.e.,

(84)

This can be made more explicit if we introduce a
partial-wave decomposition, coupling T(p) and
7. (g} to form a state of total angular momentum L
Our basis states then become

~ aLMlkPq), and Eq.
(83) is equivalent to the relation

(nLM/APq ~X= D, (z -)(aLMlha„q[7 . (85)

Thus X is essentially the on-shell value of v; note,
however, that Eq. (85) is valid for all q, not just
in the physical region (~„' negative as well as
positive}.

We have thus demonstrated that although the
Faddeev equations do not possess a unique solu-
tion for the BCM t matrix, a unique one-variable
equation for the quantity X can be deduced from
them [Eq. (80)]. Given X, there is sufficient in-
formation to construct both the on-shell three-
body f matrix (T), using Eqs. (56) and (85), and
the A projection of the wave function (for compar-
ison with SCI we note that X was denoted by Y' in
that reference). Actually, we have nowhere used
the fact that

~ P) is an on-shell state in this sec-
tion, and hence, X is sufficient to determine T
half on shell (from the left}, and AT fully off
shell. " By symmetry we can then construct ~4')

(n lxq )
Pl'A'q') = 5 s6„,6~„,5(q -q')

q' (86)

We will retain the notation K, 0 of Eq. (53), but
now regard this as an equation on the simplified
basis. We therefore have

In the preceding section it was shown that the
Faddeev equation is uniquely related to the three-
particle observables via the solution of a reduced
(one-dimensional) equation. The latter is quite
different in form from the equation derived in Sec.
II, and we begin below by first establishing their
equivalence. We next demonstrate that as A - 1,
the equations are identical to the result of SCI,
and the same ambiguity reappears. In order to
relate singular core models to the general bound-
ary condition formalism (BCF) proposed by this
author, ' we explicitly exhibit the input to the BCF
which is required to exactly duplicate the T oper-
ator defined in the preceding sections. Finally,
we consider an alternative equation which may be
derived by the techniques of Sec. II, and show that
it is precisely identical to Eq. (53).

It will be convenient in what follows to employ
the angular momentum decomposition noted above,
and to thus employ the [ nLMlxPq) basis states
In order to simplify the notation, we will consider
the conserved quantities I., M held fixed and not
state them explicitly, and will also eliminate ref-
erence to the superfluous p variable in our one-
dimensional equations. We therefore introduce the
basis ( alkq) with the normalization

( ol'z'q'[K)Ply) =N, , '(z')(aLML'X'z~q'[tGo[1 —(1 —I)Q]t [PLMlhzaq)DS, '(az), (81)

and take

Q[g) =KG, (P),

(nl'~'q' Ifl, I y)

d p'p" aEMl'x'p'q' 1 —I
0

(88)

Z=(1-K) '

on the reduced basis, we find that

V [ y) = (Z —1)a, i y) .
Similarly, we define 0 such that

(aLMl'x'p'q'
~

Qr
~ ply)

(89)

(90)

In obtaining Eq. (88) we have used the fact that
[ P) puts p' on shell in simplifying t(1 —I) [ Q). De-
fining

= —(aL le'P'q'
~ (1 —I)gt r

~ PLMlxaBq) . (91)

Recalling Eqs. (55) and (56), it follows that
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T"= fl -D '(Y+Qo)

=-0 D 'ZOO, (92)

=D (, '(K')

x ((((LMl 'A'((' q' [ t II((G t I pLM0«8q&N» '(((8),

(93)

where the notation r means that T" produces the
half-on-shell t matrix when acting to the right on
an on-shell state; i.e., T"

~ (P) = T ((j(). Here it is
understood that T" is to be sandwiched between
states of the full basis, whereas intermediate
states in evaluating Eq. (92) are taken in the re-
duced

~
a l((q) basis. We have also used the nota-

tion D to represent the multiplicative factor
D„(((( ) as a diagonal operator.

We now consider the transpose of T". Applying
Eq. (64), we first obtain

(((.t'z'q' (F7' ) p t(,q)

(T') =-GOD 'ZQ.

