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The K and L transitions of muonic atoms of "'Ta were measured. A comparison of the experimental values

with calculated values was made. A modified Fermi distribution of charge of three parameters was assumed
for the calculation. The calculations include corrections for nuclear polarization and extended space of the
Dirac hydrogenlike atom. A range of values for the half radius, the surface thickness, and the intrinsic

quadrupole moment was obtained. A description of the analysis is included.

NUCLEAR STRUCTURE Energies of y rays of K and L transitions of muonic '
measured. Data fitted by three parameter modified Fermi distribution of charge.

INTRODUCTION XIJF m(F)) = g g Jm(I) m(J)~Em(F)

The energies of the K and L x rays of muonic
atoms of '"Ta were measured and the results
compared to theoretically calculated values. Such
a comparison yields quantitative information about
the values of the parameters used to describe the
radial distribution and shape of the electric charge
in the nucleus.

As in the past, the methods of Wilets' and
Jacobsohn provided the basis for the initial pro-
cedures for the theoretical calculation. Additional
corrections, suggested by Chen,"were found
necessary to obtain a fit to the experimental data.

Following Wilets and the independent work of
Jacobsohn, we start with a physical system de-
scribed by a Hamiltonian

H =H„+H~+ V,

where H„ is a nuclear Hamiltonian assumed to de-
scribe the lower energy levels of the deformed
nucleus in a rotational band; H„represents the
Dirac Hamiltonian, describing the muon in an at-
tractive potential provided by the monopole term
of the electrostatic interaction between the muon
and the charge of the nucleus; and V is the elec-
trostatic interaction with the monopole term sub-
tracted.

The matrix elements of the Hamiltonian operator
can be conveniently expressed in a basis provided
by a linear combination of products of the muonic
state vectors and the nuclear state vectors:

&& ~n K Jm(J))
~
vI&m(I)) . (2)

I, m(I), IC are nuclear quantum numbers describing
the total angular momentum of the nuclear state,
its projection on the z axis of the laboratory, and
the projection on the nuclear symmetry axis, re-
spectively. J and m(J) are corresponding quantum
numbers for the hydrogenlike muonic atom. The
quantum number which uniquely denotes the states
in the Dirac solutions of the hydrogen problem is
v. We use X to denote all other quantum numbers
needed to describe the total physical system. Sim-
ilarly, n and v denote all other quantum numbers
needed to describe the muonic state and the nu-
clear state, respectively. The total angular mo-
mentum of the physical system is characterized
by the quantum numbers E,m(E). The interaction
term without the monopole term has the following
form:

&& l', '(s „&t&,)l't(e, & 0,) (2)

The sum over p is the sum over all the protons of
the nucleus. x& stands for the smaller of the mag-
nitudes of the radius vector to the muon or the
radius vector to the pth proton. y& stands for the
larger of the two quantities. By (8„$„),we mean
the angular variables of the muon in the coordinate
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system fixed to the nucleus. Similarly, the angu-
lar variables of the pth proton are given by (8, @ ).

The wave functions of the nucleus corresponding
to

I
vIKm(I)) are taken from the rotational model.

The muonic wave functions are provided by solu-
tions of the Dirac equation. In these differential
equations the expectation value of the monopole
term of the electrostatic interaction in the nuclear
ground state is used as the attractive potential.
A modified Fermi distribution of three parameters
is used to describe the shape and radial distribu-
tion of the charge density which appears in this
term:

p(r, 8) = p(0)[1+exp(tr[1+ I6P, (cos8)] —cj4 1n3/I)] ',
(4)

where p(0) is approxima. tely the density at the cen-
ter of the nucleus, P is a deformation parameter;
c is the parameter which measures the half radi-
us, i.e. , the value of the radius at P, (cos8) =0,
for which the density is decreased to one-half of

p(0); t is the surface thickness and is the interval
in which the density falls from 90% to 10% of p(0).
It is customary to introduce c, related by c by

C CpA

The interaction term, V of Eq. (3) is not diago-
nal in the basis given by Eq. (2). We calculate the
matrix elements of Vin that basis and diagonalize

the ensuing matrix to get the eigenvalues of H of

Eq. (1). Since V does not mix states characterized
by different eigenvalues of F, the matrix of V re-
duces to submatrices corresponding to specific
values of F and m(F). There is still a practical
difficulty in the calculation because infinitely many
states of the muon and the nucleus can be com-
bined to give a particular value of F, the total
angular momentum. A compromise can be made

by selecting states of the muonic atoms which have
the same principal quantum number which will
combine with one of the first five nuclear levels
of "'Ta to give a particular value of F. The ele-
ments of the submatrix of H corresponding to a
particular F are then calculated for a limited
number of states of Eq. (2). This limited number
of states will hereafter be said to comprise the
model space. One justifies the procedure outlined
above by noting that muonic states of different
principal quantum number are far removed in en-

ergy and therefore, make negligible contribution.
Note that the term for / =1, in the expression

for the interaction V in Eq. (3), will not make any
contribution for it will not connect nuclear states
of the same parity and similarly for the term with
1=3. The higher terms, leading to small contri-
butions compared to the quadrupole term, are ne-
glected. The quadrupole part of V which we desig-
nate by HQ has matrix elements in the basis of
Eq. (2):

(XIJFm(F)IHQI X'I'O'Fm(F))=(-1)" [20m(2I'+1)(2J+1)]' [(JI Y,
I

j')W(I JI' J';F2)(2I'OKIIK)o(j j')],
(6)

where we have specialized to deformed nuclei de-
scribed by the rotational model. W(I JI' J', F2) is
the Racah coefficient. The reduced matrix ele-
ment (J

I I
Y,

I I

J') is defined by

(2J'qm«')I jm«))(JIIY. IIJ')

= ( n x Jm(j) I Y,'I n' v' J' m(j')). (6a)

n(j J') contains the dependence on the intrinsic
quadrupole moment and the penetrability factor

00

o(jJ') = R(n x;r )R(n' x', r, )Q(r, )r„'dr„,
( t)

where R(n x; r, ) is the radial part of the wave func-
tion of the muonic atom in a state with principal
quantum number n, specified by the quantum num-
ber I(. , and

tf' ed f 2

Q(r„) = p(r, 8)P,(cos8),d'r
040 0 r.

+ p y, 8)I' cos8) ", d'r . 8)

In this calculation of the matrix elements of Eq.
(6), the states used are restricted to the model
space. For example, when we treat the n = 2
states of the muonic atom we diagonalize a sub-
matrix for a given value of F by considering only
those off-diagonal terms which connect the 2p
states and have nonzero value for the matrix ele-
ments for the quadrupole operator connecting
pairs of the first five low-lying nuclear levels.

For the n = 3 states of the muonic atom we con-
sider the submatrix involving the 3d levels and the
3s levels and suitable pairs of the same nuclear
levels. This procedure neglects quadrupole inter-
actions connecting the 2p states with all other p
states and f states. It neglects off-diagonal ele-
ments connecting the 3d states with all other d
states, s states, andy states. It further ignores
all connections between low-lying nuclear states
and all other nuclear states of the same parity
connected by the operator Y;(8, P).

