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"Moon crescent effect" in transfer form factors*
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It is shown that, when a nucleus is subdivided into a core and a cloud for the calculation of
transfer form factors, one should allow for the possible displacement of the core with respect
to the center of mass of the entire nucleus. This leads to corrections, which are estimated
for a soluble model.

NUCLEAR REACTIONS Generator coordinates prove core is not center of
composite nucleus for calculation of DWBA form factor.

I. INTRODUCTION

The physical picture associated with the trans-
fer of a few nucleons v from a nucleus B is usually
as shown in Fig. 1: the residual nucleus A. , con-
sidered as the core of B, is located at its center,
while the transferred nucleons, which come from
the outer shells of B, form a cloud around A.
There is, a priori, no reason to disregard the
situation illustrated in Fig. 2, where the trans-
ferred cloud is located on a side of B. If the pro-
cess described schematically in Fig. 1 is indeed
dominant, this should come out of the form factor
calculated without such an assumption.

It must be stressed that the "moon crescent"
mechanism for transfer' shown in Fig. 2 is not
meant to imply an excitation of the core (although
it may entail very interesting excitations of the
cloud). Furthermore, it should be emphasized
that while such a mechanism is a specific recoil
effect, it has not been considered so far in various
calculations devoted to the study of recoil correc-
tions. ' The latter have been concerned with the
replacement of the traditional threefold integrals
by sixfold ones, and do not question the dynamical
definition of the transfer form factor. This paper

presents a dynamical study of the influence of that
new mechanism on the form factor itself. There
is only one (major) physical assumption in our ap-
proach: we assume that the distorted wave Born
approximation (DWBA) is valid and use its defini-
tion of the form factor. We work in the generator
coordinate formalism, ' which is very convenient
and introduces no additional physical assumption.

Section II briefly recalls the definition of the
DWBA form factor and of the spectroscopic fac-
tors. Section III compares the correct DWBA form
factor with those obtained under additional approx-
imations. Section IV presents an illustrative ex-
ample of the considerations of Secs. II and III in
the framework of an analytical model (harmonic
oscillator orbitals). Our results are briefly dis-
cussed in Sec. V.

II. REDUCTION OF THE DWBA FORM FACTOR

The form factor of a reaction A+a-B+b, where,
in an obvious notation, B=A+ v and a = b+ v, can
be defined as

W(S; S) = fd r„d r, d r„4s(r„ss, r„—se)4-, (r, -s, )

& V(r„- r„)4',(r~ —s„r„-s,)4'„(r„—s„).

FIG. 1. Picture usually associated with the transfer
of v nucleons from a nucleus B, A being the residual
nucleus.

FIG. 2. The "moon crescent effect" for the reaction
considered in Fig. 1.
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In this expression, r» r» and r„are the 8» N»
and N„coordinates of A, b, and v, respectively,
while the shell-model wave functions 4'~, 4'„4'„
and 4~ describe the nuclei B, b, a, and A shifted,
respectively, by the amounts ss =N,S'/N,
s, = NsS-'/N, s,= N„S-/N, and s„=N, S/N.

Although the coordinates r„and r„have been
distinguished inside 4~, the wave function 4~ is
antisymmetric with respect to the whole set r~
and r„. The same property holds for r~ and r„ in

Finally, the interaction between the cloud v

and the core A, which is the driving potential re-
sponsible for the transfer, reads, explicitly,

Equivalently, one ma.y use the potential V(r„—r~).
There is nothing more in Eq. (1) than the standard
DWBA expressed in the generator coordinate for-
malism. The form factor to be integrated with
usual optical waves is actually a defolded one, '
so = I'» 'WI'„, ', but this subtlety is irrelevant for
the present discussion.

It is interesting to express Eq. (1) in the for-
malism of second quantization. Let A~(s„), a (s, ),
bt(s, ), and B~(ss) be the creation operators for
nuclei A, a, b, and B at positions s» s„s» and

s~, respectively. For instance, when there is con-
figuration mixing, A (s„) is a sum of products of
N„creation operators rP(s„) for shell-model sin-
gle particle states centered at s„. The equivalent
of Eq. (1}is"'

IV(S')S)=2/ (oP~~~Y~)(o~&"'(s )'&(s,)'8"n'

(2)

where (aP
~

V
~
y5) is the usual antisymmetrized ma-

trix element of the two-particle interaction on any
orthonormal basis. The superscripts show how
the set of allowed contractions must be limited
and pairs of identical superscripts must be under-
stood as "arrows". For instance, the superscript
"arrow 5" from the left side of g, to the right side
of A~ means that g, can be contracted only with a
creation operator q~ contained in A~. Similarly,
the superscript arrow 3 from the left side of A~

to the right side of B means that the creation oper-
ators left in A~ after the contraction with g, can
be contracted only with annihilation operators
available in B, and so on.

