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The effect of virtual 6(1236) states on the saturation properties of nuclear matter is studied
within the framework of lowest-order Brueckner theory. The 8 is treated as a stable elemen-
tary particle. Transitions from the nucleon-nucleon PTN) channel to the nucleon-4 (NQ chan-
nel are caused by a nonrelativistic potential obtained from the static limit of meson theory.
The coupled-channel potentials are constrained to fit the NN phase shifts. Saturation curves
are calculated for the couplings So(VN) Do(NQ and P&(NN) SP&gVQ, and the effects of
other NA couplings to nucleon-nucleon P and D waves are estimated. Calculations are done
using both the Reid soft-core and Ueda-Green potentials for NN partial waves not coupled to
the N4 channel. The N4 coupling does not change the usual tendency of the calculated satura-
tion points to lie in a narrow band in the energy-density plane that does not contain the empiri-
cal saturation point. This result is ill~~~inated by a rough approximation to the Pauli and dis-
persion effects. We have also used this approximation to estimate the loss ofbinding due to N4
coupling in those channels not treated by detailed calculation. Combining all our results, we
find that at the empirical density (1) the inclusion of N4 coupling in nucleon-nucleon S, P, and
D waves reduces the binding energy by about 3.3, 3.2, and 0.8 MeV, respectively, and (2)
each particle spends about 3.7% of its time as a Lk All these figures vary roughly quadratical-
ly with the @VS coupling constant and increase rapidly with density. The size of the shift in
energy depends strongly on the suppression of the short-range part of the two-body wave func-
tion, but our approximate formulas indicate that the tendency of the calculated saturation
points to remain in a narrow band is independent of the short-range behavior of the two-body
interaction, i.e., it is model-independent.

NUCLEAR STRUCTURE Effect of 6(1236) on saturation of nuclear matter studied
in lowest-order Brueckner-Bethe-Goldstone theory.

I. INTRODUCTION

For any nucleon-nucleon potential, the Brueck-
ner-Bethe theory' ' predicts the saturation point,
i.e., the equilibrium binding energy and density,
of nuclear matter. For various potentials, the
calculated saturation points lie on a narrow band
in the energy-density plane, which we call the
saturation band. The saturation band does not in-
clude the empirical saturation point, so that agree-
ment with the empirical point can only be obtained
by escaping from this band. The purpose of this
paper is to learn whether the inclusion of inter-
mediate nucleon-delta (Nh) states can permit an
escape from the saturation band.

The main results of calculations with a variety
of potentials are summarized in Fig. 1. In all cal-
culations, the usual self-consistent single-par-
ticle spectrum' is used for states in the Fermi
sea, and pure kinetic energy is used for states
above the sea. Only two-body correlations are
included in the calculation of the open and solid
circles. Rough estimates4 of the shift of the sat-
uration point due to three- and four-hole-line cor-
rections are shown by arrows for some of the po-

tentials. The authors of the potentials and nuclear-
matter calculations marked by solid circles are
given in Table I. The open circles are new re-
sults, explained below. The tendency for the cal-
culated saturation points to lie in a narrow band
(the saturation band) is clear. The reason for
this behavior has been discussed previously"' for
ordinary potentials without N4 coupling.

The saturation band does not include the empiri-
cal saturation point, which lies within the box that
extends in energy from —15 to —17 MeV and in
Fermi momentum from 1.30 to 1.45 fm '. There
are several possible reasons for this discrepancy.
The convergence of the Brueckner-Bethe theory
might be improved by a selective summation of
higher-order terms, which would lead to a dif-
ferent single-particle spectrum from the one that
is presently accepted. ' ' Or, assuming the pres-
ent Brueckner-Bethe theory to be correct, the
evaluation of the three- and four-hole-line
terms" "might not be sufficiently accurate. Con-
sequences of relativistic kinematics have also
been considered, but a detailed study showed them
to be negligible. '~ Finally, it may be inadequate to
treat the nucleus as a system of point nucleons
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FIG. 1. Calculated saturation points for various mod-
els of the nucleon-nucleon interaction. The vertical axis
is energy per particle in MeV, and the horizontal axis is
Fermi momentum@+ in fm '. The value of the dimen-
sionless defect parameter w is given in parentheses. The
quoted values of & are evaluated at &z ——1.36 fm, not at
the saturation densities, in order to permit meaningful
comparison between different potentials.

with no other explicit degrees of freedom. Meson
and antinucleon degrees of freedom are, of course,
buried in the phenomenological two-body potentials,
but they may also have a distinct influence on the
many-nucleon problem. In the absence of a corn-
plete fundamental theory, singling out particular
degrees of freedom for explicit treatment need
not be an improvement. The value of such models
is primarily exploratory. They serve to point out
the qualitative influence of a particular degree of
freedom.

In this paper we treat the excited nucleon 6(1236)
as a stable elementary particle and assume a phe-
nomenological interaction between 4's and nu-
cleons. The possible importance of this degree of
freedom has been pointed out previously, especially
by Green and co-workers. ""

From earlier work on this isobar model" "the
following ideas have emerged. Ordinary nucleon-
nucleon (NN) potentials are fitted to NN phase
shifts. Hence they implicitly include the effect of
coupling to the nucleon-delta (N6) channel. For
example, this coupling produces a large attractive
component in the usual 'So NN potential. This at-
tractive component is, of course, exactly the
same, whether the potential is used for scattering

or in nuclear matter. But when the Nh channel is
included explicitly, as in the isobar model, the
coupling to this channel is less effective in nu-
clear matter than in the scattering problem. There
are two reasons for this. First, when the two-
body reaction matrix is computed in nuclear mat-
ter, the Pauli principle for the nucleons excludes
certain Nh intermediate states (Pauli effect).
Second, the energy denominators for intermediate
Nb states are larger in nuclear matter than in the
scattering problem (dispersion effect).

Rough calculations of the Pauli and dispersion
effects, as functions of the density, have been
made by Green and Niskanen. " They considered
N4 coupling in the 'S, channel of the Reid soft-
core potential. " For a Fermi momentum kF=1.4
fm ', they found 5 MeV per particle less binding
when Nd coupling was included explicitly. They
fitted their calculated loss of binding with the
formula 0.702k F'".

In the present paper, we give the results of self-
consistent Brueckner calculations with N4 coupling
explicitly included. Only two-body correlations
are considered. For the 'S, channel of the Reid
potential, our results are qualitatively similar to
those of Green and Niskanen, but we find a some-
what smaller effect and a weaker density depen-
dence. We find a much smaller Pauli effect than
Green and Niskanen because they used a larger
mNd coupling constant and neglected the dependence
of the Pauli effect on the relative momentum of the
two interacting nucleons. We will discuss their
results in more detail in Sec. VI. Since we have
done numerically accurate self-consistent calcula-
tions at various densities, we are in a better posi-
tion to see whether inclusion of Nh coupling moves
the saturation point off the saturation band. The
P waves in the NN channel may also be coupled to
the Nh channel, and there is no reason to assume
that the effect of this coupling is negligible. In
order to see whether P-wave coupling produces
qualitatively different results, we have studied
the effect of Nb, coupling in the 'P, channel with
both the Reid potential and the Ueda-Green one-bo-
son-exchange potential. " It turns out that the effect
is comparable to the effect in the 'S, (NN) channel.

In Sec. II we specify the details of the model. In
Sec. III, we discuss the scattering problem and
introduce the two-body potentials. The calculation
of the reaction matrix with NA coupling is de-
scribed in Sec. IV, and the results of nuclear-
matter calculations are presented in Sec. V. In
Sec. VIA, we derive approximate formulas and
verify their reliability by comparison with our
detailed numerical results. We use these formu-
las in Sec. VIB to understand the main feature af
the results, especially their variation with density
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TABLE I. Authors of some of the nucleon-nucleon potentials and lowest-order nuclear-
matter calculations shown in Fig. 1. Column one shows the symbol used for the potential in
Fig. 1. Columns two and three give the authors of the potential and of the nuclear-matter
calculation, respectively.

Symbol Authors of
potential

Nuclear-matter
calculation by

HJ
BKR

RSC
HEA

UG1

UG3

BS
TS

Hamada and Johnston'
Bressel, Kerman, and

Rouben
Reid soft-core 4

Holinde, Erkelenz, and
Alzetta f

Ueda and Green~
Model 1

Ueda and Green ~

Model 3
Bryan and Scott'
De Tourreil and Sprung '

Banerjee and Sprung b

Banerjee and Sprung b

Coester, Pieper, and Serduke ~

Holinde, Erkelenz, and Alzetta

Wong and Sawada"

Coester, Pieper, and Serduke e

Wong and Sawada"
DeTourreil and Sprung '

' Reference 28.
b Reference 7.

C. Bressel, A. Kerman, and B. Rouben, Nucl. Phys. 124, 624 (1969).
4 Reference 20.' Reference 14.

K. Holinde, K. Erkelenz, and R. Alzetta, Nucl. Phys. A198, 598 (1972).
~ Reference 21.
"Reference 4.
' R. Bryan and B. L. Scott, Phys. Rev. 177, 1435 (1969).
& R. DeTourreil and D. W. L. Sprung, Nucl. Phys. A201, 193 (1973).

and their model dependence. In Sec. VI C we use the
approximate formulas to estimate the effect of N4
coupling in those channels not selected for detailed
calculations. Our results are summarized in Sec. VII.

II. DESCRIPTION OF THE MODEL

The specific model treated here is the one used ear-
lier by Green and co-workers. " ' The Hamiltonian is

52k2
H=g at~a~+ +(d —M)c' at~a„+

2
(kl ~V, ~mn)a~a", a~ + (kl ~V, ~mn)atlanta„a

0 mn 0 mn

+ [(kf
~
V2

~
mn) atlanta„a + Hermitian conjugate]

Q mn

Here, M is the nucleon mass and 4 is the mass of
the 6,. The operators a~ and a~~ destroy and create
nucleons of momentum k, and the o.„and +~~ are
analogous operators for the h. The first two
terms of formula (1) are the kinetic energies of
nucleons and 6,'s, along with the excitation energy
(6 -M)c' of each 8, relative to the nucleon.

The two-body potentials V„V„and V, cause
transitions of the types NN NN, N6 NA, and
NN=N4, respectively. The couplings Nh = 4& and
NN= rid are neglected because the mass of the
A,L channel is 300 MeV greater than that of the Nh
channel. This does not imply that coupling to the
Ld channel will have a negligible effect on the

properties of nuclear matter. But by including
only the Nh channel, which is the single most im-
portant isobar channel, we expect to find out
whether the inclusion of such channels can improve
the saturation properties of nuclear matter. The
Ab channel and all others are of course implicitly
included in the model through the requirement that
the NN phase shifts be fitted.