The sum total of these neglected quantities leads
to finite corrections to the calculations of Eq. (6).
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These corrections are sizeable enough to be de-
tected by currently available experimental tech-
niques. The rest of this paper will be devoted to
the description of the calculation of these correc-
tions and to a description of the analysis of the ex-
perimental data. The final analysis will consist of
a comparison of the calculations with the results
of the experiment and a determination of values of

the parameters which described the distribution of
charge in the nucleus of '"Ta.

EXTENSION BEYOND MODEL SPACE

The calculation of the matrix elements of the
electrostatic interaction minus the monopole term
requires the evaluation of quantities of the type
(v) defined below for given value of F:

(v) = (vIKm(I) I(n z Jm(J)
I
[(r&)'/(r&)"')Y, '(0,) ~n' z' J'm(J'))Y', (Q~) I

v'I'Em(I')) . (9)

As given by Eq. (6) the elements of the interac-
tion matrix are calculated by restricting the nu-
clear levels to the first five levels of the ground
state rotational band of ' 'Ta and the muonic lev-
els of the muonic atom with the same principal
quantum number. For example, the submatrix for
F =4 for the 2p levels will be built up from the
product states of

I v,'- m(-,')) I21 —,'m(2))

I
v 7 7m(-', )) l2 1 ~ m(2))

I
"'.-.'-m(l»

I
21-'m(-'))

I
v";m(-,'))

I
21-,' m(-', ))

I
v" '-,",- m('-,'))

I
2 1 -', m(-,'))

and will be 5X 5 matrix. This set of states form
the model space for the 2p splitting for F =4.

Furthermore, the matrix elements of Eq. (9)
have nonzero values connected to states outside
of the model space and we are interested in cal-
culating the corrections necessary to account for
the neglect of these states beyond the model space.
This also suggests that terms in the electrostatic
interaction other than the quadrupole term will
connect to states outside of the model space and
the contributions of those will also be calculated.

The projection operator formalism introduced by
Lowdin' provides a convenient method for modify-
ing the total matrix of the energy operator so that
the modified energy operator can be evaluated in
the model space. We describe this method in the
following.

We introduce the operator:

Q = g'lm)(m I, (10)

where the sum over b represents summation over

where the sum over m stands for the sum over the
model space and lm) represents a typical model
space ket. The projection operator P is introduced

states external to the model space. These opera-
tors have the following set of properties:

Q Q

P =P,

QP=PQ =O.

Starting with

(12a)

(12b)

(12c)

(12d)

(12e)

from which we find

PHQ lyEm(E)) =P(& —H)PlyEm(E))
= [Q5+P(E —H)P)P lyEm(E)),

where 5 is an arbitrary constant. Multiplying on
the left by the inverse of the operator in the brack-
et one sets

P[Q5+P(E —H)P] 'PHQ lyF m(F)) =PlyEm(F)) .

(14)

From Eqs. (11) and (13) one can also obtain

QH[Q+P] lyF m(F)) =QE
I
yF m(F)) .

We substitute for PlyF m(F)) the expression given
in Eqs. (14); we get

[QHTHQ+QHQ]Q lyF m(E)) =EQ ly Em(F)),

(15)

where

H lyFm(E)) E ly Fm(F)), (13)

where the lyEm(F)) is the state vector represent-
ing the complete physical system and is a linear
combination of state vectors given by Eq. (2). E
is the quantum number for the total angular mo-
mentum and y stands for all other quantum num-
bers needed to specify the system, E is the ener-
gy eigenvalue of the total system, and H is the
operator given in Eq. (1). Combining Eqs. (11)
and (13) we obtain

PH(P+ Q) I y E m(F)) = P&(P+ Q)
I y E m(F))
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T =P[Q6+P(E H-)P] 'P

and the following properties of T obtain

TP PT 7

QT = TQ =0.

(16) and we have used the operator identity

(A —B) '=A '+A 'B(A —B) '

with the identification

A =Q+P(E —Ho)P

Upon substituting in Eq. (15) for H, the expres-
sion obtained from Eq. (1) and taking the scalar
product with lm') which represents a state in the
model space, one gets

g &m' IH+ VTV1m)&m lyFm(F)&

B=PVP.

We make the approximation substituting T, for T
in Eq. (19). The justification for this approxima-
tion is shown in Appendix A. Equation (20) can be
rewritten:

= g E&m 1yF m(F))6, (16) T =P[QI6+P(E —H ) 'P]P (21)

where the sum over m is over the model space
only.

We see that the eigenvalue of the total energy F.
can be obtained by diagonalizing a matrix of finite
dimensions of the operator (H+ VTV) in the basis
of the state vectors of the model space.

To get an expression for T suitable for computa-
tion one proceeds to rewrite it as

T=P([Q6+P(E —H)P] '

TD=P(E-Ho) 'P,
where we remind the reader that

(22)

which can be verified by multiplying Q6+P(E —H, )P
by the quantity in the brackets in Eq. (21) and ob-
taining the identity operator. Finally one simpli-
fies T()'.

where

To= P[Qb+P(E ——HO)P] 'P,
Ho =H„+H„,

+ [Qb+P(E —H)P] 'PVPT)P,

T() + T()VT

(19)

(20)

and the sum b is over states external to the model
space.

Since H„+H„ is diagonal in the basis selected,
the problem reduces to the computation of the ma-
trix element (m'[V+ VP(E —Ho) 'PV] lm) in the
model space. The elements (m'

I Vlm) are given
in Eq. (6) and we shall concentrate for the present
on (m'IVP(E H, ) 'PVlm):—

(m'
I
VP(E HO) 'PV lm-& = Q "&~n'

I Vlb)&b l(E-Ho) 'vlm) . (23)

By m) and lm') we mean state vectors of the type given by Eq. (2) restricted to the model space. The
sum over lb) is the sum over states outside the model space, which are also represented by state vectors
of the type given in Eq. (2):

Im) =
I
&I~F m(F)& = P (I~m(I) m(~) IF m(F)) ln «~m(~)&

I
»Am(I)&,

m(I )

m') = lX'I'7'Fm(F)&= g (I' J'm(I') m(J')IF m(F))ln' «'Zm(J')&
I
v'I'Km(I')

(2')

(2")

I b& =
I

V' I"F m (F)& = g (I"Z" m (I") m (J") I
F m (F)) In" «' J"m (Z" )& I

v" I"K m (I")& .
77t (I")

In Eq. (23) the sum over the outer states lb) is broken up into several parts as follows:

Q lb&&b
I

= Q(I ~')v'&&~'II'I+
I

~'II'&&~'II'I+
I
~'bI'&&~'II'I &

(2)iI )

(24)
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where Ql p'~& p'N, '
I

represents a sum over all
states which originate from muonic states outside
of the model space and from nuclear states outside
of the model space and Ql iJ.'N &&@'N

I
represents

a sum over states which originate from muonic
states inside the model space and nuclear states
outside of the model space and so forth.

In Eq. (23) the term in the sum over the outer
states corresponding to the sums of the first brac-
ket on the right hand side of Eq. (24) is designated
the nuclear polarization correction. The partial
sums of Eq. (23} corresponding to the second brac-
ket of Eq. (24) are called the extended space cor-
rection. We will treat these corrections separate-
ly.

