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Fluctuation cross section in the case of an isolated doorway resonance*
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In this article we discuss some aspects of the fluctuation part of the cross section at a
doorway resonance. We show that in the strong absorption limit an inequality is derived
for I', namely, I' —(2/N~ —i) I where N is the number of open channels. In the
strong absorption limit no doorway resonance appears in the average cross section.

NUCLEAR REACTIONS Intermediate structure, fluctuation cross section
discussed.

I. INTRODUCTION

In discussing the fluctuation part of the cross
section at a doorway resonance the custom has
been to assume that the absorption present in dif-
ferent clmnnels is weak and thus is completely
neglected in all channels. This then results in a
simple expression for (o2&2), namely,

where I', &DE&I', I', is a typical compound nu-
cleus width (e.g. , the T& states in the case of iso-
baric analog resonance). r&=Q,r, and I'= I'&+ r&.
One knows, however, that in many situations,
particularly in isobaric analog resonance phenom-
ena, the absorption could be strong. The indis-
criminate use of Eq. (1) to estimate (o,'2&) for all
cases certainly warrants a critical examination
of the problem. In this work we shall look at the
case when there is strong absorption in all chan-
nels. We shall also derive an expression for the
fluctuation cross section in the case of intermedi-
ate absorption. And lastly we obtain an inequality
for the spreading width I'& of the doorway reso-
nance. This inequality should be useful in cases
where the number of channels N is small (N& 4).

In what follows we shall omit all geometrical
factors associated with the cross section.

nance.
The sum Q „ is over all the complicated com-

pound nucleus states that constitute the fine struc-
ture of the doorway resonance.

The doorway resonance becomes apparent when
one considers the average S matrix averaged over
an energy interval 4E that satisfies I' & AE& I',
where I' is the total width of the doorway reso-
nance.

Then
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where (S+&) =St2& is used.
A very important fact appears conspicuously in

Eqs. (I) and (2), namely, that even in the absence
of direct reactions there is correlation among dif-
ferent channels due to the doorway state. This
correlation manifests itself in the nondiagonal
nature of S„and (S„). It is then interesting to in-
vestigate the effect of the correlation on the fluc-
tuation cross section which in principle is deter-
mined from (S,g by diagonalization. 2 In the limit-
ing cases of weak (r, 1) and stro-ng (&,-0) ab-
sorption in all channels, however, a simple form
for (o",,) is obtained.

III. TRANSMISSION MATRIX

The transmission matrix is defined as usual by

II. S-MATRIX AND ITS AVERAGE

One can write the following expression for the
S matrix describing the transition from state a to
state b via the doorway state'.

Pab- &ab- Sac Sbc ~

Using E&l. (2) one can find an expression for
P„for any absorption ~„

(4)
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where I', is the partial width of the doorway reso-
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where r'=Z, r, .

P„ is nondiagonal and it contains a nonresonant
term and a resonant term (doorway resonance).
The diagonalization of (S„)results in a diagonali-
zation of P„itself by proper choice of the unitary
operator that diagonalizes (S„).

The physical interpretation of P„, or rather,
its diagonal part is that of a probability of passage
from one channel to the other. Then the sum over
all final states must be a positive quantity for all
energies. Utilizing this fact we shall in the sequel
derive an inequality.

Thus one demands TrP ~ 0 for all energies;
therefore, from Eq. (5) one obtains

pr.r,r —(ri)'~ 7. '+ ' 0
(E —E )2+ —'I

Evaluating the above at E =E„we get

Strong absorption in all channels implies the

following:

(8)

(9)

IV. FLUCTUATION CROSS SECTION

In terms of ( f l') and l(f) l' the fluctuation
cross section assumes the following form:

which is meaningful only if there is only one chan-
nel or if I', is the same in all channels which is
approximately true when the number of open chan-
nels is large.

The best one can do in order to utilize Eq. (7b)
is to evaluate ( l f l') by utilizing the statistics of
a„'s or through a dynamical model of the compound
nucleus. But in the strong absorption case one can
still make use of Eq. (9), since by summing over
a one easily obtains (l f l') = N/(I')', i.e. , no reso-
nance appears in (l f l'). As we show in the next
section this implies that the average cross section
will show no doorway resonance in this limit.

or

(6a)

&a!l&=r.r (&lf &
— (f&l') (10)

Since a,~(&S)) = r, r~ l(f), one immediately finds
for the energy-averaged cross section

which is the desired inequality.
In the limit of strong absorption in all channels

one obtains

(6b)

QS S, ~ —6~ (Va)

which gives

r, r'& lf(E) I'& —7,r,r l&f (E)& I' =1 —r.' (Vb)

Equation (Vb) is basically a relation between r,
and the doorway resonance parameters I'„ I', I'~,

and E~ as well as the energy E.
Weak absorption in all channels implies an equa-

tion for (lf l'), namely,

For large N the above inequality is a trivial one,
but if N &4 one gets an interesting lower bound on
I' which can be checked through a measurement of

In general, however, one cannot realize the
strong- absorption- limit- in- all- channel condition
and thus Eq. (6a) is to be used instead. To be con-
sistent with the condition of unitarity one would,
in principle, vary 7', in accordance with varying
the resonance parameters. This is achieved
through the evaluation of the following:

the average (f) is known, namely,

(f)=E —E„+z—'r
The determination of ( l f l') thus completely de-
termines both (o',g as well as (a,g. One way of
determining ( l f l ) is to use Eq. (8) in the limit of
weak absorption, r, 1; this give-s Eq. (1). In the
strong absorption limit we have

Thus one sees that the strong absorption in all
channels washes out the doorway resonance com-
pletely in the energy-averaged cross section.

