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A treatment of elastic stresses in nuclear rotation with the nucleus considered as an incompressible elastic

body with a stationary spherical core surrounded by a circulating mass is presented. Centrifugal stresses acting
in directions perpendicular to the axis of rotation introduce variations in the moment of inertia. The variable

moment of inertia model, so successful in predicting the rotational spectrum of even-even nuclei, is explained.

NUCLEAR STRUCTURE Explanation of rotational energy levels for even-even nuclei
using elastic stress analysis.

I. INTRODUCTION

Since the pioneering work of Bohr and Mottel-
son, ' several advancements have been made in

describing various empirical observations regard-
ing the rotational levels in nuclei. Phenomenolog-
ical and microscopic theories have been put for-
ward by a number of authors. ' '

At the same time that Mariscotti, Qoldhaber,
and Buck" were pointing out the inadequacy of the
liquid drop model in predicting rotational energy
levels, some evidences were found for a solidlike
behavior of the nucleus. For instance, for a
Fermi system 'He, Corruccini et al."predict
transverse waves. As we know, this can exist on-
ly in mediums with some rigidity. Later, using
the RPA (random phase approximation), Bertsch"
found that the macroscopic equations for the vibra-
tion of nuclei give rise to vibrational rhodes simi-
lar to those of an elastic solid. Also, as Bertsch
pointed out, the fluid model predicts mass depen-
dence of vibration frequency to be of the order of
A ' ' where A is the mass number. However,
empirically, an A ' ' dependency was found.

Since the work of Mariscotti, Goldhaber, and
Buck which suggested the variable model of inertia
(VMI) model, we have been studying'9 the possibil-
ity of interpreting the levels as quantized states of
an elastic solid body. This paper contains the
summary of the preliminary efforts. The VMI
model is explained in a simple manner by consid-
ering small displacements of the elastic nuclear
matter. It is shown that this macroscopic treat-
ment of the nucleus as an elastic solid predicts

with reasonable accuracy the energy levels be-
longing to the ground-state rotational band of well-
deformed even-even nuclei and also accounts for
the ground- state quadrupole moments. Although
the predictions of the model are quite satisfactory,
it should be emphasized that the model is a clas-
sical one for which a microscopic justification is
still lacking.

Recently, great efforts have been exerted by
many authors in searching for a microscopic ex-
planation of the rotational bands. These models
have dealt with microscopic methods such as the
RPA, Hartree-Fock, and Hartree-Bogoliubov ap-
proximations where elementary interactions are
used. There the pairing effect plays an important
role. Eventually any macroscopic model such as
the one presented here should be justified by a
microscopic approach similar to those mentioned
and where the Coulomb and pairing interactions
should be taken into account.

The pairing effect, however, is somehow implic-
it in the model by the hypothesis that the rotational
axis is perpendicular to the symmetry axis. In
fact, if we assume a decoupling between the col-
lective and intrinsic motion, by consideration of
symmetry the projection K of the total angular
momentum on the symmetry axis is equal to 0,
the projection of the intrinsic angular moment on
the same axis. In the lowest state the strong pair-
ing force binds the particles in pairs with the
same angular momentum but opposite magnetic
quantum number. As a result Q=O, therefore K
=0 and the rotation is performed around an axis
perpendicular to the symmetry axis.
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In the present work it is assumed that there is
an inner spherical core which does not contribute
to the rotation. This inner core may be visual-
ized as a group of closed shells which does not
contribute to the collective rotation. Its existence,
however, is only justified in the model by the need
for dealing with small moments of inertia and
quadrupole moments that agree with the experi-
mental data.

Also, the model allows changes in shape only
under the dynamic action of the centrifugal force.
Thus, the initial shape implies the analysis of a
Hamiltonian which should contain somehow the ele-
mentary interaction between nucleons.

Finally, regarding surface energy, it should be
pointed out that the boundary condition, namely,
that the normal tension at the surface is zero,
does not take into account the surface energy.
This concept implies considerations of heterogene-
ity at the surface which are completely absent in
our model. Within the confine of such a simple
model, we wish to explore the elastic response of
a nucleus in rotational motion so as to gain some
preliminary insight in the elasticity of nuclear
matter.

1
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where 0„, &„and o, are the normal stresses and

Txy, ry„and rx, represent the shears acting on an
element of the body. The Poisson coefficient of the
body is represented by p. In our treatment we
take p =0.5, so that the nucleus is considered to
be incompressible. Different values of p. will al-
low for deformations which do not preserve vol-
ume.