In order to consider the contribution of the nu-
clear polarization to the sum over the outer states
in Eq. (23), we approximate the total energy E in

Eq. (23) with E(m):

E(m) =E(v'I'K)+E(n' «'),

where E(v'I'K) is the energy of the nuclear level
with respect to the ground state of the nucleus.
The level designated by the quantum numbers
[v', I', K, m(1')] is, of course, in the nuclear part
of the model space. E(n' «') is the binding energy
of the level of the muonic atom designated by the
quantum numbers [n', «', Z', m(Z')] and is an ener-
gy level corresponding to a state in the model
space.

The operator [E—H, ] ' in Eq. (23) is written as
[E(m) —E„(b)-H„) ' since the state lb) contains
a nuclear part which is an eigenstate of H„with
eigenvalue E„(b).

The sum over states lb) in Eq. (23) is written
in terms of the bracket indicated on the right hand
side of Eq. (24). The sums of the first bracket,
the nuclear polarization term, will now be con-
sidered.

The matrix elements corresponding to the
nuclear polarization become

(n INP
I
m) = g (n

I
V

I
c)&c I

[E(m) —E„(c)—H „] ' V
I
m) —g (n

I
V IN' )(N'

I
[E(m) —E„(N') —H „] ' V

I
m), (25)

where the sum over N' in the second term is over nuclear states in the model space only, and where we
have made use of the completeness of the muonic state vectors. The sum over lc) is over the complete
set of states describing the physical system. To use completeness in the first term of the right hand side
of Eq. (25), we can introduce an Z for which the following is true:

g &n
I
V

I
c&&c

I
[«m) - E.(.) -H.] ' V

I m& = g (n I
V

I
c)&c I [E +E(n' «' }-H ] 'V lm)

C C

=(n
I
V[E+E(n' «') -H„)-'Vlm) . (26)

Since E has been introduced to remove the dependence of the energy term on lc), one can invoke com-
pleteness in the first term on the right hand side of Eq. (25). The nuclear polarization correction to the
(n, m}th element becomes:

(n INPlm) =(n
I
V[E+E(n' K')-H„] 'Vlm) —g(n I

VIN' &&N'[ E(m }-E„&N')—H„] 'Vlm) . (2 I}

The matrix elements of Eq. (27) are calculated by use of the reference spectrum method' after the nu-
clear contributions are separated. The state vectors ln) and lm) are given by Eqs. (2') and (2"). The nu-

clear wave functions for nuclei with odd A are taken to be:

I
vIKm(I)& =[(2I+I)/16' ] ~ [Dv &&&r}{(K)+(-1) D

&z& r){(K)]. (26)

The phase relations are defined by Rogers. }{(K)and }{(-K)are intrinsic functions of the coordinates of
all the protons:

y(K) = (K; r„r„.. . , r&, . . .r,) . (29)

The D (»~ are the rotational functions which have Euler angular variables for their argument. The Euler
angles specify the orientation of the nucleus with respect to a coordinate system fixed in the laboratory.

We will concentrate on the first term of the right hand side of Eq. (27). After integrating over the Euler
angle variables we get that term

&nlNP1 lm) =(nlV[E+E(n'«')-H ] 'Vlm&

@[II'JJ'F m(F); m(I) m(I') m(J) m(J')]B[II' Kn n' JJ', m(I) m(I') m(Z} m(j')]j, (30)
m(l), m(I' )
m( J),m( J')
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where

211+ y 1/2
A[II' JJ'Em(F);m(I) m(I'} m(J) m(j')] =8«'e'

2 1 [(IJm(I)m(j}[Fm(F)){I'J' m(I') m(j')( Em(E))],

(30a)

B[II'Knn' JJ';m(I) m(I') m(J') m(J')]

= g g g {C[II' Kn n' JJ';L l l' m m'; m(I) m (I') m (j)m (J')]}
L 1y 1' m~m'

&& [(l' I' m ' K
~
LM}(/ L m M

~
IK}+ (- 1)' «(l' I' m ' —K

~

L M, )(l L m M,
~

IK)

+ (- 1)P «(/' I' m ' K
~

L M) (l L m M
~

I —K) + (- 1}I' I' o«(l' I' m ' —K
~

L M, ) (l L m M
~

I—K)],
(30b)

C(I I'Knn'J J'; L l l'mm', m(I)m(I')m(J)m(J')]

=[(2/+1)(2l'+1)] ' g [(-1)"'{/Lq/(])I m(I})/'I'q'm(I')~ LQ)]

and

x [(n «J m (J) I D(rK; l l' q q' m m') )
n' «' J' m( j') )], (30c)

D(rp; l l' q q'm m')

f [~]/(K) ~'Y, (Q~)T(r„,r~, /)U(r„, l /'qq')T(r&, r~, l') Yt. (Q], )]d'r, d'r, ~ ~ d'r~ d'r~" ~ ~ d'r, , (30d)
ep'

T(r„,r~, l) = [(r&)'/(r&)'"]~,

U(r„, l l'q q') = Y, '(Q„)[Z+E(n' «'}-II„] 'Y, '
(Q„) .

(30e)

(30f)

Quantities of the type (abed [ef) are the vector addition coefficients. The sums over /) and P' are sums
over the protons of the nucleus. [o] and M will only have those values for which the terms in E(/. (30) are
nonzero. The sum over I. will contain only those terms for which I. satisfies the triangular inequalities
with I, and I and with l' and I'.

We will now concentrate on D(rP; ll'qq'mm') defined in Eq. (30d). The double sum over all protons in-
dicated by the sums over p and p' can be broken up into three parts. One part comes from those terms
for which P =P'. The other two parts come from the terms in the sum for which P cP':

D(rK; l/' qq' mm '}=I)I(rP;ll' qq' mm ') + 'V(rP; ll' qq' mm '}+ W(r&K; Il'qq' mm '),
where

N( „K; ll'qq'et ')= f [p( )q;(O)P( „,r, O][S( „, tpqq')P( „,r, t')P, '(O)]d'r,

(31)

(31a)

where for the density of charged particles, p(r), we will use the modified Fermi Distribution function
normalized to Z charged particles:

p(r) = p(0)/[1+exp({r[1 P+P, (cose)] —c}41n3/t)],

p(0) =St' fd'r[1 ~ eep([r[l ~ SP, (ere q)] —c]4 teq/t)]

The direct term is

q( „tt; tV qq' ')=- J pl )p , (O)r( „rlid' f]p( "')q, '(O'l, ]]S, (r„r ll'qq')p(r„, r', p)]tpr

The exchange term is

(31b)

(31c)

tq( p'; ll'W' ')= —g fd'rqt(r)S„( )q, (Olr( „,r, t)f 4'r'S; (r)S( )q, (O )U( „tr q. q )p(rc'', ".p'),', ',
(31d)
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where S~(r) denotes the single particle function of
a three-dimensional isotropic harmonic oscillator.
The state h is specified by spin as well as spatial
coordinates. The sums over h and h' are over all
states filled by the Z protons of the nucleus under
consideration. In this case Z is 73 which specifies
the nuclide "'Ta.