The coupling potential V, must conserve two-
body angular momentum J, parity P, and isospin
T. This implies that the 'S, NN channel is coupled
only to the 'D, Nh, channel. Since the 'S, and 'P,
NN channels have T = 0, they cannot couple to the
Nh channel, which has T = 1 or 2. The 'P (NN)
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channels have T = 1 and can couple to NL1 channels.
In order to get an idea of the size and density de-
pendence of the N4 effect in 'P channels, we have
studied in detail the coupling of the 'P, (NN) chan-
nel to the 'P, (Nd. ) channel. We have also esti-
mated the effect of other P-wave couplings. The
effect of Nd coupling on NN channels with L ~ 2
is expected to be rather small and is discussed
in Sec. VIC.

The dominant contribution to V, comes from one-
pion exchange (OPEP) and involves the OPEP am-
plitude (Nd,

I
ftINN) for a transition from a NN

state to the state INd ) in which particle 1 is a
nucleon and particle 2 is a h. The quantum num-
bers LSZT of the states INN) and INn) are sup-
pressed for the moment but will be written when
needed. In the static limit, 8 is given by

8= —,
'
m, c'(ff*/4o) 7, T,

III. SCATTERING PROBLEM AND POTENTIALS x[(1+3/x+ 3/x')S", ,+ g, S,]e "/x, (6)

d'
M dr

I,(I + 1) ( h'k'
+V,(u+V, u = u, (2)r'

We consider the interaction of two nucleons in a
NN channel that is explicitly coupled to a certain
Nn channel. The radial wave functions (multiplied
by the relative distance r) in the NN and Nn. chan-
nels are denoted by u(r) and zv(r), respectively,
and L and L' denote the respective orbital angular
momenta. In the center-of-mass frame, the
coupled Schrodinger equations for two-body scat-
tering are

where m, is the pion mass, x=m, r, and f and f~
are the wNN and mNO coupling constants, respec-
tively. Also, 2 ~y is the isospin of nucleon 1, and

T, changes the isospin of particle 2 from & to 2,
corresponding to the N 4 transition for particle
2. Since T, is a spherical tensor of rank one, it
can be defined by giving its reduced matrix ele-
ments in the isospin space of one particle, which
can be either a nucleon (isospin —,') or a d (isospin
&). Its only nonzero reduced matrix element is
(using the definition of reduced matrix element
given by Edmonds" ):d'

2p dr'
I '(I '+ 1) + (6-M}c'+V3 co+ V,u (ill &, lie) =2 . (9)

8'u'
zo . (3)

Here, the reduced mass p, in the Nh channel is
given by

2g=2Mn/(M+ d} =1.14M, (4)

and the energy eigenvalue in the center-of -mass
system is

a'u2/M = —,'Z, „,
where E,~ is the scattering energy in the labora-
tory frame. Note that Eq. (3} for co contains the
Nn mass difference (n —M)c'.

As r-0 (or as r- r„ in the case of an infinitely
repulsive core of radius r,), both u and zv must
vanish. For E„,& 2(n-M}c'=—600 MeV the Nd,
channel is closed, and we have

u-sin(kr+ —,'Lm+6) as r-~,
20«0 as t «~,

(6)

where 5 is the NN phase shift. The largest value
of E„„that we consider is 352 MeV, which is well
below the Nrh, threshold.

The potential V, (r) is obtained theoretically
using the model of Sugawara and Von Hippel, "
and V, and V, are then adjusted phenomenologically
to fit the empirical NN scattering phase shifts. We
first review the calculation of V, and then give ex-
plicit formulas for the potentials.

The analogous operators for the spin are —,'0, and

S,. The operator Sy2 is the analog of the usual
tensor operator, i.e.,

S",, = 3(r, r S, ' r —o, ~ S, . (10)

xI.3g(1+3/x+3/x')e "/x+Xe "/x], (11)
where K and X are defined by

K = (Nh, L'S'JT
I
(7', ' T,)SP, INN, LSJT} (12)

3t =(N~, L'S'dr I(r, T,)o, ~ S, INN, LSd» .

(13)

Some numerical values for K and X are given in
Table II.

The values of % in Table II motivate our selec-

The matrix elements of Ty T2y S]2p and 0] S2
depend on the quantum numbers LSJT and L'S'JT
of the initial NN and final Nh states, respective-
ly. Explicit formulas for them are given by
Sugawara and Von Hippel. " We have found, in
agreement with Smith and Pandharipande, '4 that the
Sugawara-Von Hippel formulas for matrix elements
of S",2 and o, ~ S, should be multiplied by (-)e' e" '
and —1, respectively.

Taking account of the fact that either nucleon 1
or nucleon 2 can be changed into a 6, one finds

V, s (r) = 3M2 m, c'(ff~/4x)
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tion of the couplings 'S, (NN) 'D, (Na) and 'P,
(NN) 'P, (Nb) for detailed study. Note first that
the values of X are relatively unimportant because
the function multiplying X in Eq. (11) is much
smaller than the function that multiplies K. The
'S,(NN) 'D, (Nh) coupling has a large value of K
and clearly must be studied. The contribution to
the nuclear binding energy of the potential that
couples a 'P (NN) channel to a particular Nk chan-
nel should be roughly proportional to the square of

K and to the statistical weight -', (2T+ 1)(2J+ 1) of
the NN channel. Thus the contribution from cou-
pling in the 'Po (NN) channel is expected to be
more than 10 times smaller than that from the
'P, (NN) 'P, (Nd) coupling. The coupling'P,
(NN) 'F, (Nd) has a large K, but coupling to
N4, channels with L' = 3 should be less important
than coupling to channels with L' =1. The same
remark applies to the 'P, (NN) - 'F, (Nd) coupling,
and the other 'P, (NN) couplings have relatively
small values of K. Thus we expect the coupling
'P, (NN) 'P, (Na) to be the single most important
coupling involving a 'P (NN) channel.

Before the coupling potential of Eq. (11) is used
in the Schrodinger equation, the r ' singularity
must be removed. For the 'S, case, we have used
the potential of Haapakoski, "who eliminates the
r ' singularity by means of an infinitely repulsive
core of radius r, = 0.4 fm. If r is measured in fm,
the Haapakoski potentials outside the core are
given in MeV by

TABLE II. Values of the matrix elements OR and K,
defined by Eqs. (12) and (13) of the text, respectively.
The total angular momentum, parity, and isospin of the
channel are denoted by J, P, T, respectively. The usual
spectroscopic notation is used to specify the values of
(LSJ) in the NN channel and L'S'J in the NA channel.
Whenever an entry is omitted, the most recent entry
above is to be understood.

0.7r ~-2.7

V, (r) = V, (r) = —10.5 -43

and

3e9r g 2o&r

3.9r 2.1r

(&~.7r
' yI07 07 (07 )'

Ss 85m'

3.85m 3.85r (3.85r)'

(14)

(15)

Haapakoski chose the first three terms in formula
(14) to represent the exchange of single v, g, and
~ mesons, respectively. The last term in Eq. (14)
represents two-pion-exchange effects that are not
included through coupling to the ¹h, channel. Put-
t ing V3 equal to Vy is arb itr ary, but Green and
Haapakoski" have shown that the phase shifts are
very insensitive to the choice of V, . The param-
eters A, B, and y have been introduced for con-
venience in the following discussion.

Consider first the case y = 1. The coupling poten-
tial V, is then precisely the one determined by
Haapakoski. " The first term comes from m ex-
change and is obtained from Eq. (11), using the
values of K and X from Table II, along with f '/
4p = 0.08, f*'/4m = 0.23. Haapakoski obtained this
value of f ~ from a quark model; the observed
width of the 6 leads to f *'/4m=0. 35. The second
term in Eq. (15) comes from p exchange, and its
derivation from a quark model is explained by
Haapako ski.

Haapakoski adjusted A and B in Eq. (14) to fit
the 'S, phase shifts. However, he used the ap-
proximation 2p, =M in Eq. (3). Since we use the
exact value given by Eq. (4), we have readjusted
A and B to preserve a good fit to the phase shifts.

We have used values of M and 4 obtained from
the following constants:

NN

channel

iS
3P

0
3P

3P

+
1
1

2 + 1

5D

3P
0

SPY

Sp

5j')
3P

P2
3Q

S

Nh
J P T channel

4.000
1.333

-0.667
2.683
2.191
0.133

-1.200
-0.980

2.400
1.789

0
2.667
2.667
0
0
2.667
0
0
0
0

II'/M=41. 47 MeVfm'

Sc =197.32 MeVfm,

(6 -M)c'=300 MeV ('S, case),
(6-M)c'=297.12 MeV ('P, case) .

(16)

These values give about 1239 MeV for the mass of
the 6, in the 'S, case. It would have been preferable
to use the empirical mass of 1236 MeV, as was
done in the 'P, case, but this small difference has
a negligible effect on our results.

The 'So scattering results are shown in Table III.
Since we omit the Coulomb force, we have fitted
our phase shifts to those predicted by the Reid
soft-core potential' rather than to the pp phase
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TABLE GI. Nucleon-nucleon phase parameters calculated without the Coulomb force for
various 'So potential models. In each of columns 1, 2, ~ ~ 8 are given the parameters y, A,
and B of the potential (when appropriate), followed by the calculated scattering length a and
effective range ro. Below these are given the phase shifts in radians for six different lab en-
ergies, e.g. , 6(24) is the phase shift for &&b = 24 MeV. Further details are given in the text.

olumn
No. 4 R

A (MeV)
B (MeV)
a (fm)

o (fm)
6 (24)
6 (48)
6 (96)
o (144)
5 (208)
5 (352)

-17.1
2.81
0.860
0.685
0.440
0.263
0.080

-0.216

1
7175
800

-17.3
2.86
0.851
0.676
0.436
0,263
0.084

-0.211

1
7000
870

-246
2.56
0.961
0.760
0.502
0.320
0.135

-0.168

1
7000
870

-25.9
2.75
0.884
0.698
0.449
0.271
0.088

-0.215

0
1694
1290

-17.2
2.87
0.851
0.676
0.440
0.270
0.094

-0.196

0.25
2069
1257

-17.2
2.87
0.851
0.676
0.440
0.270
0.095

-0.195

0.50
3323
1175

-17.1
2.87
0.8 50
0.676
0.439
0.269
0.093

-0.197

0.75
6008
1104

-17.2
2.89
0.845
0.668
0.427
0.254
0.076

-0.216

' Calculated by putting 2p =M in Eq. (3).

shifts. The Reid soft-core phase parameters are
shown in column 1. In column 2 are shown our
values of A and B for y= 1, along with the re-
sulting phase parameters obtained by solving
Eqs. (2) and (3). The quality of the fit is more
than adequate for the present investigation.