To determine the potential U the following differ-
ential equations which express the equilibrium of
an element of matter and the compatibility equa-
tions are solved. " Equilibrium equations:

Bg BT Brx xy xg F 0
Bx By Bz

II. THE MODEL

Each rotating nucleus is assumed to have an el-
lipsoidal shape with a spherical core which does
not contribute to the rotational energy. However,
the outer mass is under rotation and subjected to
stresses due to the effect of the centrifugal force.
In agreement with the decoupling assumption be-
tween intrinsic and collective motion the ground-
state (K = 0) rotational band is built up by rotating
the nucleus around an axis perpendicular to the
symmetry axis. The resulting forces are not
necessarily harmonic. ' A realistic density dis-
tribution for nuclear matter is employed in the
calculations, so that for each nucleus the average
density of the rotating mass in relation to that of
the nonrotating core is dependent upon the average
radius of the nucleus and the radius of the core.
The volume of the core and that of the rotating
shell are kept unvaried when angular momentum
is changed. It is assumed that the charge distribu-
tion is proportional to the distribution of mass.

We write the total energy in the standard form
as

Compatibility equations:

1 8 g p. BFx BF BF BF„V'ox + + + -2
1+p BX2 1+p, Bx By Bz Bx

(4)
j. 826) BF, BF,

V Tyg + +1+ p. ByBz By Bz

where

In these equations Fx, F„, and F, are the compo-
nents of the centrifugal force in the x, y, and z
directions. For the ellipsoid rotating around the
z axis, we have F, =p(d x, Fy =p& y, and F, =O.

By symmetry considerations we have Txy = T,„,
r„=7, and r„=T„. The boundary condition of
the problem requires that the normal components
of the tension at the body surface be zero.

Solving the differential equations it is found that"

X Z
o =& pco2a2 A 1 —-B ——C—

X 1 a2 1 c2 1y2

g= 2ICO +U.

The potential energy of deformation U is a func-
tion of the angular momentum J, the elasticity
constant $, the ground-state dimensions, and the
density distribution of the nucleus. According to
the theory of elasticity applied to solids" this po-
tential is given by

cr„=2 pro 6 A, 1-&, -B2—
2

—C,—,

2 2
z' y' x2

~ =2pco c A 1-—-B ——C—3a2 I&

where

(6)
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A, =1+M+ N, A, =1+ L+ N, A3 L+My

B,=1+ 3M+ N, B, =1+ L+ 3N, B3 =3L+M, (7)

Cc =1+M + 3N, C2 =1+ 3L+ N, C3 L+ 3M,

the Jacobian is equal to one.
As usual, we quantize the angular velocity by

&o =[J(J+1)l ISIS (13)

and

T~~ = pcs N xp ~

7'yg =Pro I gz y

T,„=pu2MZX,

(8)

where I~ is the moment of inertia for the level of
angular momentum J.

The total energy is then written as

J (J+1), P'[J (J +1)]'@~f( b ) ( )2I Vg
a, , c, p, . 14

where p and ro represent the mass density and the
angular speed of the rotation, respectively. The
terms L, M, and N are functions of p,, (, and the
ground-state nuclear dimensions of the ellipsoid:
a, b, and c. They are shown explicitly in Appen-
dix A.

Under the action of the stresses and shears,
each point (z, y, z) inside the body is displaced to
(X, Y, Z) where

(dX=z+x ((20+A~x +(x2y +&~z ), (9)

and so on. The coefficients a; are functions of p, ,
a, b, and c (see Appendix A). The moment of in-
ertia I and the quadrupole moment for any rota-
tional state may be calculated using the new co-

ordinatess.

After substituting Eqs. (6) and (8) in Eq. (2) and
performing some straightforward integration, the
potential energy term may be written in the form

p2 ~4
fI= f(a, b, c, q). (10)

The function f(a, b, c, p) depends only on the geom-
etry through the semiaxes a, &, and c and on the
Poisson coefficient p, , and it is given explicitly in
Appendix A. The moment of inertia I is given bypf=(X + Y')(J) dxdydz,

j. + 2 3 + 4 + 5a v' a v a uF a ~' a ~
2$ 4t' 8$' 16$ 32$'

The coefficients a& are deduced after integrating
Eq. (11). They are functions of a, b, c, and g
(they are not given explicitly in this paper because
of their length).