The single particle functions take the form:

S„(r)=s~~(yr') g (X ', m—(A)m(z)l hm($))
sc($)

x Y ( &(Q)}([-„m(—)], (3le)

where y[—,', m(2)] is the spin wave function for a
particle with spin —,

' and projection of spin m(-', ).
The orbital angular momentum is A. and the total
angular momentum is (. s„„(yr') is the Laguerre
polynomial with appropriate normalization. y is a
measure of harmonic oscillator strength. It is de-
termined by calculating the second moment of the
charge distribution with the single particle func-
tions and by fitting it to the second moment calcu-
lated from the Fermi distribution. We shall write

s(qX, r) —= s„~(yr') .
We have taken, for purposes of calculating the

nuclear polarization correction, an antisymmetric
combination of the single particle functions:

yl(K; r„r„.. . r«, . . .r, )

=(N() ' ' Q (-I)'("'S (r ). ~ S (r )~ ~ ~

h1 1 hP
n'(h)

xS„,(r~ ) ~ ~ ~ S„(r,) . (31f)

The sum is made over all permutations of the in-
tegers h„.. . , h, with respect to 1, 2, . . . , z. The
factor (-I)'&"' is -1 for odd permutations and is
+1 for even permutations.

Since the results of this calculation will lead to
a correction of about one part in a thousand, we
use the spherical average for p(r) in the calcula-
tion of N, V, and W of Eq. (31). This leads to

V(r„K; ll'qq'mm') =0.
In the expression for N, Eq. (3la), the use of

spherical symmetry implies

m+m'=0,

l= l'.
Invoking these conditions and integrating over

nuclear angular variables we get

N(r„k; ll' = l qq' mm' = -m)

~ ~

rp

p ( )r""r„' 'U(r„, ll'qq')r„' 'd ~ p( n "r'U(rs, l q 'rqr)r) (d-1)
0 rp

where p, (r) is the spherical average of p(r)
1

p, (r) = — p(r)d(cosq) .
-1

(33)

(33a)

We next calculate W(r„K; ll'qq'mm'), the exchange term in Eq. (31d). The integration over the angular
variables and the summations over single particle states will give nonzero terms only when the conditions
stated in Eq. (32) are satisfied.

We get in fact

W(r„K;l l' =lqq'mm' = —m) = —2 g g (-1) (4v) '(2l+ I)-'[(2K+1)(2X'+1)][(XX'00~10)] b»b

x [a(r}0'I;r,)r„' 'U(r„, llqq')r„' '+b(Tip' l;r„)r„' 'U(r„, llqq')r'„

+ c(r}q' l; r„)r'„U(r„ll qq')r„' ' d(qrl' l; r„)r'„U(r„,ll qq')r'„],

where
r ll I I t+2a())})p}'l;r„)=— s«(r}&r)s(g'X.'r)r" 2dr s«(qdVr')s(r)Ar')r" adr',

0 0

r
b(qq'l;r„) =— s«(q&r)s(q'&'r')r'"dr s«(q'X'r')s(r}Xr')(r') "'dr',

0 r
00 r

c(gq'l;r„) —= s«(q&r)s(q'X'r)r '"dr s«(g'Vr')s(qAr')(r')"'dr',
0

(35)

d(nn l;r„)=f s'(nsr)s(n's''r)r ' dr f (
' ' '') ( nr's)(rr') s"nsd '.

p rl'
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where

xb», 6,[(N1W1) + (N2 W2) +(W2) + (W3)]

(Nl) -=(n«tm(J) ~n(r„)r„' 'U(r„, ll'qq')r„' '~n' «' J'm( J')),

We next treat the muonic part of the matrix element (n (NP1 ~m). From Eq. (30c) we have

(n «Jm(J) ~D(r K;ll'qq' mm') ~n' «' J' m(J'))

=(Nl}+(N2) —2 Q Q (-1) [(4w)(21+1)] '(2K+1)(2X'+1)[(XV 00~10)]

(36)

N(2) =—(n «Jm (J) ~m(r )r'„U(r„, ll' qq')r'„~ n' «' J' m(J )),

or
~

g(2))=[E+E(n' 8)-H, ] 'Y '(Q )r' ~tn' «' J'm(J'})

Y,' (Q „)r„' '
~

n' «' J' m (J')) = [Z+ E(n' «') —H „]~
}i(1}),

(Nl Wl) =(n «J m(J) —
~
a(qr}' l; r„)r„' ' U(r„; ll qq')r„' ' ~n' «' J' m(J')),

(N2W4) -=(n «Jm(J) ~b(qq' l; r„)r„' 'U(r„, ll qq')r'Jn' «' J' m(J'}),

( W2) = (n «Jm (J)
~

c(r)r}' l; r „)r'„U(r„,ll qq') r ' '
~

n' «' J' m (J')),

(W3) =(n «Jm(J) ~d(-qr( l;r, )r'„U(r„, ll qq')r'„~n' «' J' m(J')) .

The operator U(r„ll qq') was defined in Eq. (30e).
Let

~
y(1)) = [E+E(n' «') —H „) Y,'(Q„)r„' ~n' «' J' m(J'))

(37a}

(37b}
Y ' (Q )r' ~n' «' J' m(J')) = [E+E(n' «'}—g] ~

y(2)) .

~
y(1)) and

~
}i(2)) are determined as solutions of Eq. (3'la}. The quantities of Eq. (36) are then calculated:

(Nl) =(n «Jm(J) ~n(r„}r„' 'Y, '(Q„)
~
y(l)),

(N2} =(n «Jm(J) ~m(r )r„'Y,'(Q„)
~ }((2)),

(Nl Wl) = (n «Jm (J)
~

a(r}r}' l; r„)r„' ' Y,'(Q )
~
}i(1)),

(N2W4) =(n «Jm(J) ~b(qrf 'l;r„)r„' 'Y, '(Q„)
~
}((2}),

(W2) =(n «Jm(J) ~c(r)q'1; r„)r,'Y, '(Q„)
~
y(1)),

(W3) = (n «J m (J}
~
d(r)r)' l; r„)r,'Y, '(Q„)

~
y(2)) .

(38)

This completes the calculation of (n «Jm(J) ~D(r„K; /l' qq' mm') ~n' «' J' m(J')) of Eq. (30c).
We will devote some space to the solutions of Eq. (37a) for ~)i(1)). The solution for ~}i(2)) will follow

similarly.
The ~n' 8 J')) are the solutions of the Dirac equation and take the form of bispinors. Given by Sakurai8

these are:

(,)
g(n' «', r„}Y(J',1'(A);m(J')}
if(n' «'; r„)Y(J', 1'(B};m(J')) (39)

where the angular dependence is contained in the two component quantities, Y(J, l;m(J)).
%e have
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Y(J, l;m(J'})={[1+m(J}+—']/(2l+1))'i Y, ' ' ' ' +pl —m(J)+ —']/(2l+1}] ' 'Y, ' "'
(0 1

for J=)+~,

Y(J, l; m(J))= -{[l-m(J)+-,']/(21+1)] ' 'Yp( &-'~' ~+{[1+m(J)+-,']/(2l + 1))2i'y «p 'i&

0) 1

for J= / —z ~

1

When a=J+&,
l(A}=J+-', l (B)=J --'

and when )3 = —(J+ —,'},
l (A}= J' ——,', l (B)=J+ —,'.