Although these restrictions pick out the same
two-body matrix elements that appear in (1}, the
normalization of the wave functions is not the
same in both expressions: in (2} it corresponds
to complete antisymmetrization between all the nu-
cleons, in (1) to antisymmetrization between the
nucleons of each fragment only. If both expres-
sions are to be equal, one of them should contain
an inessential (and, here, irrelevant) constant
that we have dropped so that the expressions do not
become unduly cumbersome.

The physical interpretation of the rules ex-
pressed by the arrows is the following: (i) ri„and
q, are contracted separately within a~ and A~, re-
spectively, since we have chosen, e.g. , the "prior"
representation in which the interaction between the
fragments of the incoming channel is switched off
at infinity; (ii) the rest of A~ is contracted within
B, since nucleus A is understood as the core of
nucleus B; accordingly, one among the two crea-
tion operators g and gz must be contracted within
B, since that contraction corresponds to the core
side of the core-cloud driving potential V; (iii) the
remaining creation operator q or g8 is con-
tracted within B also and corresponds to the cloud
side of the core-cloud driving potential V; ac-
cordingly, the only possibility for b is to be con-
tracted within a~.

Another way of grasping the physical interpreta-
tion of these rules is to take notice of the fact that,
in Eq. (1) the coordinates r„and r„have been put
into C~, and the coordinates r~ and r„ into 4,. Of
course, antisymmetrization between A and a is
broken. It is broken also between B and b. It is
conserved only within A, a, B, and b separately.

We now turn to the task of breaking the calcula-
tions described by Eqs. (1) and (2) into simpler
calculations, involving products of terms which
can receive, as much as possible, a physically
useful interpretation. In particular, we would like
to break the highly restricted set of contractions
of Eq. (2) into a product of unrestricted sets of
contractions, thus easier to handle through Wick's
theorem.

A trivial way of rewriting Eq. (1) is

where

X' '(r„, s„s,) =f dr, i, (r,x-s, ) xi(r, -s„r„-s,) (4)
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is the cloud wave function of nucleus a having nucleus b as its core. There is of course a typical moon-
crescent effect in Eq. (4) since a and b are not centered at the same origin.

In the formalism of second quantization, the analog of Eq. (3) is

g (8' s) = -' Z &aj31v lr6&&0 IBr")n'.nl'n. A"(s.)n, brs, )"rs.& I»

which is obtained from Eq. (2) by commuting At
with a~, n„with At (since n„can only be contracted
with a~), and, finally, b with ntnztn, Atn„(since b

cannot be contracted with either n ~, n ~~, or A~).
Each of these commutations introduces a phase.
The resulting over-all (and, here, irrelevant}
phase has been omitted in Eq. (5) and so will be all
new over-all phases in the following equations. It
is gratifying to notice that all the restrictions that
appeared in Eq. (2) are now useless, except that
going from g~ to At.

Let now (y (r„)] be any complete set of antisym-
metric wave functions for the N„coordinates r„,
and let {Dtj be the corresponding set of creation
operators. For instance, D~ may be a product
nt 'n ~ rp, where m—= (a„.. . , a„) is ordered,e~ fg2 N~ P
or it may be "any suitable configuration mixing of
such products. Inserting Z~t D between n„and
b in the last factor of Eq. (5), one obtains

&0
I
Bn.'n s"n5 A "n„ba'

=g&OIBnLnl'n. A "n, D'. 1»«ID.ba'I o& &6).

The quantity (01D ba~
I
0) is nothing but a spectro-

scopic amplitude and

x "(r„,s„s,)=gq (r„)(olD ba'10&.

It will be noticed again that the spectroscopic am-
plitude depends on s, and s,.

The remaining quantity of interest is now

[X Ul (r s& s&)

dr~4~ rg —s~, r„-s~ V r„-r„4„r~-s„,
(8)

which is the product of the cloud wave function of
B having A as its core, and an average nuclear
field (analogous to a Hartree-Fock potential) gen-
erated by the folding of V(r„—r„}with the density
of core A. In terms of contractions, it is interest-
ing to consider the remaining factor of Eq. (6):

&0IBn rp~ n6A n„D 10) =&0IB'n~ n~A n n„D 10&,

(9)

where the commutation of g with g, and A is pos-

I

sible since g, is blocked with A . The insertion of
a complete set Z .Dt,D, between At and nt in
Eq. (9) yields

(o
I
Bn", n, A»n'. n„zP

I
o)

=+&0 IBnt, 'n, A»D'. , 10&&0 ID..n& n„D'„I o& . &io)

Finally, the restriction arrow becomes unneces-
sary if one writes

(o IBns"n6A "D'-
I

o& = «IBD' ntn, A&
I
o&. (ii)

As a, consequence of Eq. (10) one finds, except for
an over-all multiplicative constant, the alternate
definition