When the Poisson coefficient p is &, I becomes
a polynomial of second degree. In fact, for p, =2
there is conservation of volume and consequently

where (J}stands for the Jacobian of the transfor-
mation from (z, y, z) to (X, Y, Z). Using Eq. (9),
the moment of inertia I is found to be a polynomial
of fifth degree in a', the square of the rotational
speed;

The fact that the inner core does not contribute
to the energy was taken into account in the calcu-
lations by subtracting the deformation energy of
the core from that of the whole ellipsoid. This ap-
proximation is hard to justify since the actual
boundary conditions between the inner core and the
shell are unknown. However, the general conclu-
sions of this work as well as the form of the gen-
eral equations are not critically dependent on this
approximation.

In our analysis the nuclear density function is
assumed to be

p= pp
1+ exp[(r- B}/a,]

' (15)

Two experimental parameters, Q, the ground-
state quadrupole moment and E, the energy of the
first excited state, are used to evaluate the
ground-state deformation parameter and the elas-
ticity constant (. Solutions are sought for various
values of the mean radius of the core and the one
yielding the minimum percentage deviation from
the experimental value E4 is accepted. For the
calculation of the quadrupole moment we divide the
nucleus into thin concentric shells of charge. The
inner shell is just outside the core and therefore
has a near-spherical shape. The outer shell cor-
responds to the surface of the nucleus and has an
eccentricity cp. The intermediate shells have ec-
centricities between zero and ep. This variable
eccentricity treatment allowed us to account for
the ground-state quadrupole moment as well as for
the energy levels. The model has been able to ob-
tain fits for the experimental rotational levels of
some nuclei in the Z= 50-80 region (see Table 1).
In agreement with Baranger and Kumar, ~ these
nuclei were assumed to be prolate in the ground-
state. The variable eccentricity concept was used
previously by Brueckner and his co-workers'4 in
the energy-density theory of nuclei and still earli-
er by Carlson25 who studied the mass-charge dis-
tribution of homotetic ellipsoidal shells. In their
work, using this model, Brueckner et al. found
reasonable results for the mass-density function
of some nuclei.
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TABLE I. Experimental energy E(exp) in keV. Predicted energy E in keV and the moment
of inertia I in keV 1 for the different angular momenta &.

10 12 16

1&4Gd

E(exp)
E
I

123.14

0.02526

371.18
374.63
0.028 88

711.9 1144.7 1637.5 2184.1 2777.1 3404.7
711.2 1144.7 1639.3 2184.6 2771.8 3394.6
0.032 88 0.034 68 0.037 66 0.040 64 0.043 59 0.046 50

160Dy

E (exp)
E
I

86.79

0.034 78

283.8 581.2 967.2 1428.9 1951.7
284.1 581.3 966.2 1426.6 1952.1
0.035 86 0.037 38 0.039 19 0.041 19 0.043 29

162D

E(exp)

I

80.66 265.7
265 8

0.037 34 0.038 0 7

548.6 921.2 1374.9 1901.1
548.9 921.4 1374.3 1898.8
0.039 15 0.040 48 0.041 99 0.043 64

164D

E (exp)
E
I

176Hf

E(exp)
E
I

73.39

0.041 02

88.35

0.03412

242.2
242.0
0.041 80

290.15
290.25
0.034 97

501.3
500.0
0.042 93

596.85
596.90
0.036 18

839.3
839.9
0.044 34

997.85 1481.2 2034.4 5
997.85 1480.4 2035.96
0.037 65 0.039 30 0.041 07

2646.35
2655.14
0.042 90

178Hf

E (exp) 93.181 306.63 632.19
E 306.66 632.17
I 0.032 21 0.032 98 0.033 94

1058.6
1059.2
0.03513

180H f
E (exp) 93.308 308.55
E 308.67
I 0.032 21 0.032 60

640.82 1083.9
640.88 1082.8
0.033 17 0.033 90

232U

E (exp)

I
234U

E (exp)
E
I

47.6

0.063 33

43.5

0.069 22

156.6
156.4
0.064 87

143.5
143.5
0.070 49

321.0
321.9
0.06708

296.6 499.0
296.8 499.2
0.072 35 0.074 66

236U

E{exp)

I

45.28 148.7 312.0
149.7 310.3

0.066 44 0.06742 0.068 86

"8U
E (exp)
E
I

44.7

0.067 24

148.0 309.0 523.0
148.2 309.0 523.0
0.06789 0.06888 0.07016

787.0 1100.0
788.5 1101.4
0.071 68 0.073 40

III. RESULTS AND CONCLUSIONS

The quadrupole moment was found to increase
slowly with J; 1 or 2% between consecutive levels.
The moment of inertia I is found to have a signifi-
cantly greater role in the potential energy function.