Column 3 of Table III shows the values of A
and B quoted by Haapakoski" for y = 1. The
phase parameters in this column are obtained by
using the exact reduced mass p in Eq. (3) rather
than the approximation p, =

& M used by Haapakoski.
The resulting phase parameters show that Haa-
pakoski's original potential is somewhat too at-
tractive when the exact reduced mass is used in
the Nh channel. If we set p, = &M, then Haapakos-
ki's values of A and B give a good fit to the phase
parameters. These results are shown in column
4.

We have also fitted the phase shifts with weaker
coupling potentials, corresponding to y =0.0, 0.25,
0.50, and 0.75. For each value of y, A and B
were adjusted to fit the phase shifts. These values
of A, B and the resulting phase parameters are
shown in columns 5-8 of Table III. Such a se-
quence of potentials might be useful in studying
the effect of varying the strength of the coupling
potential. However, for our purposes it was suf-
ficient to use y =0.0, 0.75, and 1.0.

The coupling potential V, (r) is plotted for y = 1

in Fig. 2(a}. Except at very short distances, it
is seen to be comparable in strength to the rather
strong Reid soft-core tensor force v 8 Vr(r) that
couples the 'S, and 'D, NN channels. The poten-
tials V,(r) corresponding to coupling strengths

Z(x) —= (1+3/x + 3/x')e "/x —(12/x+ 3/x2)e ~/x .

(17)
Formula (17) agrees with Eq. (11) at large r and
has only an r ' singularity at r=0. Pieper" has
found that Z(x) is accurately approximated by the
function

F(x) —= 1.7728e "/x+ 10.447e ~/x+ 13.493e 4*/x

-2.2124e '"/x (18)

and we have used this formula in our calculations.
In applications where momentum-space matrix
elements of V, are needed, they are more easily
calculated using the function F than the function
Z.

y = 0, 0.5, and 1.0 are plotted in Fig. 2(b). For
y= 1, V, (r) is predominantly repulsive with a very
weak attractive tail. Hence in this case nearly all
the attraction comes from coupling to the Nh chan-
nel. For y = 0, i.e., for no coupling, V, (r) is large
and attractive outside the core. These facts show
that the coupling for y = 1 is strong. The Reid hard-
core 'S, potential" is also plotted in Fig. 2(b) for
comparison with V, (r) for y =0. The two poten-
tials are seen to have nearly identical shapes. It
is reasonable that the Reid potential is slightly
more attractive because its core radius 0.423 fm
is slightly larger than the core radius 0.4 fm used
with V,(r}.

For the coupling 'P, (NN) - 'P, (Nd, ), we have
removed the r ' singularity from Eq. (11)by the
phenomenological procedure of Reid, "which re-
places the function multiplying K in Eq. (11) by
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V,(r) =30y Y(0.7r) . (19)

Measuring the potential in MeV and r in fm, we
obtain for the coupling 3P, (NN)= 'P, (Nh),

The parameter y is introduced to allow variation
of the coupling strength. Using Eq. (11)with Haa-
pakoski's" values of f and f ~ and taking K from
Table II gives Eq. (19)with y = 1. We have also used

V, (r) = Vs(r)= 10.463[(1+2/x+ 2/x')e "/x —(8/x+2/x')e 4"/x]+ a,e 2*/x+a4e ~'/x+a, e "/x, (20)

where x=0.7r. The first term is OPEP with
Reid's removal of the r ' singularity. The co-
efficients a„a„and a, are adjusted to fit the 'P,
phase shifts obtained from the Reid soft-core 'P,
potential with the Coulomb force neglected.

We have fitted the 'P, phases in this way for
y=0.75, 1.0, and 1.5. The results are shown in
Table IV. The fits are seen to be very good. The
coupling potential (19), with y = 1, is plotted in

Fig. 2(a) and is seen to be comparable to the
rather strong coupling between the 'S, (NN) and
'D, (N6) channels.

IV. CALCULATION OF THE REACTION MATRIX

or

q= 0 —(Q/e)vq (21)

For NN channels without Nh, coupling, the reac-
tion matrix is computed in momentum space using
the angle-average Pauli operator. The method is
described by Coester, Pieper, and Serduke. "

For the channels with ¹h,coupling, the method
of Kallio and Day" has been used, also with the
angle-average Pauli operator. The coupled-chan-
nel equations have the same structure as those for
the usual tensor-coupled channels, e.g., the 'S, —

'D, channel. Thus we simply use the tensor-
coupled Kallio-Day equations, with modifications
to take account of (1) the 6 Nmass diff-erence and

(2) the different Pauli operator that must be used
in the N4 channel. We now give a brief outline of
the method and then present the resulting equations
that have been used in our numerical work.

The correlated two-body wave function g satis-
fies

(24)

82
(25)

where P is the two-body center-of-mass momen-
tum. Equations (24) and (25) serve to define y, '
and y, ', respectively.

The angle-average Pauli operator Q also has
different forms Q» and Q» in the NN and Nd
channels, respectively. This is because in the
Nh channel only the nucleon is required to be
above the Fermi sea. In Eq. (22), we need (P

—= 1 —Q, and for the NN channel we have the stan-
dard result

two-body starting energy. For nucleons, E, is
pure kinetic energy, and for 4's it is kinetic en-
ergy plus the mass difference (b, -M )c'.

In the Kallio-Day method, Eq. (22) is written in
partial-wave representation in coordinate space
and solved iteratively. In the first iteration the
second term on the right is neglected, and the re-
sulting differential equation is solved for g. This
approximate g is then used to evaluate (1 —Q)Vg,
which is treated as a known inhomogeneous term,
and Eq. (22) is solved again to get a better ap-
proximation to g. This process usually converges
in four and five iterations.

Because of the 6-N mass difference, the oper-
ator e takes different forms e» and e» in the NN
and Nd channels, respectively:

82 S2

(- e —V)4= —ey —(1 —Q)V4, (22) O'Nx(k, P) = 1, k & (kr' —,' P')'~'—
where p is the uncorrelated plane wave, and the
Pauli operator Q requires nucleon momenta to be
outside the Fermi sea but allows the 6 to have
any momentum. The operator e is given by

e=E, +E2 —W', (23)

where E,. is the energy of particle i, and W is the

=0) k&kp+ 2P (26)

= 1 —(k'+ ,' P' —k F')/kP, othe—rwise,

where k is the relative momentum, and kF is the
Fermi momentum. In the Nh channel one easily
f lllds
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600-

TABLE IV. Nucleon-nucleon phase shifts in the 3P&

channel calculated with the Coulomb force omitted. Col-
umn 1 gives the phases in radians at various lab energies
for the acid soft-core potential. Columns 2, 3, and 4
give the results for potentials with N4 coupling, as de-
fined by Eqs. (19) and (20) of the text.

0' 400-

200-

0
0

I
I
I
I
I
I
I
I
I
I
I
I

(b)

a2 (MeV)
a4 (MeV)
as (MeV)
0 (10)
6 (25)
6 (50}
6 (100)
0 (175)
6 (250)
(5 (350)

-0.034
-0.080
-0.142
-0.240
-0.350
-0.434
-0.520

olumn
No. 1

1.0
-95.07

1641.9
229.9
-0.034
-0.080
-0.141
-0.238
-0.351
-0.436
-0.518

0.75
-93.77
1363.8
-22.14
-0.034
-0.080
-0.141
-0.237
-0.351
-0.437
-0.524

1.5
—94.89

2338.4
894.84
-0.034
-0.080
-0.141
-0.239
-0.352
-0.435
-0.5 14

y=l

200-
P N~(k, P) = 1, k & k r MP/(M+ 6-)

= 0, k & k r+ MP/(M+ b,)

=[4kMP/(M+ ~)j ' (27)

-200-

-600-

y=

r (fm)
I I

MPx kF'-
M

-k otherwise.

ln Eqs. (26) and (27) it is assumed that p» 2k+
only this case occurs in our calculations.

The Kallio-Day derivation can now be easily
carried through, and we give the resulting equa-
tions below, using the following notation. The
correlated radial wave functions (all radial func-
tions are multiplied by r) in the NN and Nh chan-
nels are denoted by u and w, respectively. These
channels have respective orbital angular momenta
L and L'. The uncorrelated plane wave exp(ik, r)
has only a NN component, given by rj~(k, r). The
partial-wave components of (1 —Q)Vg in the NN
and Nh channels are called F~„(r) and F~~(r),
respectively. The equations used in computation
are then (in units with 5'/M = 1, so that 1 fm '
= 41.47 MeV):

FIG. 2. (a) Coupling potentials V2 vs relative distance
The short-dashed curve is for the coupling ~QQN)

Do(VQ and is obtained from Eq. (15) with y =1. The
solid curve is for the coupling P& gVN) P& PfA) and is
ob&~~~ed from Eq. (19) with y =1. For comparison the
long-dashed curve gives -8 Vz (r), where Vz(r) is the

&&
—3D& tensor force of the Reid soft-core potential.

(b) Potentials V& vs relative distance & for various cou-
pling strengths y in the case Q(NN)=~DOPED). The
curve labeled RHC is the ordinary Reid hard-core ~Q
potential.

d2 L(L+ 1)
dr r —yo —V, u —V2w

= —(k, '+ y, ')rjz, (k,r) FN~(r) (28)-

d2 L'(L'+ 1)
dr

- t2 —bV,r
= —bF„~(r), (29)
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where

b=2pIM .
The boundary conditions are

u(r)= w(r)=0, r ~r, ,

u(r)-rj i,(k,r), as r-~,
w(r)-0, as r - ~,

(30)

(31)

(32)

(33)

Also

F»(r)=, k dk&»(k, P)
1

NE 2 2

x (k, NN
I
G

I ko NN)rjr(kr), (34)

F„~(r)=, k'dk &+~ (k, P)
1

x(k, NAlGlko, NN)rjr, .(kr), (35)

where x, is the radius of the hard core in the two-
body potential (the possibility r, = 0 is not excluded).

where the elements of the reaction matrix G are
given by

r
(k, NN

l
G

l
k„NN) = 4w(y, '+ k,') j ~(kr)j ~(kor)r 'dr+ 4v

C dQ
rjz, (kr)F»(r)dr+ 4wr,j r, (kr,)—' dr

C

+4~ rji kr V,u+ V,w dr (36)

and

r dWl
(k, N&

l
G

l
k„NN) = 4v rj r,.(kr)F»(r)dr+ 4wrj z, (kr, )b ' —+ 4m

p dr,
C

rj z, (kr),[ V,w+ V,u] dr . (37)

Equations (28), (29), and (31)-(3'l) are the same
as the tensor-coupled equations for the NN system,
except for the following differences:
In Eq. (29), for the nucleon-nucleon case, b is re-
placed by unity, and y, ' is replaced by yp'. Also,
in the nucleon-nucleon case (P» is replaced by
a'» on the right side of Eq. (35), and b is re-
placed by unity in Eq. (37).

