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We apply the “minimal” three-body equations to a simple three-boson model with reso-
nant pair interaction. We show that the isobar or sequential decay amplitude has impor-
tant variation over the three-body phase space even for relatively weak coupling and we
give an approximate analytic expression for that amplitude that reproduces the variation

for a wide range of parameters.

analyticity constraints in a resonant three-boson model.

[ NUCLEAR REACTIONS Numerical and analytic investigation of unitarity a.nd]

I. INTRODUCTION

In a recent series of papers we have stressed
the role the general principles of quantum mechan-
ics—unitarity and analyticity—play in determining
the major features of three-body final states.'™
We have shown that in the sequential decay or iso-
bar language it is possible to embody these con-
straints in a “minimal” integral equation. In this
paper we investigate numerical solutions of that
equation in the case of pairwise resonant final
state interactions. This is the case for which the
sequential decay or isobar formalism is intended.
We pick a particularly simple model—three bosons
with s-wave resonant interactions—and show that
it is possible to find an analytic expression that
represents the major features of the full numeri-
cal solution for a wide range of parameters and is
also simple enough to permit its properties to be
“read off”.

There are two major points we are trying to
make here. One is that even moderate strength
final state resonant interactions can produce im-
portant variation in magnitude and phase of the
amplitude, usually taken as a constant in phenom-
enological applications of the sequential decay or
isobar method with resonant final state interac-
tions. The second is that it is possible to give an
analytic expression for this amplitude that is both
simple and numerically valid over a wide range of
parameters.

In Sec. II we present the formalism for the min-
imal three-body equation with resonant pair inter-
actions and derive one simple approximate solu-
tion. In Sec. III we give the numerical results,
stressing both the validity of the analytic form and
the important variation of the amplitude. Section
IV contains a brief discussion.
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II. FORMALISM

Consider spinless bosons of mass 1 (Z=1) with
two-body interactions in s waves only. Suppose
further that that interaction produces a pair reso-
nance at energy E, with width I' so that near the
resonance the two-body ¢ matrix in the center of
mass at energy E can be written®

B 872l
HE)=% - E,+3i(E/E)'*T ()
or, in the narrow width approximation,
872l
HE) = —Fo+iT - @)

We wish to study a three-body final state of these
bosons, in the phase-space region dominated by
the pair resonances. In particular we want to study
how the resonant final state interaction informa-
tion is distributed over the phase space and how
quantum-mechanical coherence effects that distri-
bution. We do this in terms of the isobar or quasi-
two-body amplitude that describes the transition
from the initial state to a state of resonant pair
and spectator particle. The full three-body final
state is obtained from this amplitude by appending
the resonant pair propagator and decay vertex and
summing over all possible pairs. The quantum-
mechanical constraints of unitarity and analyticity
on the quasi-two-body amplitudes are expressed in
terms of a linear integral equation very similar to
the separable potential equations. We are not in-
terested in this work in how resonant interactions
affect the total reaction rate or produce three-body
resonances. (This problem has been investigated
in detail in a previous paper, where it was shown
that very large effects are indeed possible.®) Rath-
er, we are interested only in the dominant depen-
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dence of the two-body amplitude on the spectator
momentum in the final-state phase space. For this
purpose we do not need to construct the detailed
two-body dynamics that leads to the ¢ matrix (1),
but can use it directly in the three-body formalism
without concern for off-shell effects. The ¢t of (1)
will introduce no left-hand cuts and we can use it
directly in the zero-range form of the three-body
formalism.!”® In that case the three-body equation
is
alr1®)=ulr|B) |
+__1_ fdfipr t(E - %pIZ) (I|Il§')
@m) E-p*-p"”-p-p ’

®)
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where I stands for the initial state and R is the in-
homogeneous term. In order to keep our discus-
sion as simple as possible, consider an initial
state and inhomogeneous term that correspond to
the weak three-body decay of a scalar state.
(I|R|B) then represents the amplitude for that de-
cay without rescattering. We take this vertex to be
structureless. Furthermore, f will be linear in
the magnitude of R, the weak decay strength, hence
we take it to be unity. Making this replacement in
(3), taking the three-body S -wave projection, sub-
stituting (1) for ¢, and making the further simplifi-
cation of using E, as the energy scale (this corre-
sponds to putting E,=1), we get

_1. T (p'dp'In[(pp’+p*+p" —E)/(=pp’ +p*+p"* - E)]f(p')
Fp)=1+2 f

IPP-E+1-i(E-

where the S-wave projection of (I| f|p)=£(p).