For each nucleus to which the model is applied,

the number of nucleons taking part in the rotation-
al movement was estimated. It was found that this
number is approximately consistent with what is
expected from shell-model considerations. The 0
and Hf isotopes are particularly interesting since
the numbers of nucleons of the shell happens to be
equal to the number of nucleons outside closed
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a t r0
Isotope (fm) (keV/fm ) (fm) (fm) (keV )

154Gd

(a)
(b)

160D

162D

164D

176Hf

178Hf

1808f
232U

234U

236U

238U

5.558
5.457
5.285
5.238
5.144
5.640
5.632
5.624
6.027
6.022
6.031
6.013

3.86
7.18

14.47
21.04
18.58
18.87
21.53
36.02
7.40
9.54

11.55
16.80

5.86 7.76 31.1
5.86 7.76 35.6
5.89 7.96 48.5
5.90 8.03 52.5
5.94 8.04 58.9
6.14 8.06 44.0
6.40 7.51 46.0
6.55 7.25 48.0
6.65 9.06 68.0
6.53 9.49 70.0
6.71 9.05 72.0
6.76 9.00 74.0

TABLE II. Parameters corresponding to the predicted
energies shown in Table I. The mean core radius 8 in
fm, the elasticity constant $ in keV/fm, the ground-
state moment of inertia I0 in keV, and the number of
nucleons N which participate in the rotation. For 154Gd

there are two cases according to the discussion present-
ed in the text.

We may say that the theory of linear elasticity
of solids predicts well the quadrupole moment and
the rotational energy levels of thosewell-deformed
nuclei which suffer small displacements during the
centrifugal stretching. For these cases the model
gives a simple physical explanation of the VMI
model. In fact, when the displacements are small
and the theory of elasticity holds well, the coeffi-
cient of co' in the polynomial of second degree in
~' which expresses the moment of inertia is small.
Thus, for these cases, we may write the moment
of inertia as

, f(a, b, c, p).2p
(18)

I=I() + @co

This equation, plus the one which gives the poten-
tial energy [Eq. (10)], allows us to write

U =
2 B(I- IQ)

where

shells, 82-82 and 50-82, respectively. It was
found that the calculation is not very sensitive to
variations, of the order of 5 to 10% in the nucleon
number. Such freedom is not surprising consider-
ing the approximations involved such as in the den-
sity averaging and the exclusion of microscopic ef-
fects from the model. ' Gd is also an interesting
case. It was possible to fit its energy levels up to
J=8 with the core radius equal to 5.558 fm. To fit
levels from J=8 to J=16 it was necessary to re-
duce the core and so allow for four particles to
come out of the inner core and join the rotational
motion.

In Table II are given, for each nucleus, the pa-
rameters $ in keV jfm', the ground-state moment
of inertia I, in keV ', the number of nucleons that
participate in the rotation and, finally, the minor
and semimajor axes a and b of the prolate ellip-
soid.

Neither the VMI nor this model predicts smooth
varying values of ( as a function of A. This is
somehow expected because of the shell-model de-
pendency of these parameters. The value of $
corresponds to the potential energy per unit vol-
ume. It would be interesting to obtain it from a
microscopic theory. In this sense some calcula-
tions were carried out using the results on nuclear
matter obtained from the Thomas-Fermi theory
of nuclei by Brueckner, et al."and also by Bethe."
Unfortunately, the uncertainties on the tail of the
density distribution that this theory makes use of
did not allow for a reliable comparison between the
macroscopic and microscopic values of g.

and

[Z(J+1)]' ' =(u(IQ+ 2C'aP+ 3D'(a)~+ 4@'J+ ~ ~ ~ ).
(20)

Using Eq. (13), we write these previous equations
as

and

E=gI 4 +pC (d +4F vo + '

I' —Io —2C' (o'+ 3D'(g4 + ~ ~ ~

(21)

(22)

Thus, the theory of elasticity [Eqs. (10) and (12)],
predicts only two terms in the energy E and five
terms in the equation for the moment of inertia of
the Harris formulation.

This is precisely the potential energy used by the
VMI model. If the displacements are not small,
however, the linear theory of elasticity starts
failing and strains which are not necessarily pro-
portional to the stresses may have to be consid-
ered. And so one reaches the domain of the elas-
toviscous fluids. We point out that in the case that
some compressibility must be included, the ex-
pression for the moment of inertia is given by a
polynomial of fifth degree in ~' and the previous
approximations which lead to the VMI-model equa-
tions may not be correct.