In the first iteration, Eqs. (28) and (29) are
solved with F» F„~=0. Equ-a—tions (36) and (37)
are then used to obtain matrix elements of G, and
these are inserted in Eqs. (34) and (35) to get im-
proved estimates of F» and I"„~. These are put
into the right sides of Eqs. (28) and (29), which are
then solved again to begin the second iteration.
This iteration procedure is continued until con-
vergence is obtained. Only the diagonal matrix
elements (k„NNl G lk„NN) are used in calculating
the binding energy.

The contribution from the channel with NL cou-
pling to the defect parameter z may also be ob-
tained. First we evaluate the defect integral

the integrals

and

NN 2

e~~ k, P

(39)

NN

e» k, P
(40)

The defect parameters z» and z» are then given
by

—vpI„~, K» = vpI (41)

where I» and I„~ are the respective averages of
l„„and l» over occupied states (k„P), p is the
density, and v is the statistical weight

v= —'(2J'+1)(2T+1) . (42)

The total contribution to v from the channel with
NL coupling is the sum of z» and K~~.

I= kp, NN G —
2 G kp, NN =I~~+I~ (38) V. NUCLEAR-MATTER CALCULATIONS

for a given initial state labeled by momenta (k„P).
The sum over intermediate states implied in Eq.
(38) involves both NN and Nh states. The con-
tributions from these two sets of intermediate
states are called I» and I~~, respectively. These
quantities are evaluated by numerically evaluating

All our nuclear-matter calculations have been
done in the following way ' The single-particle
spectrum is made self-consistent for states in the
Fermi sea and is taken to be pure kinetic energy
for states above the sea. All two-body partial
waves with J» 2 are included, and channels with
J & 2 are omitted. The energy per particle z is
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TABLE V. Energy per particle e' in MeV as a function of Fermi momentum k+ for various
two-body potentials. The labels of the potentials and the method of calculation are explained
in the text. The numerical accuracy is about 0.03 MeV.

Potential kz (fm ') 1.2 1.3 1.36 1.4 1.5 1.6 1.7 1.8

RSC
RSC + b, (S)
RSC + 6 (S, Q~g = 1)
RSC + CORE(S)
UG3
UG3 + D(S)
UG3 + 0.75& (S)
RSC + d (P)
RSC + 4(P, Qgg=l)
UG3 + &(P)

-10.04
-7.74
-8.06
-9.76

-9.78
-10.65
-9.28
-9.65

-12.50

-11,04
-7.83
-8.30

-10.63

-10.66
-11.86
-9.90

-10.45
-14.18

-11.44
-7.61
-8.20

-10.91
-16.66
-11.00
-12.43
-9.96

-10.66
-15.05

-11.59
7 432

-8.01
-11.00

-11.12
-12.72
-9.87

-10.68
-15.53

-11.50
-6.01
-6.98

-10.68

-11,05
-13.10
-9.05

-10.20
-16.40

-21.09 -22.19 -22.58

-12.83 -11.78

-16.56 -15.87 -14.10

then calculated in lowest-order Brueckner theory,
i.e., including only two-body correlations.

Our first calculation uses the Reid soft-core
potential' in all channels except So In this chan-
nel the modified Haapakoski" potential with Nh,

coupling is used, with the parameters given in
column 2 of Table III. This calculation is labeled
"RSC+ d(S)." The calculated energies are shown
in Table V as a function of kF. The resulting
saturation point is given in Table VI and is shown
in Fig. 1. It is seen to lie in the saturation band.

Calculated values of the defect parameter z are
shown in Table VII. The value a =0.21 for the RSC
+ h(S) potential is the same as that for the Hamada-
Johnston" potential, which is seen from Fig. 1 to
saturate at nearly the same point. Thus the usual
correlation between the saturation point and the
value of v persists when Nh, coupling is included
in the 'S, state. The value of ~ for the RSC+ h(S)
calculation exceeds that of the Reid soft-core
(RSC) calculation by 0.072. Of this increase
0.047 or 65% is seen to come directly from the
Nh channel, 0.016 or 22% comes from the NN
component of the 'So channel, and 0.009 or 13%

comes from other channels. In these other chan-
nels, the two-body potential is exactly the same
in the two calculations, but the contribution to z
is different because of the difference in the self-
consistent single-particle spectrum.

Part of the increase in v, and consequent loss
of binding, in going from RSC to RSC+ h(S) is
due to the fact that the latter calculation uses a
hard core of radius 0.4 fm in the 'S, state, while
the RSC potential has a Yukawa core. To better
isolate the effect of the NL coupling, a calculation

TABLE VII. Contributions to ~ atkz=1.36 fm . Col-
umn 1 specifies the two-body potential, as explained in
the text. The second and third columns give the values of
K~ and Icy' which are defined in Eqs. (39) through
(42). The upper half of the table refers to calculations
with the coupling Sp(NN) SDp(N~). Thus g~ gives the
contribution to K from the Sp (NN) channel, z~~ comes
from the ~g(NA) channel, and "Sum" indicates the sum
of these two. The column labeled "Other" gives the con-
tribution from all other channels, and "Total" indicates
the total contribution from all channels. Similarly, in
the lower half of the table, g~ corresponds to the
+f (NN) channe 1 and ~„z to the 'P& (N4)

channel�

.

TABLE VI. Saturation points for various potentials.
Sum Other Total

Coupling Sp(NÃ) Dp(NA)

Potential

RSC
RSC + 6(S)
RSC + 4(S;Q~g = 1)
RSC + CORE(S)
UG3
UG3 + 6(S)
UG3 + 0.756(S)
RSC + &(Pj
RSC + b, (p, @gal= 1)
UG3 +6

kp
(fm i)

1.44
1.27
1.30
1.41
1.80
1.44
1.51
1.35
1.39
1.57

E

(MeV)

-11.64
-7.S5
-8.30

-11.00
-22.60
-11.13
-13.10
-9.96

-10.68
-16.60

RSC
RSC + a(S)
RSC + CORE(S)
UG3
UG3 + A(S)
UG3 + 0.754(S)

0.023
0.039
0.034
0.012
0.039
0.037

0.047
~ ~ ~

0.045
0.027

0.023
0.086
0.034
0.012
0.084
0.064

0.120
0.129
0.121
0,062
0.070
0.068

RSC
RSC + hP)
UG3
UG3 + b, (PI

0.0047
0.0086
0.0036
0.0078

0.0052
~ ~ ~

0.0049

0.0047 0.138
0.0138 0.141
0.0036 0.070
0.0127 0.072

Coupling I'& pfN) j'&(Ng)

0.143
0.215
0.155
0.074
0.154
0.132

0.143
0.155
0.074
0.085
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was done using the Reid soft-core potential except
that the 'S, potential was replaced by the potential
given in column 5 of Table IG, which has a hard
core of radius 0.4 fm but no Nh, coupling. This
calculation is labeled "RSC+CORE(S)." The dif-
ference in z between this calculation and RSC
+h(S) is 0.060, and only 0.005, or 8%, of this
comes from the 'S, NN channel. Thus the dif-
ference between the saturation points of RSC
+ 4(S) and RSC+ CORE(S) is a reasonable mea-
sure of the effect of the coupling 'S, (NN) -'D,
(Nd, ). From Table VI we see that adding Nh
coupling to the RSC+ CORE(S) potential reduces
the equilibrium binding energy and Fermi mo-
mentum by 3.15 MeV and 0.14 fm ', respectively.

As we discussed in the introduction, the Nh,

coupling reduces the binding energy by two mech-
anisms: the dispersion effect and the Pauli effect.
In order to separate these two effects, the RSC
+ rL(S) calculation was repeated except that, when
computing the 'S, reaction matrix, the Pauli op-
erator Q was replaced by unity in the Nb, channel.
This calculation is labeled "RSC+d, (S, Q„~ = 1)"
and from Table VI it is seen that the results differ
from RSC+ h(S) by 0.45 MeV and 0.03 fm ' in en-
ergy and Fermi momentum, respectively. This
difference is a measure of the Pauli effect, and
it is only about 15%%uo of the total change of 3.15
MeV and 0.14 fm ' in the saturation point caused
by Nh, coupling. We attribute the rest of the ef-
fect to dispersion. Hence the effect of Nh, cou-
pling in the 'S, state is about 85% due to disper-
sion and 15% due to the Pauli effect. The mecha-
nism of the dispersion effect is discussed in detail
in Sec. VI.

Since Nh, coupling reduces the binding energy
and density, the question arises of whether adding
this coupling to a potential that saturates at too
high a binding energy and density can produce a
saturation point lying in the empirical region
shown in Fig. 1. To answer this question, a cal-
culation was done using model 3 of the Ueda-Green
(UG) one-boson-exchange potential, "except that
the modified Haapakoski potential (column 2 of
Table III) was used in the 'S, channel. This cal-
culation is labeled UG3+ h(S), and the resulting
saturation point is shown in Table VI and Fig. 1.
It is shifted by 11.5 MeV from the ordinary Ueda-
Green result (labeled UG3), but it still lies in the
saturation band and is correlated with ~ in the
usual way. Not all of the large difference in en-
ergy between UG3 and UG3+ h(S) can be attributed
to Nh, coupling. Table VII shows that the differ-
ence in a in the 'So channel is 0.072, but that only
0.045, or about 60%, of the difference comes
from the Nd channel. Thus only about 60%%uo of the
energy shift is caused by N4 coupling.

As the coupling strength is reduced below y =1.0,
the saturation point for UG3+ h(S) will move along
some path in Fig. 1 towards the region of higher
density and higher binding energy. How close will
the path come to the empirical region contained in
the rectangular box? To answer this question, a
similar calculation with y = 0.75 ('S, potential from
column 8 of Table III) was done. The results are
labeled UG3+ 0.756,(S) and are shown in Fig. 1 and
Tables V, VI, and VII. It appears that varying the
coupling strength simply causes the saturation
point to move along the saturation band and does
not change the picture qualitatively.

The probability I'~ that a particle in nuclear
matter is a 6, rather than a nucleon is given by

The contribution to P~ from the coupling
'S, (NN)= 'D, (Nd, ) is seen from Table VII to be
about 2.3% in the RSC+ d(S) calculation. The
estimate of Green and Schucan" was 2.8%%up. The
additional contributions to P~ from other Nh, cou-
plings will be discussed later.