We expand
~
}i(1)) in a set of solutions of the Dirac equation:

(39a)

(39b)

(39c)

X (1A) ~ „„„g(n",83; r„)Y(J",l"(A); m")
(1B) ~ ' ' lf(n" ~" r )Y(J" l"(B) ")

yf eK ~ St

(40)

and substitute this expansion for ~}((1))in the first of Eqs. (37a). H~ is the Dirac Hamiltonian:

H„= cn p+Pm„c'+ V(r).

m„ is the reduced mass of the muon. For V(r) we use the monopole term of the electrostatic interaction
corrected for the vacuum polarization averaged over the nuclear ground state:

p( ) r( ) 1
2

()
1.78107(r„'e(')' ' 3 3 7(, ~),7, 31'(,

(p))

.'[-'&'+ -(r')]
[

.
(
—,).i,][r,'+ (P)(r')] 3x'

where V,(rg is the monopole term of the interaction potential Eq. (3) and is given by

(41)

V(r )=— p(r')(r„) 'd'r'— p(rd)(rd) 1d 3rd

and where n is the fine structure constant and

(r')=fpr)r'3'r fpr)d'7,

1 eep p()r '12(=r)d'r fp(3)r 'dr'
prd p(r}r'd'r,

and X is the Compton wavelength of the electron.
By taking the scalar product of the first equation of the upper component of Eq. (37}with Yfdf, T(A); m)

and then taking the scalar product with the equation for the lower component with Y(J,T(B); m) we get the
coupled differential equations satisfied by the radial parts of

~
X(1}):

I+E(n'~') -mc' —V(r„) g, (Pr„)+cfi „+ f,(7(pr„)=(J ~~i ~~J')r„' 'g(n'e';r„),1 —
7(

&+&(n' lc')+ mc' —V(r„) f ()('.;r„) ch +-(g 2r„7() = (J ~~l ~~

J')r„' 'f(n' K'7 r„),d (1+rc)

df li fg

where

(42)
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(~ III Il~') =-[(I~ -&'m(~') I Z~)] '(Y(~I(A); m)
I
Y('(~g

I
Y(~', ~'(A); m(~'))&,

g, (((;r ) = y, (7( m; r, )[(IJ'- (I' m (J')
I
J m)] ',

y, (T(m;r„)=gz(n, T], m)g(n 7(; r ).

Similar definitions apply for f, (7,r„) and g(7]m; r„). Equation (40) has the following appearance:

(X(1A)) (y, (z"m";r, )Y(~" 1"(A) m") l
(]((1B)) ~' "

(i P,(d' m", r)() Y(J",I"(B);m")j
A similar procedure is used to calculate the hispinor l)f(2)&.

There is a second term of (n I NP Im& on the right hand side of Eq. (2t) which now must receive consider-
ation. This term is given by

(nlNP2lm)=g(nlVIN &(N'l[E(m) E~(N -) H„] 'V-lm&. (43)

N' represents the nuclear state functions for states in the model space. E(N') is the energy of the nuclear
level with respect to the nuclear ground state. Consider (vIK m(I) I V IN' ), the nuclear part of the first
factor of the right hand side of Eq. (43):

(rllim(()
]
r]¹)=+M(lltp) g) (1(p))Z) fp(R ( g)T(r()„, )rr(), d,

E ~ q

(44)

where

M(II(a) m(l) m(I(o. ))K) =I [(-2'')/(2l+ 1)]]([2I(a)+1]/(2I+ 1)] ' '5 (m(1), m(1(n))) [1+(-1) P '~' ' ]
The use of the approximation of spherical symmetry for the density of charged particles will make the
integral of Eq. (44) equal to zero for l~ 1. Therefore,

(n INP2
I
m& = 0.

The total nuclear polarization expression now becomes:

(nlNPlm&

=15 ' ' g (-1)"'[ „,, ' (dllY, II r)[w(Lzfz;Pf)w(Lrfz';sf)]

u g Ã Ky tu ~x Ky fu + K tu z Ky tu Xu Po
0 0

~ r, 'dr(g(; r)g (ic r l ~ f(;)f (ic; „)]r'f p(, ) "dr)
0 f u

2P P ( h )( ( )
(t(pool 0)g

4v(2l + 1)

x drr'(g( x; r„)g(g; r„,)+,f(x;r, )f (ic; r„)]( (pp'l; r )r„'+c(pp' l; r,„)rg)
0

+ dr r, '[g(n z; r„)g, (z; r~) + f (n ((:;r, )f, (T(; r~)][b(r]r]' l; r, ) K' '+ d(ggd l; r, ) r,']
0

(45)

where L is summed from Il -11 to (I+I).
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Extended space correction

Let us now turn to that part of the sum over the outer states in Eq. (23) which corresponds to the ex-
tended space corrections. We had

&nlES lm& = Q&n I
V III'& &&'

l
[«m& -Evy'*') -II.] 'V lm&- g (nl V ln II'& &n*&*

I
[«m& -Ev(N'& -H. ] 'V lm&.

Ei y3 N2

(46)

Completeness of the muonic states in the second bracket of Eq. (24} has been invoked. Consider the first
term on the right hand side of Eq. (46):

2

&nlESl lm& = g g g g g(-1)"'
6

(-e') {IJm(I)m(J)lFm(F)}
m(J) m(l) q l(o) p
m( J') m(I') q

~ m P(~)) p~

x (I' J' m(P) m (J')
l
F m (F)}(n a Jm(J')

l
2 (Im(I) 1(a}m(I(a)) K q; r„r~ )

x3g(I(a) m(I(a))I'm(I')Kq', r„rv)l~n'z' J' m(J')&. (47)

The sums over p and p' are over all protons, the sums over 1(a) and m(I(a)) are over the nuclear states
belonging to the model space:

'X(I m(I)I(a) m(I(a))Kq; r r&)—= (vI mg}K lX(q, r„r&) l
v(a)I (a) m(I(a))K&

X(q, r~r~) = Y,'(Q~)Y,&(Q„)T(r„,r~, 2),
(47a}

9R(I(a) m(I(a))I' m(I') K q', r„r~,)
= (v(a) I(a) m(I(a)) K

l
[E(Fm (F)I' J') -E(I(a)K) -II~] '31(q ', r r&) l

v'I' m(I') K&, (47b)

where

E{Fm(F)1' J')=E(v'I'K)+E(n'K ).
A manipulation, similar to that for the nuclear polarization correction, leads to the following result

(n(ES(~m) =Q (-()'*"""((2)()+ (I(2 J+ ()(2J+ ()()P ~ ())"*(J((2((J)(qe'Q. *)

x(21(a& OK lIK}(21 OK11(a)K) W(I(a) JI' J', F2) W(I(a) JIJ;F2)

x dr„r„' gna;r„p'71;r~ + n~;r~ p' F;rg 3
I'(K; r.)