We now want to solve (4). This is easily done by
the now standard techniques of rotation of contours
to avoid singularities and then replacing integrals
by sums and using matrix inversion to solve the
resulting algebraic equation. However, in this
simple problem one might hope for a quasi-analytic
solution which, if not valid for all values of the
parameters, might at least have a wide range of
validity. We have already shown both analytically
as well as numerically that the p (but not the E)
dependence of f(p) is well represented even in the
first iterate of the three-body equation.” Hence
let us study that iterate, and to make matters
simpler consider the narrow width approximation.
We are then led to the integral (recalling that R
=1)

L y‘” plap’ n p2+p'2+pp'—E>
m Jo TpP-E+1-3iL \pP+p2-pp’ -E )"

(5)

This can be rewritten

2L = p'dp’ (p'-p)(p'-p.,)
3mp Jowd? =D [(p’—ph)(p'-p+,)]’ ©)

where
p02=§(E -1+3:T)

and p,, =3 [+ p £ (4E - 3p%)*/?], the roots of the
argument of the In in (5). Furthermore, in getting
(6) we have used the symmetry of the integrand to

4p:2)1/2 1 T (4)

extend the integral from -« to +~. p, has a posi-
tive imaginary part, while p,, has a small positive
or negative imaginary part depending on the sign
of the radical because E is understood to have a
small positive imaginary part. We can therefore
write the In as the sum of two terms, one with only
upper half plane singularities and one with only
lower half plane singularities. The integral is then
done by closing the contour in the half plane with-
out the logarithmic cuts and picking up only the
pole at p=xp,. One finds for (6)

4T In po+p++>_4ri ln[po.;.(E_-pz)Uz_'_ P]
3p Do+b.. 3p Do+ (E 2 TE_1,

(M

This function has all the characteristics of the
principal p dependence of f in the physical region.
The boundaries of that region are p=0 and p®=3E.
Equation (7) is finite and analytic in p? at p=0, but
has the (E - $p?)'/2 branch point required by uni-
tarity. Furthermore, the argument of the In is
never near zero or « in the physical region (even
if the T in p, is put equal to zero), and hence there
is no nearby logarithmic singularity. Across the
(E - $p°)*/2 cut the logarithm becomes In [(p,+p, )/
(po+p..)]. The argument of this In can introduce
logarithmic singularities for physically allowed
momenta, but these are on the second sheet of the
(E - 3p®)*/2 cut. The relationship of these singu.-
larities to the (also second sheet) Peierls singu-
larities has been discussed elsewhere.? It is pre-
cisely to avoid these unphysical singularities that
analyticity must be added to the unitarity con-
straint.
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FIG. 1. The Dalitz ellipse, or phase space for total three-body energy E =1, -é, 2, 3, and 4. The position of the pair
resonance bands is indicated by the three full lines in each case.

With so much of the structure of f contained in
('7), we might look for its use as an approximation
to f. To improve the approximation we consider
(7) not as the first term in the Neumann expansion
of the equation, but as the first term in the expan-
sion of the Fredholm numerator. To this order the
Fredholm denominator D is given by

D=1-trkK. (8)

In terms of (4) again in the narrow width approxi-
mation, trK is

_E © dpl 3pt2_E
k=7 fo Gp7—E+1-5 r)“‘(p'*—E )

©)

This integral can be done by precisely the same
methods as were used to do’(5)-(7), and we find

31/2PO+E1/2
p°+E1,2 )’

4T (
trK In
3po
with p, defined as in (6). We now have as our ap-
proximation for f

(10)

70 =15 n(berbes) (11)

botb..
in terms of (6), (8), and (10).
In the next section we will compare (11) with the
full solution of (4) for a range of numerical exam-
ples.

III. NUMERICAL RESULTS

In this section we compare numerical solution of
the integral equation (4) for the isobar amplitude
f(p) with the analytic form (11). The parameters
at our disposal are I" the resonance width and E
the total three-body energy. Since we keep the two-
body resonance fixed at E,=1, the width is now
given in units of the resonance energy. We call it
Y. p is the momentum of the spectator, while the
isobar energy in its center of mass is E — 32,

TABLE I. Comparison of exact [from Eq. (4)] and ap-
proximate [Eq. (8)] values of the Fredholm denominator.