The Pauli term hs(P), the dispersion term
hs(D), and the total energy shift d c = hc(D)
+ hs(P) are shown in Fig. 3 as functions of the
density. They are well represented by straight
lines on a logarithmic plot. The solid lines are
obtained from the empirical formulas

and

d.g(D) =0.926kr' ',
rh, e(P) = 0.131kr'~,

02/ 3 ~ 76

(43)

(44)

(45)

~~(D) = O.82Ok, 4 "
d.e(P) =0.336k "
I g= 0.702kFs. 87

(46)

(47)

(48)

Green and Niskanen" have also made estimates
of the Pauli and dispersion effects for Nh coupling
in the 'S, channel of the Reid potential. Their re-
sults are compared with ours in Fig. 3. Detailed
agreement is not expected between the two cal-
culations for two reasons: (1) The form chosen
for V,(r) is different in the iwo calculations, and

(2) our results are obtained from a detailed
Brueckner calculation, while Green and Niskanen
have used approximate formulas of the type dis-
cussed in Sec. VI of this paper. We see from Fig.
3 that there is reasonable agreement between the
two calculations for the dispersion effect. But we
obtain a Pauli effect that is three to four times
smaller than that of Green and Niskanen. The rea-
son for this discrepancy is explained in Sec. VIA.
The Green-Niskanen results are fitted by the
empirical formulas



INFLUENCE OF VIRTUAL 4 STATES ON THE SATURATION. . . 1731

IO
)

.M', GN

Sp

fan@'(D), GN

a~(D}, 's,
flE'{P), GN

Pj

I—
Ur

a

fle{D},'P
~flE(P), 'Pj

h6(P), 'S—

0.5—

I0.2 I I

l.3 l.4
K (fm }

I

l.5

Green and Niskanen obtained Eq. (48) for he by
fitting their numerical results obtained from the
lowest-order constrained variational (LOCV}
method of Pandharipande. "

For the coupling 'P, (NN) = 'P, (Nh), we have
calculated saturation curves in complete analogy
to the 'S, case. The potential given in column 2

of Table IV is used in the 'Py channel, and in all
other channels either the Reid of Ueda-Green po-
tential is used. The results are shown in Figs. 1
and 3 and in Tables V, VI, and VII. The energy
shifts are fitted by straight lines given by the ex-
pressions

and

ke(D) = 0.146kr"

hc(P) =0.148kr'",

g&-0 2ggy 5»
F

(49)

(5o)

(51)

The saturation points remain in the saturation
band.

FIG. 3. Plot of energy shift vs Fermi momentum.
Both scales are logarithmic, and de(D), AeP'), and Ae
are the dispersion, Pauli, and total energy shifts, re-
spectively. The solid circles give our calculated values.
The solid and dashed lines show the empirical Qts of
Eqs. (43)-(45) and (49)-(51). The open circles are the
values calculated by Green and Niskanen for M(D) and
Ae(P). The dash-dot lines are empirical fits of Eqs.
(46)—(48).

S = (ei —eo}~(kryo —kro) (52)

of the line joining the two saturation points. The
new physical effect that is of interest for us is
Nb, coupling. But the argument to be given below
applies to any effect that gives some additional
contribution to the energy, e.g. , three-body
forces, higher-order terms in the hole-line ex-
pansion, etc.

The value of the slope S that is needed to escape
the saturation band depends on whether the new
physical effect increases or decreases the binding
energy. For an effect that gives more binding, an
escape from the saturation band in the desired di-
rection might be accomplished by either a large
negative slope or a positive slope. However, ¹h,
coupling always reduces both the equilibrium
binding energy and density. Therefore, in order
to escape from the saturation band through Nh,
coupling, we must have S much less negative than
the slope of the saturation band. Near the empiri-
cal density, the slope of the saturation band is
found from Fig. 1 to be about —24 MeV fm. A
significant escape from the saturation band would

The difference in binding between the RSC and
RSC+ h(P) saturation points is 1.68 MeV, more
than half as large as the effect of 3.15 MeV in the
'S, channel. From Table II, we see that there are
several other nonnegligible P-wave couplings in
addition to the coupling 'P, (NN) = 'P, (Nh) that
we have chosen for detailed calculation. Thus the
combined effect of all P-wave couplings may be
comparable to that of the S-wave coupling.

For the coupling 'P, (NN) -'P, (Nd, ), in contrast
to the 'S, case, the Pauli effect of 0.72 MeV in en-
ergy and 0.04 fm ' in k~ is comparable to the dis-
persion effect of 0.96 MeV and 0.05 fm ', respec-
tively. Although the loss of binding is about half
as large as in the 'S, case, the increase in ~ of
0.012 is only 17% of that in the 'S, case. The
qualitative differences between S-wave and P-
wave coupling are discussed further in the next
section.

From Eqs. (45} and (51) we see that the energy
shifts caused by S-wave and P-wave coupling vary
with density as kF'" and kF'", respectively.
These density dependences are not strong enough
to move the saturation point off the saturation
band. Thus it is of interest to determine how

strong the density dependence must be to permit
escape from the saturation band.

Suppose the calculated saturation point for some
potential model occurs at a point (s„k~) in the
saturation band. Inclusion of some new physical
effect will give a new saturation point (e„kz,),
and whether or not we escape from the saturation
band depends on the slope
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(kr) '4+ 2 (kr kro) + +kp ~2k~
(53}

where the incompressibility parameter K is de-
fined by

d'&
K= kFO

F Ap

(54}

The value of k», which is obtained by minimizing
formula (53), satisfies

Kk»
akim" + s (kn —kro) =

nk~
(55)

The saturation energy a, with the new effect is
found by putting kr=kr in Eq. (53). Then, after
using Eq. (55}to eliminate a, we easily evaluate
Eq. (52} to get

require S to be much less negative than this, for
instance S= —15 MeV fm.

We can estimate the density dependence re-
quired to give any desired value of S as follows.
Over the small interval of kF containing k» and

k~, we represent the energy shift due to the new

effect by the function ekF, where a and n are con-
stants. The energy s(kr) without the new effect
can be represented in this region by the first two

terms of its Taylor expansion about k~. Thus we
find for the energy c'(kr), which includes the new

effect, the approximate formula

that, if we are to escape the saturation band, the
density dependence of the energy shift due to Nd

coupling must be k~" or stronger. This is a
much stronger density dependence than we have
found for either S-wave or P-wave coupling.

A. Approximate formulas

We start with the relation between G matrices
calculated with different propagators X. This ap-
proach has often been used before, in particular
by Green and Niskanen. " If G satisfies

G =V-VX G

with a similar equation for G~, we have~

(58)

VI. APPROXIMATIONS AND QUALITATIVE

UNDERSTANDING

In this section we derive approximate formulas
and use them to understand the main features of
the previous results. In Sec. VIA we derive the
necessary formulas and test them by comparison
with the results obtained in Sec. V. The difference
in d e(P) between our work and that of Oreen and
Niskanen" is readily explained by these formulas.
In Sec. VIB we discuss the qualitative differences
between S-wave and P-wave coupling and study the
density dependence of 4z, which determines
whether or not we might escape from the satura-
tion band. In Sec. VI C we estimate the effect of
N4 couplings not treated by detailed calculation.

S= — — a 1 —— k~-k» (56)
G, —Gs = Gs (Xs X )G (59)

For the RSC potential we have'~ K=150 MeV, k~0
= 1.44 fm ', and putting these values into Eq. (56)
gives

S=- -36 1 —— (k~-k~) .104 2

n n
(57)

In this equation, S is given in MeV fm when k~ and

k~ are given infm '.
We have seen that in order to move appreciably

out of the saturation band through NL coupling, we
must have

~
S

~
no larger than about 15 MeV fm.

Using Eq. (57), we can estimate the value of n
needed to accomplish this. Since N4 coupling re-
duces the saturation density, the second term of
Eq. (57} is negative and therefore gives a positive
contribution to ~S~. Thus minimizing ~S~ means
minimizing this term, which means making the
density shift zero. However, in order to move
significantly out of the saturation band by means
of a small negative slope S, we must clearly have
a density shift that is not too small, say k~ —k~
~0.1 fm '. Imposing this requirement, we see
from Eq. (57) that we must have n & 8.5 in order
that

~
S

~
be smaller than 15 MeVfm. We conclude

XA 1
Nd, (60)

where

es = T+ (6 —M)e' —T, —T&,

1
XNb, e

where

e=e, —U, —U&,

(61)

Xes—- Qss/e . (62)

Here T is the two-body kinetic-energy operator,
and T, and T, (U, and U~) are the kinetic (po-

We consider the coupled NN and Nb, channels and
distinguish among three different nuclear-matter
propagators X. In all three cases, the NN part of
the propagator is chosen to be (Q»/e„„), as is
appropriate for nuclear matter. But in the N4
channel we consider
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~c(D}=&NNIG, -G„INN&

NN 62~ 62~ NN2A 8 8 2B (63)

where the subscript 2 on 6 indicates that part of
G that connects the NN and N4 channels. Similar-
ly, the change due to the Pauli effect is

~c(Z) =&NNlc G, lNN-&

NN 62B ~ G2 NN
8

(64)

These formulas could be evaluated exactly by com-
puting the required 6-matrix elements and inte-
grating over the relative momentum k of inter-
mediate states. However, we are interested at
the moment in obtaining insight into our results
rather than in high numerical accuracy. For this
purpose, it is often convenient to approximate one
or more of G„, GB, and 6 by another of these that
is more easily calculated.

How much error does this replacement cause?
We first note that the difference between GB and
G comes from the difference between Q„~ and

unity. But Q„~ excludes a sphere of radius kF
in k space, while relative momenta k as large
as 3-4 fm ' are known to be important for the
calculation of G. Thus, Q„~ differs from unity
in only a fraction (kr/3 fm '}'=10% of the rele-
vant region of phase space. Second, the difference
Gs —G„comes from the difference e —e, = —(U,
+ U&), which is typically 135 MeV. But for an in-
termediate state with a typical relative momentum
k of 3 fm ', 8 is about 700 MeV. Thus, changing
e to e, changes the propagator by about 20%. Fi-
nally, the propagators for G„, GB, and 6 differ
only in the Nh, channel, not in the NN channel.
So we expect the approximation G„=GB = 6 to

tential} energies of the two nucleons in the Fermi
sea.

The propagator XA~ is appropriate for scatteriag.
Using it in nuclear matter neglects both Pauli and
dispersion effects and corresponds to a nuclear-
matter calculation with an ordinary potential such
as that of Reid or Ueda and Green. The propagator
X„~ has been used in our calculations with Q„~
= 1 and includes the dispersion effect but not the
Pauli effect. Finally, X~~ is the correct nuclear-
matter propagator that includes both effects.