0 fI

(46)

For later use we introduce:

A(n )( )(; r„)= [g(n K; r„)y'(K; r~) + f(n K; r„)(P'(Ti'; r„}]P(K; r„)

where g(n z; r„) and f(nz; r„) are solutions of the homogeneous radial Dirac equations

[E(n, x') mc'+—V(r„)]f(n z; r„)—ck ' " + g(n z; r„) = 0,dg(n a'; r„) (1+«')

[E(n, r) —mc' —V(r„)]g(nw; r„)+cR ' " + f(ng; r„) =0df(n e; r„) (1 —z)
dru

(46a)

and where y'(17, r ) and (p'(7), r„) satisfy the following inhomogeneous equations:
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[E(F (F)FF') —E(l(ty)) ~ c' —V( r)](y(j7;r, ) —cll „y(Ti;r,)+ y'(E;r, ))
d, (1+«)

= (J II 2 II J'& "' f(n" r.&

[E(Fm(F) I' J') —E(I(n)) —mc' —V(r„)]y'(»; r„)+cR (»; r„)+ P'(»; r,d@' (1 »)—
rg rg

= (JII2IIJ') "'"«"' r.&

(48b)

The sum over» in Eq. (48) is over all muon states for which neither (J
I I

Y,
I I

J}nor the two Racah coef-
ficients are zero. The sum over I(a) is over inner nuclear states:

and

Qo = 2 p(r, 8)P,(cos B)r 'd'r
0 0 0

fo f,"f„"„p(r,8)P,(cosB)(r '/r' —r'/r„') d'r
(48c)

Now consider the second term in Eq. (46):

(n IES 2 lm) = —P g g g (n«Jm(J) IR(Imp)I(n) m(I(a})K;qr„)
m(J) m(I) m(I(e)) e(S),n(8)
m( J') N(l') l(o) m( J(g))

x ln(p)»(ti) J(p) m( J(]3))) (n(p) «(p) J(t})m( J(t}))
I

&& r (I(a) m(I(n)) I' m (I') K; q 'r)l n' «' J,' m (J'))

&&(IJ m(I) m(J)l Em(E)) (I' J' m(r') m(J')I Em(E)),

where

(49)

R(Im(I)I(n) m(I(n))K; qr„) = gg(vI m(l)K I(-1)'Y,'(Q, )Y;(Q~) 5
(- e')T(r„r~, 2) lv(a)I(n) m(I(n)) K&

p e

(49a)

and where

r(I(a) m(I(n))I'm(I')K; q'r„) =gg(v(a}I (a) m(I(n)) K
I
[E(Em(F)I' J') -E(I(n)) H~, ] '-

x(-1)' Y,'(Q„,)1'; (Q&, )T(r„., r~, 2) ( , e') lv'—I' m-(l') K). (49b)

In the intermediate step we have used the orthonormal property of the Clebsch-Gordan coefficients

g (I(n }J(t}}m(I(a })m «(P) ) I
F' m(F')) (I(n ) J (P) m'(I(a ))m '(J(p) )I F' m(F'))

FE
m(F')

= 6 (m(I(n)), m'(I(n))) 6 (m( J(P)), m'( J(P)) ) .

The sums over I(n), m(I(n)) and J(]3),m(J(p)) are over nuclear states and muonic states within the model
space.

The final result for this second part becomes

(nlE» lm&= - g (-1)'""'""&»(n)+1](21'+1)(2J+»(2 J+»&"'«ll Y. IIJ )
n(g)

x W(I(n) JIJ;E2)W(I(n) J I' J', F2)(Q }'e'—(2I(a) OKI IK)(2I' OKI I(n) K)

B nvn F;r„)r„'dr„C{mP 7I, r'„r'„'dr„' 5{7,K ),
0 0

(50)
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where

B(nun(j') g; r„)=g(n z; r„)[g(n(P) v(P); r„)+f(nK; r„)f(n(P) a(P); r„)]F(IC; r„)
(50a)

C(n(P) 7; r„')= [g(n(j') R; r „)y'(g; r'„)+f (g(P) F; rg P'(n; r'„)].
The total extended space correction is given by

(50b)

(nIESIm) = g (-1) "' "'
Q,'e' —([21(a)+1](2J'+ l)(2I'+ l)(21+1)] '

I(e)k

&&(~II ~.
I
I~)(21(&)«I IZ)(2I'0ZII(n) E)W(I(n) JIJ;F2)W(I(n) JI'J'; F2)

A net; r„r„'dr„— B ni(n 7;r„r„'dr~ C n P 7; r„' @~dr'„5 7, I(„

O ng) 0

(51)

ANALYSIS OF THE EXPERIMENTAL DATA

The data on the x rays of muonic atoms of '"Ta
were taken at the synchrocylotron of Carnegie-
Mellon University in a manner described in an
earlier publication. ' The spectrum of the double
escape peaks of the K x rays is shown in Fig. 1.
We present in Fig. 2 the spectrum of the L x rays.
Spectra of the y rays used for calibration were

also obtained. The peak positions, corresponding
to the energies of the y rays, were obtained by
fitting Gaussian curves to the peaks by a technique
involving the minimization of X'.

If some of the peaks in the x-ray spectra ap-
peared broader than expected, a calculation was
done to obtain the multiplicity of the y rays in the
peak region. Reasonable values of c„ t, and Q,
were assumed and the energies of the transitions

K x RAYS

2000-
MUON IC Ta

X

LLI

5138.45 k e V

5356.64 k e V

5» i] «K I i i & &TT& I & i11 i i i i I I i I i I

2400 2500 2600 2700
CHANNEL NUMBER

FIG. 1. Spectrum of double escape peaks of K transitions in muonic atoms of Ta. The abscissa is the channel
number and the ordinate represents the total number of counts in each channel. Vertical lines represent calculated
transitions with heights proportional to intensities. Values of the parameters for the calculations are cp= 1.1055 fm,
t = 2.389 fm, and Q p

= 7.38 b.
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L x RAYS

MUONIC Ta

2000

0
CL
LLI

X
1925.I9 k e V 2I76.20 k e V

I i i » i i i » I i iliIlii»xi v1 I i i i i i ni i i I

Iooo I IOO doo l300
CHANNEL NUMBER

FIG. 2. Spectrum of I transitions in muonic atoms of 8 Ta. The legend is similar to that of Fig. 1.

were calculated. In addition, the intensities were
calculated by assuming that the muonic atom cas-
caded from initial states of the 4f muonic atom
by emitting E-1 radiation. A total angular mo-
mentum F was calculated for these initial states
and the population of them was assumed to be
proportional to 2F+ 1.

This computation then suggested the number of
components in the broad peak under study. The
determination of the parameters of the constituents
of the multipeak was then straightforward.

The values of the energies of the y rays used for
calibration are given in Table I. In Table II we
present the numerical values of the physical con-
stants which are required for the computation.
The values as determined in this experiment of the
energies of the K and L x-ray transition of muonic
atoms of '"Ta are presented in column 1 of Table
III.

We were able to analyze the single escape peaks
and the full energy peaks of 13 K x rays. This
provided an extremely accurate determination of
the slope of the linear response of the detecting
system. We obtained a slope of 1.5974+ 0.0014
keV/channel. The uncertainty in the slope is in-
corporated in the precision measures assigned to
the experimental values of the energies of the
transitions.

Only four peaks of the L x rays could be analyzed.
The slope of the response of the system in the re-

TABLE I. p rays used for calibration.

Values of
energy of y

rays
(keV) Source Reference

511.006 +0.000
846.76 + 0.05

1238.34 +0.09
1771.57 +0.01
2035.03 +0.12
2598.80 +0.12
3253.82 60.15
5107.56 + 0.24

Na
"Co
"co
"Co
56Co
56Co

"co
16N

B. N. Taylor, W. H. Packer, and D. N. Langenberg,
Rev. Mod. Phys. 41, 375 (1969).

J. B. Marion, Nucl. Data. A4, 301 (1968).
~ C. C. Hasman et aI, Phys. Rev. 159, 830 (1967).

gion of the L x rays was determined from energies
and positions of calibration y rays.