E ReD ImD Re(l —trK) Im(1 - trK)
vy=0.3 4 1.00 —0.06 1.00 —0.06
3 1.00 -0.07 1.00 —-0.07
2  1.00 -0.10 1.00 —-0.10
4 098 -0.14 0.99 —-0.14
1 0,93 —0.18 0.94 -0.19
y=0.6 4 0.99 —0.12 1.00 -0.13
3 0.99 -0.14 0.99 -0.15
2 0.97 -0.19 0.98 -0.20
4 093 -0.25 0.95 -0.27
1 0.85 —0.29 0.88 -0.32
y=1 4  0.98 -0.20 0.99 -0.21
3 0.96 —0.23 0.98 -0.25
2 0.92 —0.29 0.96 —-0.32
4 084 -0.36 0.89 —0.41
1 075 —0.38 0.80 -0.46
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FIG. 2. Solution of Eq. (4) (solid line), the “exact”
equation, compared with the approximate form, Eq. (11)
(dashed line) for the real and imaginary parts of f for
y=0.3 and E=% and 1.

Hence at E =1 the resonances will first appear,
just at the edges of the kinematic region. As E in-
creases they will sweep through the Dalitz ellipse.
In Fig. 1 we show the Dalitz ellipse for E=1, £, 2,
3, and 4. Some of these correspond to important
kinematic limits, for example where all bands
cross at the center (E =2) or where two bands cross
at the kinematic boundary (E=4 or E=%). As we
shall see, and as has been discussed analytically
before, nothing spectacular happens on the phys-
ical sheet at these points.® For y we take values
0.3, 0.6, and 1. In Table I we compare the exact
[from numerical inversion of (4)] and approximate
(8) values of the Fredholm denominator for our
range of parameters. We see that at one extreme
(v=0.3, E=4) we have effectively very weak cou-
pling and it is not surprising that the two agree,
but even at the point of strongest coupling (y=1,

E =1) the two are in remarkably good agreement.
Having seen this we should not be surprised to find
(11) giving good results for f(p). In Figs. 2, 3,
and 4 we show f(p) from (4) and from (11) for a
typical range of y and E. For y=0.3 we do not
show E =2, 3, or 4 because the coupling is so weak
in these cases that f has no important variation.

In all cases we see the (E — $p?)!/2 branch point.
We see that certainly for weak coupling, but even
for moderate coupling (y =1, E =1) the analytic
form (11) is doing a good job. But most important-
ly we see that even for relatively weak coupling
(vy=0.3, E=1) and certainly for moderate coupling,
f(p) has important dependence on p and it is not all
simply associated with the (E — $p%)'/2 singularity.
Most phenomenological analysis takes f to be a
constant, while our results here give an indication

T T

FIG. 3. Solution of Eq. (4) (solid line), the exact equation, compared with the approximate form, Eq. (11) (dashed
line), for the real and imaginary parts of f for y=0.6 and £ =1 and 2.
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FIG. 4. Solution of Eq. (4) (solid line), the exact equation, compared with the approximate form, Eq. (11) (dashed
line), for the real and imaginary parts of f for y=1and E=1, -%, 2, and 4.

of the shaky validity of this assumption. Our suc-
cess with (11) provides a form for repairing this
assumption, at least in the simple three-boson
case, but the fact that much of the dependence of f
does not come from the unitarity singularity (E

— 2p2=0) also indicates that the details of the full
dynamics may play an important role in giving the
dependence of f and hence a richer theory, and full

solution of the equation corresponding to (4) may
be required.

IV. DISCUSSION

We have studied in a simple spinless boson mod-
el with s-wave pair resonant interactions the “min-
imal” effect of unitarity and analyticity on three-
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body states. We have seen that even moderate
strength final state interactions produce significant
variation of the isobar amplitudes and that a sim-
ple analytic form gives a remarkably good account
of that variation for a wide range of parameters.
It may be that in actual physical problems the de-
tails of the dynamics and the complexity of the ex-
ample will make such a simple form less useful.
Even if it does, direct solution of the appropriate
“minimal” equation corresponding to (4) is by no
means difficult. We have examined a simple ex-
tension of our model to a three-body state with

II. ... 1815

angular momentum 2 but still s-wave pair interac-
tion. We find the three-body effects to be very
weak in that case. We are examining a number of
other cases and plan soon to attack the interesting
and particularly simple case of the decay of C'?*
(J=1*)-3a. We are also incorporating the major
features of the results reported here in our rela-
tivistic analysis of the 7N — 77N system'® and of
three-meson systems. In these cases relativistic
kinematics make it much harder to do the integrals
corresponding to (7) and we will presumably use
direct solution of the equation corresponding to (4).
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