[x'U] ""(r., s., s~&

=g Z &apl~ly6&&OIBD'- non "'lo&
mtn' Ngr6

x&

(12)

Thus, when the form factors are calculated in the
formalism of second quantization, Wick's theorem
can be used without any restriction in (0 ID ba~

I
0&,

&0 ID- n'-n. D'-
I o&, ~d (o

I
BDt. n's n5 A'

I
o& As point. ed

out earlier, the first of these factors contains the
physical information that results from integrating
over r~ in Eqs. (1) and (4). It is equally obvious
that the quantities (OIBDt.n~znqAt

I 0& determine the
average potential U due to core A through integra-
tion over r„. Finally, the factors (0 ID, nt n„Dt 10)
correspond to the matrix element of U between the
clouds thus extracted from B and a, or, in other
words, to the integration over r„.

III. APPROXIMATIONS

From now on, we concentrate on the calculation
of the function [X'U] s " and the corresponding ma-
trix element, Eqs. (8) or (11). These quantities
are more complicated than x'~ and (OID ba 10&,
and are more important to analyze. An exact cal-
culation of [X'U] s~" is possible in special cases
such as the one considered in Sec. IV, but most
often approximations are necessary.

Let (P(r„, r„) be an arbitrary projector in the
space of antisymmetric functions of the coordinate
r„. An approximation of [X'U] ~" is
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(O'U] i"=fd dr„''o ( „—s, „—s )

x P(rA, rA)V(r„—rA)@d((rA'- s„).

s„(r„,r„')=fdsds qi„'( „—s)0( '(s, s')B"„(r„'—s'),
(14)

where X„' is the inverse of the overlap kernel

(13) (15)

As a special case for (P it is interesting to con-
sider the projector upon all positions of the unex-
cited core A,

The presence of X„' in Eq. (14) is typical of the
generator coordinate method. An insertion of Eq.
(14) into Eq. (13) gives

dsds'5f„'(s, s') d r„4's(r„- ssq r„-ss)q „(r„-s) d r„'4'„*(r„'-s')V(rU —r„')qf. „(r„'-s„} .
(16)

The first bracket on the right-hand side of Eq. (16}is a cloud wave function, quite analogous to X' ', Eq.
(4), and the second bracket is clearly the direct term of an average potential calculated, however, with
two wave functions at different positions. Moon crescent effects are again present in Eq. (16).

In the language of second quantization, the projector 6'„reads

ds ds'A' s X„' s, s' A s' . (17)

The analog of the insertion that leads to Eq. (16) is

(0(BB'„.O„qiq, A (D) fdsds 0(„=(ss')'(0(B'(s , ) BAr (i) O)((00 ((sA') qi,sqA(r)O)(,0 (18)

where one recognizes at once a spectroscopic fac-
tor and a typical contraction for an average field.

In the following we refer to the use of the pro-
jector 6'„as the (P~ approximation. Further ap-
proximations can be made in order to skip the in-
tegrals over s and s', namely, (1) set s = s'= s„,
which retains only the situation shown in Fig. 3,
characterized by the usual average field for A and
an off-centered spectroscopic factor; (2} set s
= s = s~, as illustrated in Fig. 4, which yields the
usual spectroscopic factor and an off -centered
average field of dt; (3) set s = ss and s = s„(we
are no longer dealing with a projector, then}, which
gives a usual spectroscopic factor and the usual
average field (Fig. 5).

We will refer to these as approximations 1, 2,
and 3, respectively. Actually, as will be shown
in Sec. IV, there are cases where the integration

over s and s' can be performed without difficulty,
taking simultaneously into account these three
approximations and even more.

IV. AN ANALYTICAL EXAMPLE

We consider here a fictitious nucleus B made of
three identical fermions; say, neutrons with spin
up. The wave function C~ in the model is a Slater
determinant containing a Os, a OP„, and a OP, or-
bital,

e) (r)= w
' '& ' 'exp(-r'/2X'),

4) (r) = w
' 'X ' '2' 'y pe(x-r'/2A').

p (r)= w 'A. ' 2' '@exp(-r'/2X').

(The choice is obviously arbitrary. One could
select more traditional OP „orbitals. ) The wave
function 4„ is chosen to contain the Os and the

FIG. 3. Positions of A and 8 in approximation 1. The
full lines correspond to the spectroscopic factor, the
dashed lines to the average field. FIG. 4. Analog of Fig. 3 for approximation 2.
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OP„orbitals. Depending on whether one considers
CB or 4„, the orbitals y must be translated by
sB or s~, respectively. The coordinates r, and r,
are attributed to 4„, and thus r„=r,. Finally, the
nuclear interaction V(r, -r, )+ V(r, —r, ) is chosen
as Gaussian, V(r& —r/) = V,exp [-(r, —r/)/}43).