Theoretical values of the energies of the K and
L transitions of the muonic atom of '"Ta were cal-
culated for many sets of values of the parameters
c„ t, and Q,. A comparison of these energies with
the experimentally obtained values was made by a
calculation of X'. The region of fit for the values
of the parameters was defined to give a value of
It' better than that for a confidence level of 90/p.
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TABLE II. Values of physical constants used in the calculation.

Constant Value

Velocity of light
Mass of the electron
Mass of the muon
Nuclear mass
Mass defect (DA)
Planck's constant
Fine structure constant

7 +
First excited state 'Ta (- band)

Second excited state (~2 band)

Third excited state (~2 band)

Fourth excited state (~2 band)

2.997 925x 10 cm/sec
0.5111006 MeV

105.659 MeV
931.478 (A +DA)
—0.052 020

6.5820 x 10 MeV sec
1/13 7.0388

136.2 keV

301.3 keV

498.0 keV

718.0 keV

This was accomplished by starting with fixed
values of c, and I; and obtaining the range of Q, for
which the value of y' was at the confidence level
of 90/p or better. The next step involved changing
t and repeating the process for the new range of
Q,. Eventually we found values of t for which no
range of Q, existed to give us a region of the re-
quired confidence.

We then change the value of c, and repeated the

process. Ultimately we reached values of cp
and Qo where we could not fit the experimental
data with required confidence. In Table IV we pre-
sent the values of the parameters which give the
energies of the transitions with the confidence
level of 90/0.

We display in Figs. 1 and 2 the transitions cal-
culated for an acceptable set of &0 I; and Qp as
vertical lines at the base of the figure. The heights

TABLE III. K and L transition energies calculated for:

co =1 1055 fm t =2 3890 fm Qo =7 38 b

Eq =-14.0 MeV, E2 =&g = —15.0 MeV.

Experimental
value
(keV)

Calculated
excluding nuclear

polarization correction
and

extended space correction
(keV)

Calculated
including nuclear
polarization and
extended space

correction
(keV)

5098.3 + 3.7
5133.5+ 1.3
5139.5+ 1.2
5145.5 ~1.1
5192.2 + 1.0
5205.3 +1.1
5234.2 + 1.0
5267.6 + 2.2
5275.7 + 1.1
5308.9 ~ 1.1
5325.7 ~ 1.1
5342.1+ 1.3
5357.8 ~1.3

1925.7 + 2.8
2062.8 + 0.6
2068.6 + 0.5
2078.2 + 0.9

K transitions

5089.01
5126.99
5130.92
5236.54
5181.90
5196.98
5225.01
5262.94
5269.24
5300.12
5317.90
5333.29
5347.02

I- transitions

1919.71
2054.24
2062.01
2071.52

5097.42
5135.02
5138.45
5144.20
5190.38
5205.40
5233.42
52 71.01
5278.18
5309.21
5326.37
5341.96
5356.64

1925.19
2060.61
2068.35
2077.35
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TABLE IV. Range of values of parameters to obtain
fits to the experimental data. Precision measures of
Qp represent confidence limits of 90%.

Cp

(fm)
t

(fm)
Qp

(b) X

1.1010

1.1055

1.115

1.1220

2.4479
2.4413
2.3895
2.3767
2.3049
2.2095
2.1416
2.1380

7.452 ~ 0.008
7.503 + 0.002
7.387 + 0.005
7.480 6 0.002
7.316 + 0.011
7.427 + 0.007
7.251 + 0.008
7.272 + 0.008
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FIG. 3. Set of plots of (X) versus Qp, the intrinsic
quadrupole moment. Cp

——1.1240 fm. Each curve repre-
sents calculations for the specific value of t indicated on
the figure.

of the lines are proportional to the intensity of the
transitions which were calculated as indicated
above. No attempt was made to fit the intensities
for the experimental determination is not very
precise. Qualitatively the intensities have the
correct appearance.

In the calculation of the X' the uncertainties of
the experimentally determined values must be
combined with the uncertainties of the calculation
of the nuclear polarization correction. The latter
uncertainties arise mainly from the use of wave
functions for the spherically symmetric harmonic
oscillator for the single particle functions. Chen"'
explored these uncertainties and estimated that the
error in the calculation of the nuclear polarization
correction was 30%. This error of 30% was com-
bined in quadrature with the experimental errors
of the energies of the K and L x-ray transitions.

In Fig. 3 we show plots of X' vs Q, for a fixed
c,=1.1240 fm and for different values of t. Note
that no curve reaches a value of X' below 6.5, the
value of which corresponds to a 90/0 confidence
level. We assert, therefore, that for this value

of c, a fit is not possible. In Fig. 4 we show a
similar curve for co= 1.055 fm. In this figure one
can see that a range of values of t will give ac-
ceptable fits. It was impossible to obtain an ac-
ceptable fit for any values of the parameters with-
out the correction for nuclear polarization and
extended space. In fact, the minimum X' we ob-
tained just trying to fit the energies of the K tran-
sitions was 45.8. The values of the parameters,
corresponding to the unacceptable y', were c,
=1.150 fm, Q0=7.20 b, and t=1.548 fm.

A set of values of c„ t, and Q, was selected
from well within the three-dimensional region of
fit. A calculation of the energies of the K and L
transitions, using this set of parameters, was
performed. The results are presented in Table
III. We also include in Table III the results of a
calculation with these values of the parameters
which neglect the nuclear polarization and extended
space corrections.

It can be seen from Table IV that the bounds on
the intrinsic quadrupole rnornent are 7.251 to
7.503 b. The surface thickness for the Fermi dis-
tribution lies between 2.1380 and 2.4479 fm. These
ranges of values for the parameters obtain for the
range of the half density radius, c„ from 1.1010
to 1.1220 fm.

It might be noted here that there are several
other methods for measuring the intrinsic quadru-
pole moment and we quote some of the results for
comparison with ours. A typical spectroscopic
measurement" gives a result of 8.36+0.86 b. The
giant dipole method" "which measures the ratio
of the energies of the two components of the (y, n)
reaction to obtain a value for Q, gives values rang-
ing from 5.7+0.3 to 7.1+0.8 b with precision mea-
sures ranging from 0.3 to 1.3 b. A giant dipole ex-
periment using a monochromatic beam of y rays"
yields 6.71+0.74 b.

There are numerous measurements" "using
Coulomb excitation of the first excited state and
second excited state of '"Ta. The results for the
intrinsic quadrupole moment vary from 5.2 ~ 0.5
to 6.95+ 0.27 b with precision measures ranging
from 0.27 to 1.7 b.

Comparison with results from other muonic ex-
periments is not very fruitful. A very early mea-
surement'o using detectors of Nal(TI) obtained
8.4+ 1.5 b. An experiment by the CERN Group"
using a. Ge(Li) detector produced a value of 7.5

+0.4 b for Qo. This latter report consists of a.

three-parameter analysis of the experimental data
with no corrections for nuclear polarization or ex-
tended space. As a result, the surface thickness
reported by this group appears to be 1.50+0.40 fm.

In the calculation of the nuclear polarization cor-
rection we assumed values for E, as introduced in
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FIG. 4. Plots of @) versus Qp for cp=1.1055 fm. Each curve represents calculations for the specific value of t
indicated on the figure.