Qn the other hand, Eq. (84) implies that

((p i T = —((p [ (1 —I )FX

= —((p I QO D 'X,

(100)

(101)

and Eq. (80) can be stated in the reduced basis as

X =0+KX. (102}

T — QD ZQ (103)

where the l signifies that T' is identical to T when
taken on shell from the left. Comparing Eqs.
(100) and (103), we have established that

(T") = T' (104)

If we denote the operators produced by the two
derivations as T, and T&, respectively, the con-
tent of Eq. (104) is that

We therefore conclude that the Faddeev derivation
produces the operator

where we have used ((P I T~ f A ) = (A I T. I (P ) (105}

t(1 -Q) =t V(1-Q') =0 (94)

to simplify the product. Employing Eq. (68),
which also holds for t in view of Eq. (78}, we note
that

t IQG Ot = tIQ(1 —V)G, t

However, it is straightforward to show that

(1 —V)G,P~ pLMlx((((q)

(95)

dp p'(1 —V)GoEIpLMLApq)NB, (((8}D8 (((8)(
0

= (1 —V)G,G [ pLM l ((((8q ) N» (((((), (96)

We may now define a new kernel K by the relation

K =DK~D-'.

it follows that

(«'~'q'
I z I pf~q &

(98)

=(c(LMl'X'((„'q'
I tIQGoG I pLM4((8q)D((( (((8) .

(99)

Defining Z = (1 -K}-(, it is straightforward to ob-
tain

i.e., the intermediate integration in (1 —V}G,tr
just puts N»(p) on shell. Here we have defined
G such that

(c(LM l'X'p'q'
~ G ~ pLMl((pq )

6(q'-q)
8 ),6g. ), , G~, (p', s ) . (97)

for an arbitrary state ~A. ). However, we have de-
rived our singular core formalism as the limit of
a theory which is invariant under time reversal,
and hence, we expect T to be symmetric. One can
infer this, for example, from Eq. (58). We there-
fore conclude that both versions of the formalism
are entirely equivalent in producing the half-on-
shell three-particle t matrix. In addition, of
course, the Faddeev version also produces the A

projection of the fully off-shell t matrix (AT).
If we now compare the Faddeev derivation to the

development given in SCI, we observe that they
differ only in the use of Q rather than the operator
Q. That is, in contrast to the properties given in
Eq. (64), it was shown in SCI that (in the limit
A -1) an operator Q exists such that

V(1 —1)Q = (1 —1)QV = 0,
QQ=Q,

[(1 —I )Q j = (1 —I)Q,
(106)

Qv= vQv.
ln fact, Q has the same form as Eq. (52) with a
suitable choice of B, which in this case can be ob-
tained in closed form (see the Appendix of SCI).
Since Q is a projection operator it is clear that
the form obtained is unique, and hence, we can
formally set 5i', =0.

We therefore again obtain Eqs. (80)-(85), but
with one important difference: Eq. (80) no longer
uniquely determines A. This is due to the fact
that as A-1 (and consequently Q- Q) the kernel
is no longer compact, and there are nontrivial
solutions of the homogeneous equation. Specifi-
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cally, in the (axy) representation with x = a,
there is in general amaximum displacement y'
such that at least one of the pairs (nP}, (o.y) are
within their core irrespective of x ~ y if y&y .
For identical particles and core radii a =a, one
finds y' =43 a/2. This inner region may be rep-
resented by the projection operator 6) which corre-
sponds to the unit step function 8(y„' —y) on the re-
duced [o.4q) basis. It can easily be shown that

e(1-K)=0 (10'7)

if K is defined as in Eq. (99) but with Q-Q.
It is thus clear that the limiting case A-1 con-

sidered in SCI is quite consistent with the present
results in that limit, and that the ambiguity which
was noted is unavoidable. One thus must pay a
price for the simplicity of Q (the g operator is
quite complex even in the simplest case). In this
context we observe that if we denote the kernel
and driving term of the SCI result by K, and 0„
respectively, then

(1 —8)K, = (1 —8)K,

(1 8)n, =(1-e)n,
(108)

i.e., the equations differ only in the overlap re-
gion. This may be established by noting that if
the three core-projection operators are denoted
by V„ then

(1 —8}tIQ= t(1 —8)(1 —V)IQ

= (1 —8}tI(1 —V;}(1—V,.)Q, (109)

where the indices i,j depend on the label a of the
intermediate state acting on Q. Thus Q is pro-
jected onto the region where only one pair can be
within their core; and the nontrivial case is when

V&I V&W V. In this region B-=V regardless of A,
and hence, Q and Q coincide.

During the past several years, this author has
developed the boundary condition idea into an al-
ternative general formalism for treating three-
particle systems. By generalizing the approach
(e.g. , taking t ~4 ) e 0) it is possible to eliminate
any specific reference to the BCM itself. This
procedure modifies the one-dimensional equation
obtained by the addition of two input functions B
and C which summarize the off-shell structure
(if V„vanishes for x&a then B=0}. Recently, an

explicit connection was derived relating this for-
malism to the Faddeev approach, and it was shown

that suitable functions B,C may always be chosen
so as to exactly reproduce the Faddeev amplitudes
given any combination of two- and three-particle
potentials. " We now employ the same technique
to show that this is also true for the restricted
BCM (Ag1).