The binding energy depends on diagonal matrix
elements (NNl G

l
NN) in the NN channel (the other

labels of the state l NN) have been suppressed).
The change nc(D) in this matrix element due to
dispersion is found from Eqs. (59}, (60), and (61)
to be

be good to roughly 25%, and this is sufficient for
our present purpose.

The procedure used by Green and co-workers" "
emerges from this treatment if all the G, 's in
Eqs. (63) and (64) are approximated by G,„, and,
in addition, V, is neglected. The neglect of V, is
reasonable because it always occurs added to the
much larger Nh mass difference of 300 MeV [see
Eqs. (3), (25), and (29)]. Also, Green and
Haapakoski" have verified numerically that ne-
glecting V, has a small effect on the 'So phase
shifts. The matrix elements needed to evaluate
formulas (63) and (64) are then

&r, N~
l G,„lNN &= &I, Nn

l v, l q„&, (65)

where gA is the correlated two-body wave function
corresponding to the propagator X„, and k is the
relative momentum of the intermediate NA state.
Now, g„has both a NN and a Na component. But,
since V, connects only the NN and N4 ch:mnels,
only the NN component of g„ is needed in expres-
sion (65). The propagator X„, which omits both
the Pauli and dispersion effects in the N4 channel,
corresponds to a calculation with an ordinary po-
tential, such as that of Reid, that has no N4 cou-
pling. Thus the NN component of g„must be iden-
tified with the usual Bethe-Goldstone wave function

f~G, calculated with an ordinary potential without
N4 coupling. If g~G is available, the effects of
Nh coupling can thus be estimated quite simply.
Green and co-workers" "have obtained useful
results by this procedure. It has the virtue of
avoiding both the fitting of NN phases with cou-
pled-channel potentials and the calculation of the
nuclear-matter 6 matrix with these potentials.

Our first aim is to check this type of approxima-
tion by comparison with the results of the last sec-
tion. Then we can use the approximate formulas to
gain a better understanding of the results. In our
computations, the most readily available 6 matrix
is calculated with the full nuclear-matter propa-
gator X of Eq. (62). We therefore find it conve-
nient to estimate expressions (63) and (64) by ap-
proximating G,„and G» by G, . Using e —e,= —(U,
+ U~), we then rewrite Eq. (63) in the form

EG (D) = —(U)+ Ui)

xNN 6, " 6+ "N~62 NN .1 Q
808 808

(66)

In Eq. (66) we have somewhat artificially split the
term (e,e} ' from Eq. (63} into two terms. This
will allow us to relate the dispersion term to ~„~,
which is useful in understanding why the energy
shift for S-wave coupling is so closely correlated
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with K»,
In the first term of Eq. (66) we replace e, by e,

which should be accurate to about 20%, as ex-
plained above. In the second term, only small
relative momenta occur because of the factor 1
—Q„~. The kinetic-energy terms in e, are then
small, and in addition they tend to cancel. So it
is sufficiently accurate to replace e, by (n -M)c'
in the second term of Eq. (66).

With these approximations, formulas (66) and

(64) become
hG(D) = —(Uq+ U~) [I~~+Ip],
nG(P) = (n M)c'-I, ,

(67)

(68)

where

d'k (k, N~~G(NN&'
(2vP [e(k)]' (69)

KNa pvI~~ up= pvIp,

and the bar over I„~ or I~ indicates an average
over initial two-particle states in the Fermi sea.
Similarly, we find for the Pauli effect the result

nc(p) = 2(n —M)cmg~ . (73)

Formulas (Vl) and (73) are applicable when the
same single-particle spectrum is used with Nd

coupling as without it. However, in self-consistent
calculations, the spectrum of occupied states will
change when N4 coupling is added. If the single-
particle potential of each occupied state is changed
by hU, this causes a change in a of —zb, U, where
~ is the total defect parameter, summed over all
partial waves. Thus the total change in energy,
when Nh coupling is included, is

4a = 4e(D)+ n.e(P) —ahU . (V4)

is the contribution to the defect integral from the
N4 channel, and

k (kNhiGiNN)
[ ( )] (7 )(2v)~ (n —M)c e(k)

is a corresponding "Pauli" defect integral. It ap-
pears in the dispersion effect because we have
analyzed EG(D) in terms of the exact defect in-
tegral I» that is calculated with the correct
Pauli operator Q».

Having d G, we obtain the corresponding change
4& in the energy by averaging over initial states
in the Fermi sea and multiplying by —,pv, where
p is the density, and the statistical weight v of
the channel is given by Eq. (42). Since U(k)
typically varies by only 25% as k varies from
0 to kr, we replace (U, + Uz) in Eq. (6V) by its
average value 2U. Then we get

he(D) = —U[tc„~+ Kp],
where

However, the self-consistency condition implies

dU=24a . (75)

Eliminating 4U from the last two equations gives

n e = (1+ 2 K) [ hE(D) + ne(P), ]

This gives the energy difference caused by N4
coupling between two self consols-tent calculations.

Therefore the approximations (V1) and (V3),
divided by 1+2m, are compared with our accurate
numerical results. However, we expect that eval-
uating Eqs. (63} and (64) by using the approxima-
tion (65}, with g„-/so, will be of comparable ac-
curacy. This latter procedure is much more con-
venient when coupled-channel calculations for both
scattering and nuclear matter are not readily
available.

To test the approximate formulas, we compare
them with our numerical results at k F = 1.36 fm '
for N4 coupling added to the Reid potential. We
use (n-M)c'=300 MeV, U= —68 MeV, and we
obtain values of 1+2m from Table VII.

We consider first the coupling 'S,(NN) 'D, (Nn).
For the RSC+ n(S) calculation, we have a~~ = 0.047
from Table VII. In evaluating Kp the average
over initial states in the Fermi sea was approxi-
mated by using a single initial state with relative
momentum (3/10)' 'kr =0.745 fm '. The result
is Kp = 0.0049, about 10 times smaller than v».
The dispersion effect is the difference between
the calculations labeled RSC+ CORE(S) and RSC
+ n(S, Q~~ =1). The average total ~ for these is
0.185. Dividing formula (71) by 1+2m then gives
nc(D) = 2.60 MeV, which agrees well with the
value 2.71 MeV obtained from the detailed cal-
culations of Table V. The Pauli effect is the dif-
ference between the RSC+ n(S) and the RSC
+ h(S, Q„~ =1) results. Taking v=0.215, we
divide Eq. (73) by 1+2a to get nc(P) =0.51 MeV,
in good agreement with the value 0.59 MeV ob-
tained from Table V. Thus the approximate for-
mulas work well for S-wave coupling.

Before testing the approximate formulas for P-
wave coupling, we discuss the large difference
seen in Fig. 3 between our value of ne(P) for S-
wave coupling and that of Green and Niskanen. "
The values of nc(P) used by Green and Niskanen
are taken from Green and Schucan. " Their cal-
culations are based on the methods described in
this section. However, Green and Schucan as-
sumed that I~ could be averaged over initial two-
body states in the Fermi sea by calculating a sin-
gle value with initial relative momentum ko= 0.
When V, is neglected, as was shown above to be
reasonable, the matrix element appearing in Eq.
(VO) for I~ is
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(k, Nr )G~NN)

=4K rj~(k, r) V, (r)u~(k„r)dr, (VV)

12

where u~(k„r} is the NN wave function. For the
coupling 'S,(NN) = 'D, (Nn), we have L' = 2 and L
=0. Since only small k are relevant for Ip, the
factor j,(kr} in Eq. (VV) will rise rapidly as r in-
creases. Thus large values of r, where u, (k„r)
is approximately equal to rj,(ker), will contribute
appreciably. When k, =0, we have u, =r in this
region, but for k, - &kF, say, we have u, =ko'sink, r,
which is much smaller than r for r &1.5 fm. Thus
the value of Ip will be much larger for k, = 0 than
for the average value of ko that we have used.
Using k0=0, we have repeated our calculation of
Kp, obtaining the value 0.0120, which is 2.5 times
larger than the value obtained with ko= 0.745 fm '.
This accounts for a factor 2.5 between our values
of he(P) and those quoted by Green and Niskanen.
An additional factor of 1.5 comes from their use
of (fe2/4w) =0.35 for the KNn coupling constant,
while Haapakoski, ' whose potential we use, chose
the value 0.23. Together, these factors account
satisfactorily for the large difference in Pauli ef-
fects shown in Fig. 3.

Turning to the 'P, case, we have K» =0.0052
from Table VII. An accurate average of Ip over
the Fermi sea gives the result Kp =0.0062. Equa-
tions (71}and (73), renormalized by the appropri-
ate values of 1+2K, then give values of 0.60 and
0.72 MeV for 4&(D) and ne(P), respectively.
These are reasonably close to the values of 0.78
and 0.70 that can be read from Table V for k F
= 1.36 fm '. Thus the approximate formulas are
also sufficiently reliable for P-wave coupling.

B. Qualitative interpretation

Having verified that the approximate formulas
work well, we use them to gain insight into the
numerical results, Consider first the relative
size of the dispersion and Pauli effects, which
was found in Sec. V to be so different for S-wave
and P wave coupling. -This is seen from Eqs. (69)
and (70) to depend on the behavior of (k,Nn. ~G~ke, NN)
as a function of k. If we neglect V, as before, this
matrix element is given by Eq. (VV). For the cou-
pling 'S,(NN) = 'D, (N6), the Nn. state has L' = 2,
and, for values of r within the range of V, (r), the
factor j,(kr) in Eq. (VV) becomes large only for
large k. However, according to Eqs. (69) and

(VO), only small values of k can contribute to the
integral Ip, while large values contribute to I„~.
It is therefore plausible that Ip is much smaller
than I» and hence he(P) «ne(D). The impor-
tance of the value of L' for the behavior of
(k, L', Nn.

~
G

~
k„L,NN ) has been emphasized by

-2
o

I I

kF 2.
I

4
k(fm)

FIG. 4. The dimensionless quantity
k(k, L', Nn

~
G ~ko, L =1,NN) (defined by Eq. (37)}ve k.

The curves labeled P and F' correspond to I-' =1 and 3,
respectively. Multiplying by Qz~(k, P) results in the
dashed curves. For k &0.9 fm ~, the dashed curves
have the value zero, while for k &1.8 fm ~, they coin-
cide with the corresponding solid lines. The values of
other parameters used are k+=1.36 fm, ko =1.02 fm
P=1.09 fm ' y =2.02 fm ' y'=10.39 fm ' The in-
teraction is that for the coupling P&(Ã+) ~Pg QQ with
y=1 (col»~~ 2 of Table IV).