Eq. (26). The values assumed for the calculations
in Table III are indicated. The results are not very
sensitive to the values assumed for these mean en-
ergies as is shown in Tables V and VI. The sensi-
tivity to values of Z, is not shown but is even less
than the sensitivities given in Tables V and VI. It

should be noted that in Eq. (26) we introduced the
quantity E. In our tables we talk of E„E„and
E3 We did this at first to all ow for diff erent val
ues with each term in the expansion of the electro-
static interaction. As is shown in the tables, one
may assume the same value for all three E,.

TABLE V. Dependence of the nuclear polarization correction onE &.
.

cp = 1.1055 fm, t =2.3890 fm, Qp
——7.38 b, E~ =Eq ———15.0 MeV.

Line
number

E, = —12.0 MeV
Nucl. pol.
correction

(keV)

E&
———14.0 MeV
Nucl. pol.
correction

(keV)

E& = -16.0 MeV
Nucl. pol.
correction

(MeV)

1
2
3
4
5
6
7
8
9

10
11
12
13

6.56
6.52
6.46
6.56
6.54
6.56
6.52
6.63
6.65
6.57
6.54
6.52
6.67

K transitions

6.54
6.52
6.46
6.46
6.55
6.51
6.54
6.52
6.59
6.60
6.55
6.51
6.64

6.38
6.36
6.32
6.31
6.40
6.38
6.38
6.36
6.44
6.45
6.36
6.47
6.38

4.48
4.60
4.56
4.49

L transitions

3.74
3.85
3.82
3.75

3.28
3.39
3.35
3.28
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TABLE VI. Dependence of the nuclear polarization
correction on

cp =1.1055 fm, t =2 3890 fm Qp = 7 38 b'

E, =-14.0 MeV, E3 ——-15.0 MeV.

Line
number

E2 = -10.0
Nucl. pol.
correction

(keV)

E = —15.02

Nucl. pol.
correction

(keV)

E2 =-25.0
Nucl. pol.
correction

{keV)

K transitions

1
2
3
4
5
6
7
8
9

10
11
12
13

6.54
6.51
6.47
6.45
6.55
6.53
6.54
6.51
6.61
6.63
6 ' 55
6.53
6.68

6.54
6.52
6.46
6.46
6.55
6.51
6.54
6.52
6.59
6.60
6.55
6.51
6.64

6.31
6.27
6.20
6.18
6.33
6.29
6.31
6.27
6.40
6.43
6.33
6.29
6.50

L transitions

4.17
4.29
4.25
4.18

3.74
3.85
3.82
3.75

3.35
3.50
3.47
3.38
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In the nuclear polarization correction we calcu-
lated nonzero elements for l= 1, 2, 3 of the expan-
sion of the electrostatic interaction. In the ex-
tended space correction we calculated contributions
for l = 2 only.

The nuclear polarization corrections remain con-
stant to within 0.2 keV for all transitions. The ex-
tended space correction and, consequently, the
full corrections vary by as much as 2.1 keV. This
indicates that adding a constant value to the calcu-
lated energies is not an adequate substitute for the
calculations of the total correction. "

APPENDIX

In Eq. (19) the expression for T is truncated by
setting T =T,. To see the validity of this approxi-
mation it is only necessary to consider the next
term in the series for T; T,VT,. This term will
be seen to be small compared to Tp.

The matrix element of the operator T,VT„ in
the model space is:

(m I 8 u&&~ II'IP&(P II'I~ '&

(E E~)(E-—Es)

where we remind the reader that the states speci-
fied by a, II3 lie outside the model space and those
specified by m and m' lie in the model space. As
is shown in Eq. (24), the sum over n is performed
over two routes and similarly for the sum over P.

We get combinations of matrix elements which
can be identified as being products of terms in-
volving nuclear polarization only, products of nu-
clear polarization and extended space, and pro-
duct of terms involving extended space only. When
the products correspond to the extended space
condition, the nuclear parts being in the model
space, but the muonic parts being in outside
states, the term which is truncated is small com-
pared to the term which is kept. The energy dif-
ference which appears in the denominator (E E)-
is at least of order 1000 keV. The presence of a
second similar factor (E Es) sharpl-y reduces
the size of the above matrix element.

When one or both of the factors correspond to
the nuclear polarization condition, the terms in
the above matrix element must be examined in
greater detail.

When at least one of the factors comes from the
nuclear polarization part, two situations occur.
The first situation corresponds to the appearance
of the product of two terms corresponding to the
nuclear polarization. We next consider parts in
which the sum over these outside states is made
complete by adding and subtracting a term which
contains only model space states.

The second situation corresponds to the ex-
tended space part in which the sum over the out-
side states is made complete only for the muonic
states by adding and subtracting a term which
contains both muonic and nuclear model space
states. Each of these situations will be considered
separately.

The first case to be considered is that in which
the sums over n and P are carried out in part
corresponding to the nuclear polarization treat-
ment. Here four terms are generated in the ma-
trix element. They are
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&mlvl(E -E -H„) 'lvl[E -E -H„] 'lvlm'),

—Q (mlvIN'&&N' I [E—E~(N') -H„] 'IVI(E -E -H„) 'Ivlm'&
Ni

—g &mlvl(E —E -H„) 'IVIN'&&N'I[E Ey-(N') -H„] 'Ivlm'&,
Ni

+ Q &mlvlN')&N'l[E E, (N-') -H„] 'lvlN')&N'I[E -E,(N'& -H„] 'vlm') .

The first and third terms are smaller by a factor of approximately (E) ' when compared to the terms
which are kept in Eq. (25). Since E is of the order of 15 meV, these terms do not contribute significantly
to the correction matrix. The second and fourth terms are identically zero, as is the subtracted term in
Eq. (25), because of the nuclear integration of the interaction operator where a spherically symmetric
approximation to the charge density is used.

The second case involves the part of the sum over a which corresponds to the nuclear polarization
treatment coupled to that part of the sum over P which comes from the extended space correction. The
forms are

p (mlvlN')(N'l[E —Eg(N') H„] 'v-(E -E Hp) 'vl-m'&,

m V N P,
'

P, N E -EN N -H„'VE-E -H„'V m',
N, ]tf~

&mlvlN'&&N'I[E -E (N') -H„] 'VIN'&&N'I[E -E (N') -H„] 'vlm'),
N i,Ni

+ Q &mlvlN') Iu'&&~'IN'I[E -E„(N")-H„] 'VIN')&N'l[E -E, (N') -H„] 'vlm').
pi, Ni, N~

Each term vanishes for the same reason as the second and fourth terms in the previous ease, i.e., the
nuclear part of the matrix element (mlVIN') yields zero when a spherically symmetric approximation to
the density is used.

En the third ease, part of the sum over e corresponds to the extended space condition; the part indicated
by P corresponds to the nuclear polarization condition. The four terms are

g (mlvl(E -E -H„)-'v[E -E„{N')-H„] 'N')(N'lvlm'),

(mlvlN'&I@. '&&q'I&N'I[E -E„(N') -H„]-'v[E -E„(N') -H„]-'N') &N'Ivlm'&,
Ni, N

Q &mlvl(E-E-H„) ' vie' &u&'I[ E- E(N')-H„] 'IN')&N'lvlm'&,
i Ni

+ P &mlvIN )(N I[E Eg(N )-H„] 'vl-v'&(u'I[E -E~(N')-H„] 'N )(N'lvlm').

Each term vanishes as in the previous ease because of the presence of the nuclear parts of the matrix
elements (m'IVIN ) or (N IVlm').
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