A straightforward calculation gives, as an illus-
tration of Eq. (8), FIG. 5. Analog of Fig. 3 for approximation 3.

-5/» sA, + sB, (r, —sB)'
xp

[r,—2 (s„+sB)]' (s„-SB)'
X»+ p,

» 2A.' (19)

The last exponential of this equation is related to the generator coordinate method and is not relevant to
the present discussion. The next to last one demonstrates that the average potential acting as the trans-
ferred particle is centered halfway between A and B. Finally, one recognizes in Eq. (19) a OP, -like wave
function, the exponential and the polynomial parts of which, however, are not centered at the same point.
This seems to indicate possibly significant moon crescent effects in the calculation of actual cross sec-
tions.

Turning now to the 6'„approximation, we obtain

r,dr24B(rl-sB r2 SB&13 SB)@A(ll S r2 S)

21/28-1/2&-3/4/„-3/2 z 3 B3 e
'L 3 B/ e I B/ (20)

which again exhibits a OP, -like orbital with multiple centers, and

s'+ sA
' [r ——,'(s'+s )]' (s'-s )'

=V, 1+—, 1+X» +,X» „, ~3 — "2 " xp — ' g»»" exp — 2,", 21
p. A, +p, (A, +p, ) + p.

which corresponds to an average potential centered halfway between s' and s„.
A multiplication of Eqs. (20) and (21), where s and s are given suitable values, gives at once the results

of approximations 1, 2, and 3, namely

21/23 1/»y ~ 3/4g 5/» 1+0 ~» 3- SA +SB (l' —SB)
xp2X', (r, —s„)' (sB —s„)'x 1+, , +, , „3(y3-sA,)2 exp — „', , exp —,, (22)

-3/» )22'/'2 ' 'V w '/'X ' ' 1+ — (z -s )exp0 ~2 3 Bg 2A»2~', + „, ' [,--'(s s„)]' (s — „)
y2+ /42 (y2+ /42}2 y3 2 P g2 ~ i42 P 2y2

and

y» -3/» (r
2&/»3 j /»y g (z -s )exp 2X'

y2 /42
+

(y2 ~2)2(33 A3 P y2 2 s ( I

respectively. The differences which are present in these three results deserve little comment. They
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clearly differ through the points with respect to which the transferred particle and the driving potential
are centered.

Finally, a straightforward but slightly tedious calculation gives the exact result of the 6'„approxima-
tion, Eq. (16),

y2 -5/2
A.

I ~UlB/A 2 23 2y 3 4P"5 2 1 1 &a+ Be
p 7f + ~ 2. "-' 2' ~ -'.:'.

2&' s„„+ss, ' [r, ——,'(s„+ ss)]' (s„-ss)'
(~'+ V')2 ' 2 X'+ ' ~ 2~' (25)

to be compared with the result of Eq. (19) which
involves no approximation.

V. DISCUSSION AND CONCLUSION

This paper contains two kinds of results. First-
ly, the calculation of the D%BA form factor has
been split into three steps, namely the calculation
of a spectroscopic amplitude (O~D bat ~0), another
amplitude (O~BD~, rit, ri, A~~0), and a transition ma-
trix element (0 ~D, p ~~ q„D„I 0); these three quan-
tities correspond to the integrations over r„r„,
and r„, respectively. The method followed in this
paper illustrates clearly the nature of the "moon
crescent effect" created by the different positions
of B, A, 5, and a. Secondly, approximation
methods are given for breaking the calculation
of (O~BDt.

'pter,

A~ 0) into that of a product
(0~BD A~(s) ~0) (0 A(s')q it,rA ~0t). The influence
of shifted shell-model centers is again clearly dis-
played by the method that we have followed.

A question that has not been answered, however,
is whether the "moon crescent effect" brings im-
portant corrections in practical calculations.
Qualitatively, one may present the following ar-
gument. The illustrative example of Sec. IV dis-

plays a peaked function exp [-(s„-ss)'/2X'], which
prevents the core A from drifting very far away
from the center of the complete nucleus B. Fur-
thermore, it is familiar to practitioners of the
generator coordinate formalism that such a func-
tion is very narrow when high masses are involved
and becomes even narrower after the zero-point
motion has been defolded. Roughly speaking, one
may expect effects of the order of bt„/N„.

It can thus be concluded that the effect studied
in this paper is not likely to be critical, but may
change the spectroscopic factors calculated with
the D%BA. For instance, it should be taken into
account when one considers the transfer of four
particles out of "Ne, the core "0being undis-
turbed. These four particles may be not only in
the sd shell: for instance, they might dip a little
into the p shell while pushing the "O core slightly
aside without exciting it. Clearly, a more realis-
tic calculation than that of Sec. IV is desirable in
order to test whether the correction is significant
or vanishingly small.
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