Bodmer and Rote 's
The same ideas can be applied to P-wave cou-

pling, for which I'=1 or 3. For I.'=3, we ex-
pect the Pauli effect to be negligible compared
to the dispersion effect. But for L'=1, the ratio
of Pauli to dispersion effects should be larger
than the value 1:5 obtained for the coupling
'Se(NN) 'D, (Nh). Indeed, the calculations pre-
sented in Sec. V showed that the two effects
are comparable for the coupling sP, (NN) = 'P, (Nn).
These ideas are illustrated in Fig. 4, where
k(k, L', Nb~ G~k„L= 1,NN) is plotted against k
for L' = 1 and L' = 3. When this quantity is multi-
plied by Q„~(k, P), the dashed lines are obtained
(to the left of the dashed lines we have Q„~ = 0,
and to the right, QK~

——1). This figure, taken
together with Eqs. (69) and (VO), shows clearly
that Ip«I~~ for L' =3. The approximate equality
of Ip and I» for L'=1 is also understandable from
the figure.

Thus the value of L' in the Nh channel accounts
for the relative size of Kp and K» in different
channels. The dependence of the energy shifts
on KKg and Kp is given by Eqs. (Vl) and (73). For
S-wave coupllngs Kp is negligible, while for P-
wave coupling it is comparable to K». The Kp
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contribution explains the different behavior of
S- and P-wave couplings we observed in Sec. V.

The density dependence of our results can also
be understood from the approximate formulas.
Consider first the dispersion effect. As explained
in Sec. VIA, we may put g„=/so in Eq. (65) and
e —e, = —2U in Eq. (63). Then Eq. (63) becomes

1
4G(D)= —2U 4 V V 4 )eQe

(78)

For qualitative considerations, it is reasonable to
make a closure approximation in which eQ and e
are replaced by appropriate average values e,
and e, respectively. We expect these average
values to be 500-700 MeV. They are both at
least as large as the bX mass difference of 300
MeV. This leads to

GG(D}=— —42 f dr[2 {2 r}]'[„V,(r)]',
e,e

(79)

A~(D) ~k,"F, , (80)

where

Fx= NL ko r ' Vr 'dr. (81)

where u~(k„r) is r times the Bethe-Goldstone
wave function for relative momentum kQ.

The energy shift he(D) is obtained by averaging
Eq. (V9) for EG(D) over relative moments kD in
the Fermi sea and multiplying by —,'vp(1+ 2m) '.
We now consider the density dependence of hc(D).
The density p is proportional to kz', and, since
~«1, we may neglect the density dependence of
(1+2m) '. Considering next the factor (e~e) ' in

Eq. (79), we note that the density dependence of
e = eD —2V comes mainly from the density depen-
dence of U. But, since e is 4 to 6 times as large
as —2U, the density dependence of e is much
weaker than that of —2U. And e, has a still weaker
density dependence than e. Therefore, in Eq. (V9),
the density dependence of the coefficient to the left
of the integral comes mostly from the numerator
—2U, and the weaker density dependence of the
denominator e~e can be neglected. Near the em-
pirical density, our calculations show that 0' varies
roughly as k F"for the RSC potential.

The remaining density dependence of he(D)
comes from the integral in Eq. (V9), averaged
over relative momenta k0 in the Fermi sea. This
averaging may be approximated by using a single
average relative momentum $~, which we assume
to vary linearly with kF. Putting these results
together, we find the density dependence of da'(D)
to be roughly

It remains to estimate the density dependence of
F,. This can be done by using our knowledge of
the qualitative behavior of uL. For a potential,
such as RSC, with a strong short-range repulsion,
uL is small inside about 0.5 fm and is not very
different from the unperturbed wave function

rj~(k,r) over most of the region outside this.
Hence a reasonable estimate of E, is

(82)E~ tjL Qr
~

Vm r ~dr,
fQ

where r0=0.5 fm.
We have not found any simple analytical way to

estimate the dependence of expression (82) on 5,.
So we have evaluated Eq. (82) numerically, using
the form Y(0.7r) from Eq. (18) for V,(r). This
form agrees with the static limit of meson theory
at large r and has an r ' singularity at small r.
We have evaluated Eq. (82) for I, =0, 1, 2, 3, and
for values of %~ in the range 0.6-1.2 fm '. This
range of 5, should be reasonable when k F is near
the empirical value of 1.36 fm'. The calculated
values of F, are found to vary with 5, according
to the formula

cf- k leSL Oes
I 0 3 (83)

where the exponent of $, is uncertain by about 0.5.
This is not serious because, with our rough ap-
proximations, we only hope to get the exponent
of k~ correct to within one or two units.

Since 5, is linear in kp, the power law of Eq.
(83) also gives the dependence of F, on kr. Our
estimate for the density dependence of d e(D) is
thus found from Eqs. (80) and (83) to be

d e(D) {}Gk 4 ID 1 Sl (84)

The density dependence of d, e(D) depends on the
orbital angular momentum L of the NN channel
but not on its value I ' in the Nh, channel, and the
density dependence is stronger for larger I. For
S-wave and P-wave couplings, Eq. (84) predicts
44.(D) tO Vary aS kF" and kr", reepeCtiVely.
This should be compared to the density depen-
dence given by Eqs. (43) and (49). Figure 5 shows
the comparison for the interesting range of k~.
For this range the agreement is satisfactory.

We next estimate the density dependence of the
Pauli term d, e(P), which is proportional to kr'Iz, ,
where I~ is defined by Eq. (VO). We must average
I~ over the relative momentum k, of the initial
EN state in the Fermi sea. As before, we ap-
proximate this averaging by using a single average
value $„assuming it to vary linearly with k F. Be-
cause of the factor 1-Q„~(k) in Eq. (VO), the rela-
tive momentuxn k of the Nh, state is also restricted
to low values, mainly those in the Fermi sea. So
we make the rough approximation
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«ko«1.2 fm ' by

E ~ P (z/2)(I. + r,)-i (89)
The uncertainty in the exponent is about 0.5. Com-
bining Eqs. (&V) and (89}gives

fÃ{D), Pj

flE'{P), Pj

fi E'( P), So-

0.5-

I I

1.3 1.4
K {fm)

FIG. 5. Comparison of density dependence obtained
from the approxfmate formulas (84) and (90) with the
numerical results of Sec. V. Both scales are logarith-
mic. The solid lines are the empirical Qts of Eqs.
(43)-(44) and (49)-(50). The dashed lines are the pre-
dictions of the approximate formulas (84) and (90). Each
dashed line is normalized to coincide with the corres-
ponding solid line at hz=1.36 fm ~.

& ko N&IGmlko»N}'
(4 —Mjc'e(ko) (2v)'

(85)

Here, in e(k) and in the matrix element of G„we
have replaced k by an average value, which we
take to be ko Just as in the dispersion term, the
density dependence of e(k, ) can be neglected. The
integral in Eq. (85) is

d'k 1 —Q„~ k = —nkF (86)

Using these results, along with Eq. (VV) for
( k„Nn

~
G,

~
ko, NN ), we obtain for the density

dependence of he(P) the estimate

n, e(P} k,eF,',
where

(87)

F, = rj~, (kor)V, (r)u~(ko, r)dr . (88)

Following our earlier treatment of E„ere estimate
E, numerically by putting uz(k„r) = rj z(kor) and

integrating over the region r&0.5 fm. Using again
Eq. (18) for the form of V, (r), we find that the
numerical results are roughly fitted, for 0.6 fm '

n, t(P}~kryo
s c (90)

For the couplings 'Sa(NN) 'D, (Nn) and 'P, (NN)
='P, (Nh), Eq. (90) predicts n, c(P) to vary as
kF' in both cases. The detailed calculations give
density dependences of k F

' and kF'", respec-
tively [see Eqs. (44) and (50)]. Figure 5 shows
how well Eq. (90) fits the computed results over
a limited range of kF. Considering the roughness
of our approximations, the agreement is satis-
factory.

Equations (84) and (90) give us a good idea of
how na(D) and ne(P) vary with kr. We see that
the density dependence of ne(D) depends only on
L, while that of hc(P) depends on both L and L'.
The density dependence becomes stronger for
larger values of L and L'.

The density dependence is very important be-
cause it determines whether Nd coupling will
allow us to escape from the saturation band,
which is the main question that we want to answer.
To provide a general answer to this question, we
must determine the sensitivity of the estimates
(84) and (90) to our assumptions about the two-
body interaction. The assumptions concerning
the potentials that we have made are (1) the poten-
tial V, has a strong short-range repulsion, and
(2} the form of V, (r) is that of Eq. (18). Let us
consider whether different assumptions would
lead to a different density dependence.

We consider first the case when our assump-
tion of a strong short-range repulsion in the NN
= NN potential V, is not valid. Suppose that there
is no short-range repulsion at all. Then we may
approximate u~(ko, r) by rj~(kor) for all r, and
F, and E, are estimated by integrating over all
r in Eqs. (82) and (88), not only over the region
r&0.5 fm. We have done these integrals numer-
ically, and we find that the estimates of Eqs. (&3)
and (89) for the behavior of P, and F, are practi-
cally unchanged. This is easy to understand. For
L = 0 in E„and for L = L'=0 in E2, these quanti-
ties are seen, from Eqs. (83) and (89), to vary
rather slowly with k, when we integrate over r
& 0.5 fm. But the contribution to either integral
from r & 0.5 fm depends on k, through the factor
j,'( rk)o, which, for small r, also varies slowly
with ko. Thus the new contribution from r & 0.5
fm varies with k, in about the same way as the
contribution from r&0.5 fm, and adding the new
contribution does not change the density depen-
dence. If L~ 1 in E„or if L+ L'~2 in E„ the
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integrand of either integral is small for small
r, and the contribution from r «0.5 fm is unimpor-
tant. Hence this contribution does not change the
density dependence of Ey or E2 We conclude that
our estimates of density dependence are insensitive
to the presence or absence of a strong short-range
repulsion.

It is interesting to note that, although a short-
range repulsion has little effect on the density de-
pendence, it has a large effect on the size of
h&(D} for L=0. Evaluating Eq. (82) for r, =O gives
a result about 5 times as large as for r0=0.5 fm.
A similar sensitivity to short-range corre1ation
has been found in calculations of the amount of
44 component in the deuteron. " For L «1 in E»
or for L+ L'~2 in F„ the region r«0.5 fm is
relatively unimportant, and we expect the size of
the energy shift to be insensitive to short-range
correlations.

We next consider the sensitivity of the density
dependence to the shape of V,(r), which we have
taken to be that of Eq. (18). This function ac-
curately represents the static limit of meson
theory for r &1 fm. So the only freedom in chang-
ing it is at small r, where meson theory is much
less reliable. But for small r, the same argu-
ments apply here as in the above discussion of
short-range correlations. If L~1 in F„or if L
+ L' « 2 in E2, the region of small r contributes
little, and the precise shape of V, in this region
is unimportant. If L=O in F„or if L=L'=0 in
F„ the region of small r may contribute appre-
ciably to the integrals, but, for the reasons given
earlier, this contribution will not change the den-
sity dependence. We conclude that the density de-
pendence is insensitive to the behavior of V, (x) at
small r.