The presence of N in Eq. (13) should not cause
alarm in case the number of open channels N is
large, because the quantity

It
lim

Z-~afge +
can be considered as an average partial width that
renormalizes I', and I,.

To obtain an expression for &a,"~) valid in inter-
mediate absorption cases where neither Eqs. (8)
nor (9) are to be trusted requires, as was men-
tioned already, an explicit dynamical treatment
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of the resonances. However, one still hopes that
if the number of open channels is large unitarity
alone is sufficient to suggest a practical form for
the fluctuation cross section. Utilizing Eq. (7b)
again by summing over all channel indices, one
obtains

In principle, the above equation should be con-
sidered as a unitarity constraint on the absorption
coefficients v„relating them to all possible varia-
tion in energy as well as the resonance parame-
ters.

Denoting the average partial width by

r'I"= lim —;
large N

the average absorption in all channels by

7, —= lima g- large N

to use to describe such an absorption rather than,
say, individual v, 's. The larger the number of
channels the better the above type of approximo
tion is. Of course, in the limit when this average
absorption is weak (7-1) or strong (F 0)-, one re-
covers Eqs. (1) and (18), respectively.

Since a double check on Eqs. (16) is possible via
P„=g,& o„&, we get, accordingly,

P„=='(1-7') + (1V)
R +4

Naturally this is identified with Eq. (5) which
indicates that, for Eq. (16) to be consistent with
unitarity one must demand that l, = I' and 7, = F.
Since this connection between I', and ~, on the one
hand and I' and 7 on the other is only approximate-
ly true, one should thus keep this in mind when
using Eqs. (16) for &o,s, &.

From Eq. (16b) one sees that off resonance the
average cross section is basically given by

approximating

7,l,
lim '

g- large

At resonance one has

"&R (E-E )'+-'I' r&

2

lim ' = 7',
Ã- arge

one thus obtains an approximate solution for (l f l&',
namely,

the ratio between these two numbers is then inde-
pendent of the channels involved, i.e. ,

(18)

(15)

It should be realized that the above form for
(l f l') is valid in the case where N, the number
of open channels, is large, because then one may
speak of average partial width by reason that the
variation in l, from one channel to the other
would not be so significant. With the above form
for (lf l') the energy-averaged fluctuation cross
section becomes

Knowing I from other measurements one can, in
principle, use the above equation to obtain the
average absorption 7 which one needs to describe
&o„) for any other reaction a b-

V. DISCUSSIONS AND CONCLUSIONS

Several points are worth commenting upon in the
light of the results we have obtained in this work.

(16a)

and the energy-averaged cross section,

The above expression should be useful whenever
one tries to approximate the absorption present
in the reaction to be roughly the saxne in all chan-
nels, because then T would be the natural quantity

A. Hauser-Feshbach theory

It is customary to express (os~) in terms of the
diagonalized form of the transmission coefficient. '
However, it seems to us that if the interest is just
in the fluctuation cross section then the form (16)
should be just as convenient to work with. As a
matter of fact, the transmission matrix itself
seems to be a more complicated object and one
has to perform the Engelbrecht-WeidenmuQer
transformation in order to relate to the fluctua-
tion cross section. Thus the need for a Hauser-
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Feshbach calculation is certainly not so great in
the cases we have discussed. It is the doorway
nature of the intermediate structure that causes
the cross section to have the simple form in Eq.
(16). Of course, the above-mentioned Engel-
brecht-Weidenmuller transformation becomes in-
dispensable in the presence of direct (nonresonant)
reactions. For this one needs the transmission
matrix and thus a Hauser-Feshbach type of cross
section.

B. Strong absorption

As we have seen in Sec. IV the presence of
strong absorption in all channels results in
smoothing out the intermediate structure in the
energy-averaged cross section. This behavior
can be traced to the condition that unitarity im-
poses on the absorption in its connection to the
doorway resonance parameters and the energy.
The averaged cross section one obtains in this
limit, i.e. , Eq. (13) should be considered to be
mostly valid when the number of open channels
N is large.

C. Intermediate absorption

In order to generalize the result obtained above
to cases where the absorption is intermediate and

equal in all channels we suggest a simple form,
Eq. (16), valid only when the number of open chan-
nels is large. Unitarity imposes the further con-
dition that the partial widths should be equal in
all channels. Thus one would guess that our for-
mula for (o~,) in Eq. (16) is useful in elastic scat-
tering. To discuss inelastic reactions via the
doorway one has to consider Eq. (16) as an approx-
imate one. Correction to (o,",) as given in Eq. (16)
can only be made if a detailed dynamical descrip-
tion of the resonances is made.

Lastly, we have exploited the positivity of the
total reaction cross section to obtain an inequality
which may be used in cases where N, the number
of open channels, is small (N( 4) to give a lower
limit to I"~, given an experimentally determined
I'~. For large N the inequality becomes a trivial
one I'& ~ 0.

It would be interesting to analyze the problem
of the fluctuation cross section in the general case
of many-doorway resonances and in the presence
of direct, nonresonant reactions, using, e.g. , the
Englebrecht-Weidenmuller transformation or the
Kawai-Kerman-McVoy approach. ' We are pres-
ently exploring these extensions.
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icism that clarified many points in this work.

Work supported in part by FINEP.
G. Graw, H, Clement, J. H. Feist, W. Ketschmer, and
P. Proschel, Phys. Rev. C 10, 2340 (1974).

2H. M. Hofmann, J. Richert, J. W. Tepel, and H. A.
Weidenmull. er, Ann. Phys. (N. Y.) 90, 403 (1975); C. A.

Engelbrecht and H. A. Weidenmuller, Phys. Rev. C 8,
859 (1973).

~M. Kawai, A. K. Kerman, and K. W. McVoy, Ann. Phys.
(N. Y.) 75, 156 (1973).