The BCM and BCF equations may be written in

the form

X =t(I —1)Q+KD 'X,

X, = (1 —8)t(I —1)/+K,D 'X, ,

respectively, where

K =KD,

(110)

K, =(1 e)K+eC.

Here C is related to C by the equation

CD '=R+C(1 R), -
where R is a diagonal operator corresponding to
the factor

(112}

R~g(q) = 1 D~, (e-~)/D~, (t(~)

and ~„corresponds to ~ with W replaced by the
(negative) energy parameter W, . As noted in the
Introduction, the case C =0 is essentially the sim-
plest consistent with unitarity, convergence, and
analyticity (note that C is required to be real val-
ued).

For energies below the threshold for breakup
(W&0) the distinction between the driving terms
is unimportant (both effectively go to -t)," and
one may guarantee equivalence by setting E=K„
thus determining C. However, this is inadequate
for W&0 since it would require C to be complex
(and the driving terms would differ for an incom-
ing state of three free particles). We therefore
define a diagonal projection operator 6' on the re-
duced basis such that

6' (q) =8(Q —q),

Q„= (2M.W)'I' (114)

thus 6' is unity acting on a physical on-shell state
(z~'&0). In order to obtain equivalent physical re-
sults, it is sufficient to require that X6' =X,6'.
Following the procedure of Ref. 16, we note that
operators y, y, exist such that

t(I —1)Q = -(1 —y6')NQ, ,

(1 —8)t(I —1)Q = -(1-y,d )NQ,

when acting on a physical state (P
~ p). Here we

have used N to represent the factor N, (z„}as a
diagonal operator; N, y, y, are taken to act on the
reduced basis. Explicitly,

(alaq [y[Pl'z'q')

= 3(aLMlkx q [t (I —1)(Q —1) [PLMl'a'Ksq )

XN8, '(zs)

and

y, = (1 —8)y+ 8.
We next define a real operator U such that
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(1 —U) '(1 —y(P) =1 —y,6',

1-U =(1 —y6')(I —y, tP) ' (118)
One may directly verify that

G Go(1 —V) =bGO(1 —V)

K=UD+ V, (119)

The existence of these inverse operators (and U)
is a consequence of the fact that y6', y, 6' are
bounded kernels on the finite subspace 0 ~ q ~ Q
(this is the reason for introducing (P). Defining
V such that

=-fG, , (12 t)

f, (p, x„)=ta x (a~e h„,(a„x )I', (a p)

-"(ax )a PI (a P)]' (128)

where f has the same form as t [see Eq. (7'I)] ex-
cept that N, (P) is replaced by

the first line of Eq. (110) becomes

X6' = (1 —8)t (I —1)QP +(1 —U) 'VD 'X(P . (120)

this implies that f,(x, ~ ) =1. If we now substi-
tute Vi4) as given in Eq. (21) into the expression
for g Yi P) in Eq. (22), we deduce that

A comparison with the Xy equation then implies
that Xd' and X,6' will be identical providing that

K, =(1 —U) 'V

Y = bGogY

=G Go(1 —V)I[t(1 —I)+ VX)+g Y]

=D+(1 —U) '(K —D) . (121)
=fG,IQ[t(1 —I) +gl'J, (129)

We note that Eqs. (11 t) and (118) imply that

(1 —6)(1 —U} ' =(1 —8),

U = 6U
(122)

which is an apparent alternative to Eq. (53). How-

ever, using

(1 —I)qg = [(1 —AV)(1 —I)Q+ AV(1 —1)R]g
= (1 —A V)(1 —I )qg (130)

so that the (1 —8) projection of Eq. (121) reduces
to (1 —6)K, = (1 —8)K, as it should. Applying 8 we

obtain

eK, =6C

(123)

where

d, = 6(1 -U) '(K D}-

by Eqs. (64) and (36), we have that

K = bG, (1 —V)[(1 —Q) + IQ]g
= bG0(l —V)IQ g

=fGOIqg .

Similarly, one may show that

Ilia) =fG,Igt(l —1)iy),

(131)

(132)

= 6(1-(P)(1—y(P) '(K-D) (124)

6&D 'X, =0, (125)

which is of the same form as Eq. (92) of SCI.
In concluding this section we briefly sketch the

derivation of an apparently distinct equation and
prove its equivalence to Eq. (53). We first note
that Eqs. (19), (23), and (9'I) imply that

gl +GT (126)

using Eqs. (111)and (118). Given C we can com-
pute C from Eq. (112); one may verify that the re-
sult is a real-valued operator with the same con-
vergence properties as 8K.