We have seen at the end of Sec. V that, if we are
to escape from the saturation band, then the en-
ergy shift must vary as kF" or faster. According
to Eqs. (84) and (90), this would require L =3 in
the dispersion effect or L=L'=3 in the Pauli ef-
fect. However, for such large values of L and L',
all energy shifts are too small to be of any interest.
The reason is simply that, for large L, the func-
tions j~(k,r) that occur in Eqs. (82) and (88) are
very small for all r within the range of V, .

The main conclusion of this subsection is that
the energy shift due to Nb coupling does not have
a strong enough density dependence to move the
system significantly out of the saturation band.
This conclusion is independent of the presence or
absence of a strong short-range repulsion in V„
and it is insensitive to the shape of V,(r) at small
r. Thus our main conclusion is model independent.
The size of the energy shift due to NA coupling,
however, is clearly model dependent.

C. Coupling to other partial waves

We have given in Sec. V detailed numerical re-
sults for the couplings 'S,(NN} ='D, (N4) and
'P, (NN) = 'P, (Nh). In this subsection, we use
the approximate formulas (71) and (73), divided by
(1+2z), to estimate the loss of binding caused by
other N4 couplings. To apply the formulas, we
must estimate K„z, and Kp for each coupling. Since
we have discussed the density dependence in the
previous subsection, we work here only at the em-
piric31 Fermi momentum k~=1.36 fm '. We also
use the values U = —68 MeV, (4 -M)c' = 300 MeV,
and K=0.15, which are appropriate for the RSC
potential at kF=1.36 fm '.

We consider first the remaining *P(NN) =Na
couplings. For N~ states with L' =1, we estimate
K» and Kp by using the results calculated for the
coupling 'P, (NN} = 'P, (Nh), along with the assump-
tion that K» and Kp are both proportional to K'
(see Table II for numerical values} and to the
statistical weight v= -', (2 J+ 1)(2T+1) of the NN
channel. For Eb states with L'=3, we take Kp
=0, in accord with the discussion in the preceding
subsection. To estimate K„~ for L'=3, we have
calculated it for the coupling 'P, (NN) = 'F, (Nd, ) by
using Eq. (19) with y=1 for V„and the Retd ~P,
potential for Vy and V3 This gives the value of
K» for L'=3, %=2.683, and v= —,'. The propor-
tionality of K» to K'v then determines its value
for L'=3 and for other values of K and v. It
would have been better to adjust V, and V, to fit
the 'P, phases, rather than simply using the Reid
P, potential, but the value of K„z, is not sensitive

to such differences in the potential. We have
tested this statement for the coupling 'P, (NN)
='P, (N4). The potential that fits the 'P, phases
contains V, from Eq. (19) (with y = 1) and V, and
V3 from column 2 of Table IV. The approximate
calculation has the same V, but has the Reid 'P,
potential for V, and V,. The values obtained for
K„~ are 0.0052 and 0.0058, respectively, which
differ by only 10%.

Thus we can estimate K» and Kp for each of the
SP(NN) =NLL couplings listed in Table II. We then
obtain the energy shifts from Eqs. (71) and (73),
divided by (1+2'). The results are shown in
Table VIII. Adding the shift of 1.V MeV from
Table VIII to the shift of 1.48 MeV for the cou-
pling 'P, (NN) 'P, (N4) that can be read from
Table V, we find, for kF=1.36 fm"', a total shift
of 3.2 MeV due to P-wave coupling. At the same
value of k F, the shift due to S-wave coupling is
3.3 MeV [the difference in Table V between the
RSC+ h(S) and the RSC+ CORE(S) energies]. Thus
the combined effect of all P-wave couplings is
comparable to that of the S-wave coupling.
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TABLE VIII. Estimates of the loss in binding due to the P+rV) ND couplinl, s tother than

P((NN) SPg(wb)] shown in Table II, at k+=1.36 fm . The formulas used for these estimates
are discussed in the text.

NN

channel
N4

channel KNQ Kg

Ae (D) Ae (P) De (tot)
(MeV) (MeV) (MeV)

3P
0

3P

3P

Total

3p

3p

5~

'P2

'P2

'I"2

Sp

1.333

-0.667

2.191

0.133

-1.200

-0.980

2.400

3
T
9
T

is
8

0.0017

0.0020

0.0120

0.0225

0.0021

0.0029

0.00043 0.00051

0.00032 0.00038

0.0060 0

0.00002 0.00003

0.05

0.04

0.31

0.00

0.20

0.10

0.63

1.33

0.06

0.04

0.00

0.24

0,34

0.11

0,08

0.31

0.00

0.44

0.10

0.63

1.67

From Tables VII and VIII, we find the total P-
wave contribution to K~~ to be about 0.028. Addiag
this to the S-wave contribution of 0.047 gives K„~
= 0.075. Thus at normal density each particle
spends about 3.7% of its time as a h. This figure
is expected to vary quadratically with the assumed
strength of the Nh coupling, i.e., it is expected to
be proportional to f~ '/4v.

What about coupling of the 'D, (NN) state to N4
states T Let us first consider K„~ and note that
with conventional nuclear forces, the 'D, contribu-
tion to K is more than 100 times smaller than the
'S, contribution. '7 Since the 'D, (NN) =D(N&) cal-
culation involves [through Eq. (69)] matrix ele-
ments of the same type as in the conventional 'D,
calculation, we expect that the coupling 'D, (NN)

=D(Nn) will contribute negligibly to ~„~. The
coupling 'D, (NN) 'S, (NE} may be compared with
the ordinary tensor coupling 'D, (NN) ='S,(NN),
which is also known ' to contribute negligibly to
K, Thus we conclude that K~~ is negligible, and

we turn to consideration to Kp We have seen that
only Nd states with the smallest allowed value of
L' are important for Kp, and we therefore consider
only the coupling 'D, (NN) ='S,(NK). The relevant
wound integral Ir is given by Eg. (70), and the
main contribution to the matrix element in the
integrand is given by Eq. (77). In Eg. (VV), when

either L =2 or L' = 2, the dominant contribution
comes from large values of r, where u~(k„r)
=rj~(k,r). Hence, for a given potential V, (r),
the matrix element (V7) is roughly the same for
the coupling 'D, (NN) ='S, (Nb, ) as for the coupling
'So(NN) ='D (NEo). Thus we expect a~ to be com-
parable for these two couplings, after due account
is taken of the proportionality of Kp to %' and to
v= —,'(2J+1)(2T+ I). From Table II, we find that
SR'v is the same for these two couplings. We
then obtain the estimate, for the coupling 'D, (NN)

SS2(Nd) at kr=1.36 fm

n e(D) + 4c(P) = [—U+ —,'(d, —M)c'] zz (1+ 2z) '

=0.8 MeV . (91)

Here we used the value Kp= 0.0049 that was cal-
culated for the coupling 'S,(NN) ='D, (NS), along
with the values U= —68 MeV, (k -M)c' =300 MeV,
and K=0.15. Thus we see that the effect of D-
wave coupling to Nh channels is small but not
completely negligible. We expect the effects of
all other couplings to be negligible.

VII. SUMMARY

Our main result is that, although N4 coupling
causes a large reduction in binding energy, the
density dependence of the energy shift does not
move the system significantly off the saturation
band. Our qualitative analysis shows that this
conclusion is model independent. It does not
depend on the short-range behavior of either V,
or V„even though the size of the energy shift
is model dependent.

It is difficult to escape the saturation band in
the desired direction by means of any effect that
reduces the binding energy. This is because, as
was shown in Sec. V, a density dependence of k F'
or stronger is required. Therefore, the saturation
properties of nuclear matter are more likely to be
improved by an effect that increases the binding
than by one that decreases the binding.

When N4 coupling is added to the Reid potential
at normal density, the reductions in binding energy
from nucleon-nucleon S, P, and D waves are 3.3,
3.2, and 0.8 MeV, respectively. For a given shape
of the coupling potential V„we expect all of these
figures to vary quadratically with the strength of
V„ i.e., linearly with f*'/4v, where f ~ is the
vNd. coupling constant. We have used f*'/4w
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=0.23, as obtained from a quark model by Haapa-
koski." But others" "have used the value f*'/
4m=0. 35 that is fitted to the observed width of the
L. We have seen that the S-wave energy shift is
sensitive to the short-range behavior of the nu-
cleon-nucleon potential V, and of the coupling po-
tential V,. If V, is large at short distances, then
reducing the amount of short-range repulsion in
V, will increase the loss of binding in the So(NN)
channel. The loss of binding in the 'P(NN) and
'D, (NN) channels is much less sensitive to short-
range correlations.

The probability P~ of a particle in nuclear mat-
ter being a 4 is ~tcN~, where ~„~ is the contribu-
tion from the Nh channel to the defect parameter
tc. We have found P~ to be 3.7%, with 2.3% coming
from the coupling 'So(NN) 'Do(NE) and 1.4% from
couplings of the type 'P(NN) =NB. For the coupling
'S, (NN) ='D, (Nn), the energy shift is roughly pro-
portional to z„~, and P~ is therefore roughly pro-
portional to the energy shift. So, for this coupling,
P~ will show the same sensitivity to the short-
range behavior of V, and V, as the energy shift.
The contribution to P~ from the couplings'P(NN)
=N4 is much less sensitive to short-range corre-
lations.

With the present model, including X4 coupling
in S, P, and D waves at normal density reduces
the binding energy by roughly 7 MeV. For the
Reid potential this is very undesirable because
the binding energy obtained from two-body cor-
relations will then be only about 5 MeV, and it
seems unlikely that three- and four-hole-line

terms could raise this to the empirical value
of 16 MeV. The Nh coupling also causes an in-
crease in the defect parameter a. For AF=1.36
fm', the S-wave coupling increases

gaby

0.05 (see
Table VII), and the combined effect of P-wave cou-
plings is to increase z by 0.03 (see Tables VII and

VIII). Since the ordinary Reid potential has a
=0.14, the N4 coupling will increase this to 0.22
and appreciably worsen the convergence of the
hole-line expansion.

Both of these undesirable effects could be
ameliorated by adding Nh coupling to a potential
that saturates at too high a binding energy and
density. The UG3 potential is just one example
of this kind. Adding Nh coupling to such a poten-
tial could produce in lowest-order Brueckner the-
ory a value of ~ and a saturation point similar to
those of the ordinary Reid potential without E4
coupling. Then there would be a reasonable pos-
sibility that three- and four-hole-line corrections
would move the saturation point into the empirical
region.
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