Also, the Harris formulation based on the
cranking model of lnglis'Q includes Eqs. (10}and
(12) which result from the theory of elasticity.
Harris expands the energy and the angular mo-
mentum in ~', that is,

E= ,'s'(IQ'+ 3C'sf+ 5D'~'-+7Il'uP+ ~ ~ .}
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APPENDIX A

Let II denote the determinant

4 + 2y2c2+ 3c4 c' —g(b'c' + c'a' + Sa'b')

c'- g(b'c'+c'a'+Sa'b') Sc'+2c'a'+3a'

b —p(b'c'+3c'a'+a'b') a' —p(SO'c'+ c'a'+a'b')

b' —g(b'c' + Sc'a' +a'b')

a' —g(SO'c' + c'a' +a'b')

3' + 2a262+ 3b4

(A I}

and II», II», II», . . . , its minors, where II;&=II~&. The constants L, M, and N [see Eq. (7)] are then

L = f a'[p(b' +c')ll„+(g c' - a')ll„+(pb' - a')ll„] +b'[(gc' —b')ll„+ p(c' +a')ll„+(~' —b'}ll„]j/ll,
l|I=(a'[p(b'+c')ll„+(pc' —a')ll„+(Q' —a')ll»]+b'[(gc' —b')ll„+ p(c'+a')ll„+(ga' —b')II„J j/II, (A2)

M=(a'[p(b'+c')lI„+(pc' —a')ll„+(pb' —a')ll»]+b'[(pc' —b')ll„+ p(c'+a')ll„+(~' —b')ll„] j/II.
For the calculation of the displacements (X- x), (Y- y), and (Z —z) [see Eq. (9)] the constants o.„

a„and n3 are given by

n =A, ' —p,A,b' —p, A, ', 1
o., =—,[A,a' —gB,O' —p,C, c],

1
o., = -—,[C,a' —lt, A,O' —p B,c'], 1

a, = ——,[B,a' —pC, O' —gA, c'],
(A3)

where A„A„A„etc., are given in Eq. (7). Similar expressions may be written for the coefficients of
the displacements along y and z directions.

The function f(a, b, c, p) presented in Eq. (10) of the text is given by

f(a, O, c, p) =gabe( [&So + ~ (S, +S, +S,) + ~ (S4 +S, +Se) +~7' (S, +S, +SQ)]

—g[ —,
'

Ko —p (K, +K, +K3) + +, (K|2 +K,~ +K„)+ ~, (L, + L, +L,)]

—i~4, (1+ p)( ab' O'I+ b'c'L'+ c'a'M')],

where

S = a'A, '+O'A, '+ c'A, ', S, =-2(a'A, ' +O'A2B, + c4A, C, ), ,S=-2(a~A, C, +O'A, '+ c'A, B,),

(A4)

and

S, = -2( Aa, B+ O~A, C, + c'A, '),

S, = 2(a'A, B, + O'B,C, + c A, C,),

=g /9 1 2 3

$ = g4+ 2 + $4jP 2 + c4Q 2
7 1 2 3 $ =g( 1 2 3

S, =2(a'A, C, +O'A, B, +c4B,C,), S, =2(a'B,C, +O'A, C, +c'A, B,),
(A5)

-a2O2A A +O2c2AP +c a AP

K, =(A,B,+A+, ) ba' (A+, C, +Bp,)b'c'+(Ap, +Cp, )c'a',

K, =(A A, +C A, )a'b'+(A, B, +A+, )
'b'c+( AC, +Bg,)c'a',

K, =(A,C, +BP,)a'b'+(AP, +CP,)b'c'+(A, B,+A+,)c'a',

K„=(C,B, +A,A,)a'b'+(A, C, +B,B,)b'c'+(BP, + C,C,)c'a',

K» =(B,A, +C,C,)a'b'+(C, B, +A+, )b'c'+(A, C, +B,B,)c'a',

K» =(A,C, +B,B,)a'b'+(BP, +C,C,)b'c'+(C, B, AP+, )c'a',

and

L, =A,B,a'b'+B, C,O'c'+ Cg, c'a', L, = C,A,a'b'+A, B,O'c'+B, C,c'a',

L, = B,C,a'b' + Cg,b' c'+A,B,c'a' .

(A6)

(A I)
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