We have therefore verified that a suitable input
function C exists such that the BCF reproduces
the observable consequences of the BCM in three-
particle scattering. Together with the results of
Ref. 16, this implies that the BCF provides a
suitable framework in which to investigate both
soft and singular core models of the N-N interac-
tion. In the sense of SCI, Eq. (123) can be re-
garded as an "auxiliary boundary condition" per-
taining to the case A11, since it implies that

and hence, Eqs. (53) and (129) are identical.
Within the context of their particular model both
forms were derived by Efimov and Schulz, who
demonstrated their numerical equivalence. '

V. DISCUSSION

In the preceding sections we have derived a
number of results which bear on the questions
raised in the Introduction. In the first place, we
have shown that for models in which singular
cores are restricted to a finite number of partial
waves (Av 1), both the Schrodinger and Faddeev
approaches lead to unique one-dimensional equa-
tions which are in fact equivalent. In the limit
A-1 we recover the equations of SCI and the
same ambiguity reappears. Thus, the nonunique-
ness noted earlier in SCI is an inescapable con-
sequence of requiring iC ) to be identically zero
inside the cores (implying A = 1), and is not re-
lated to the method of derivation. The distinction
between the Aw 1 and A =1 models may be re-
garded as an "auxiliary boundary condition" in
the sense of SCI, which we have explicitly ex-
hibited.
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With respect to the various numerical calcula-
tions based on the s-wave BCM, it is therefore
clear that the equations employed by this author
and by Efimov and Schulz are quite different, and
the numerical "discrepancy" in the three-particle
binding energy (Es) is not surprising. In this con-
text it should be noted that the equation solved nu-
merically in SC II is actually an approximation to
the A =1 problem, in that the Q operator was used
but t was truncated to l =0 only. We expect the
numerical results to converge rapidly as At- t
for the same reasons which apply in the case of
potentials; the behavior of the kernel as a func-
tion of I, X (for fixed L) is very similar to that of
the Faddeev kernel with conventional off-shell t
matrices. The part of the BCM t matrix which
is poorly behaved in this limit corresponds to
VG,f = V (which becomes local), and this acts only
on the interior region, producing the already noted
ambiguity. Having chosen an ad hoc auxiliary
condition to compensate for the implied nonunique-
ness, the resulting equation is stable as A-1."
The difference between this s-wave aPP~oxima-
tion and the true s-wave BCM corresponds to a
different choice of the auxiliary condition, and
the corresponding addition to the kernel (C) is
apparently sufficiently repulsive to account for
the difference in Es (18.4 MeV vs 7.7 MeV).

The situation is quite different with regard to
the numerical results of Kim and Tubis. ' We have
shown above that the s-wave BCM Faddeev equa-
tion does not possess a unique solution, and hence,
the usual procedure of numerically evaluating the
determinant } 1 —tIGo [ in order to search for a
zero at 8'= -E~ should not produce a stable re-
sult. Similarly, methods which detect an eigen-
value by locating values of W at which the iterated
equation fails to converge are inapplicable. In
such cases one may define a discrete eigenvalue
spectrum only on a subspace, and this is effec-
tively accomplished by the reduction to one-di-
mensional form. It is therefore unlikely that a
straightforward application of standard numerical
procedures to the two-dimensional (Faddeev) form
could lead to a unique result. We have also shown
that the proper result should coincide with that of
Efimov and Schulz, ' who have tested their numeri-
cal procedures by applying two different tech-
niques to the two versions of the (Schr'Odinger)
one-dimensional equation [Eqs. (53) and (129)].
The 12.7 MeV result of Kim and Tubis thus ap-
pears rather suspect. On the other hand, it
should be noted that they previously tested their
techniques on the Herzfeld potential (hard core
plus square well), and found the result to be com-
patible with the limit of a finite repulsive core.'
It is therefore possible that the problem lies with

this particular model, since the BCM is slightly
less convergent than the hard core (a special
case), and perhaps this can be checked along the
lines of Ref. 5. Nevertheless, on balance our re-
sults (and additional arguments presented by
Efimov and Schulz) indicate that the 'V. '(I' MeV re-
sult is to be preferred.

An important corollary of our result is that one
cannot directly solve the Faddeev equations for
"realistic" singular core models such as the Ha-
mada-Johnston hard core or the BCM of Feshbach
and Lomon. ' pre must first eliminate the non-
compactness of the kernel by reducing to an ap-
propriate subspace. For this purpose we note that
the development in Sec. III remains valid if t is
taken to include the effect of potentials external
to the core. Thus, if V, is such a potential, we

showed previously that t satisfies the equation"

t=t +(1 —t CG, )V,(1 —G,t), (133)
which is convergent for reasonable potentials V,
(e.g. , bounded by a Yukawa potential). Here t 8&:

is the off-shell f matrix for the pure BCM (what
we called t in Sec. III). It is easy to verify that
if I, is defined by

t =I +(1 —t Go)V, (l —Got), (134)
then Eqs. (58)-(78) remain valid. We may thus
calculate the half-on-shell t matrix T' via

(135)

where X satisfies Eq. (73). We note that the latter
does not in general reduce to one-dimensional
form for V, s 0 (the exception being if V, is sepa-
rable).

We have thus provided a practical framework in
which to probe the off-shell consequences of N-N
interaction models which employ singular cores.
Although such information would nicely comple-
ment our present knowledge of soft-core models,
the insensitivity of the trinucleon system is such
that one cannot be overly optimistic regarding our
ability to distinguish between such approaches ex-
perimentally. Furthermore, the applicability of
singular core models to systems of three or more
particles depends to a large extent on one's phys-
ical interpretation. Thus, if we regard the BCM
as simply a mathematical abstraction represent-
ing a large finite repulsion plus a strong surface
attraction, the formalism of Secs. II and III is
certainly appropriate and has been shown both
theoretically and numerically (via the calcula-
tions of Efimov and Schulz) to be consistent with
the limit of such a picture.

On the other hand, it may be argued that the
BCM is a phenomenological device which simu-
lates the net effect of an interior region in which
ordinary potential theory is invalid. Thus, Fesh-
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bach and Lomon justified it on the basis of quan-
tum field theory, which implies that the N-N
interaction becomes highly nonlocal at distances
xS (2m, ) ', whereas the interaction energy is so
huge that there is virtually no sensitivity to the
asymptotic energy (z„'/2p ).' Another point of
view has been advanced by this author, who noted
that such an empirical effect is also to be expec-
ted on the basis of Pauli exclusion between com-
posite nucleons (for which there is steadily ac-
cumulating experimental evidence). " Either
interpretation would imply that the boundary con-
dition must be modified if another hadron is pres-
ent and within core range of either nucleon. This
viewpoint would thus invalidate the potential theory
arguments as applied in the interior region cohere
cores overlap, and would consequently reintroduce
a (physically motivated) ambiguity into the three-
body problem. From the standpoint of three-nu-
cleon phenomenology this would appear as a non-
negligible three-body force.

Formally, the problem so posed is precisely
that considered in SCI, and one could in principle
relate the "auxiliary condition" to the generalized
boundary condition required in the overlap region.
In the absence of such specific information, one
might argue that the ad hoc condition proposed in
SCI is physically as well motivated as the partic-
ular form derived for the A g 1 problem above (as
well as being much simpler). This argument is
especially cogent in the relativistic problem, in
which the overlap region is a complete enigma.
Thus, as noted recently by this author, a straight-
forward covariant generalization of the SCI for-
malism provides a natural first approximation
for describing relativistic three-body systems. "
This description may then be supplemented by

introducing phenomenoiogical terms (B,C) to cor-
rect the off-shell structure, as in the nonrelativ-
istic BCF. Recent calculations using correct
two-particle shifts (energy-dependent A, ) and
B = C =0 have produced quite interesting results
for relativistic v-d scattering' and the basic nu-
clear force problem. "

Finally, we consider the implications of our re-
sults with respect to the BCF. This author has
previously shown that the boundary-condition
technique provides an alternative general descrip-
tion of three-particle systems. "' In particular,
for arbitrary combinations of two- and three-par-

A A

ticle potentials, real input operators B,C can al-
ways be chosen so as to exactly reproduce the
Faddeev amplitudes. " The present work extends
this statement to models with singular cores. As
an immediate consequence, we observe that even-
tual calculations with "realistic" singular core
models cannot alter conclusions previously
reached concerning the insensitivity of n-d elastic
and breakup differential cross sections to the off-
shell structure. " Thus, the off-shell content of
these models can be expressed in terms of the
values obtained for the n-d doublet scattering
length, the triton binding energy, and the static
properties of the triton wave function. Values of
these parameters for currently known models are
systematically in conflict with experiment, and
hence, it would be interesting to see if the singu-
lar core predictions are significantly different. '4

Once the triton computation is complete, effective
values for the B, C operators (which are weakly
dependent on 8') can be computed for input into
the BCF. In this way the consequences of such
models for the scattering states can be readily
explored.
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