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In recent work it was shown how a rigorous subsidiary ~~»mum principle of the Rayleigh-
Ritz type could be used as an aid in the construction of the closed-channel part of the scatter-
ing wave function, thereby ~~king available a potentially powerful new tool in the variation-
al approach to multiparticle scattering problems. The earlier discussion, which was re-
stricted to scattering below the threshold for target breakup, is generalized here to the case
where both two-body and three-body channels are open. The scattering problem is formally
reduced to an equivalent three-body problem. Effective two-body and three-body potentials
are defined explicitly (without the use of projection operators) and integral equations of the
Faddeev type are derived. This analysis, which suggests a variety of cluster approxima-
tions, is used here as the basis for a decomposition of the wave function into an open-chan-
nel part, which contains the two-body and three-body outgoing scattered waves, and a decay-
ing closed-channel part. The closed-channel part is shown to satisfy a minimum principle
whose rigor can be maintained even when the target bound-state wave functions are impre-
cisely known. A calculational procedure which combines this minimum principle with the
Kohn variational construction of the scattering amplitude is described.

NUCLEAR REACTIONS Scattering theory. Effective three-body formulation.
Derivation of extremum principle for the wave function.

I. INTRODUCTION

A considerable effort has been devoted in recent
years toward the development of reliable approxi-
mation techniques for three-body scattering prob-
lems, ' and a good deal of progess has been made.
There are a few "pure" three-body systems in
atomic and nuclear physics (such as the electron-
hydrogen and nucleon-deuteron systems) which

have served as testing grounds for calculational
methods. Much of the motivation for these studies
lies in the recognition that for a wide class of
multiparticle systems the model of three interac-
ting clusters gives a useful first approximation.
The deuteron- n particle and electron-lithium sys-
tems provide examples in which the picture of
two particles and a tightly bound core is quite a
reasonable one, particularly for scattering ener-
gies below the threshold for breakup of the core.'
Models of nuclear reactions based on core excita-
tion mechanisms have come under study recently. '
In a more general sense, apart from any particu-
lar model of the scattering process, it is clear
that the effects of three-cluster states must be
properly accounted for in a complete theory of re-
actions. For example, unless such states are
built into the approximation scheme explicitly
there seems little chance that the requirements of
flux conservation will be satisfied in the energy
range where three-cluster states can propagate

asymptotically. If the explicit introduction of
three-cluster states is to be carried out as part of
a systematic approach to the scattering problem a
precise, unambiguous definition of the effective in-
teractions among the clusters must be provided.
This allows for a well-defined procedure for de-
termining corrections to the tight-binding (or
equivalent three-body) approximation.

A systematic analysis of three-cluster interac-
tions can be carried out in a variety of ways. 4 The
approach adopted here arises as a natural exten-
sion of an earlier analysis of effective two-body
scattering problems. "The usefulness of the ef-
fective two-body (or optical) potential method in
the study of low-energy reactions has long been
recognized. ' It provides for a unified description
of resonance reactions and, by means of the Her-
miticity condition on the effective potential, allows
for the requirements of unitarity. There is some
freedom in the manner in which the effective po-
tential is defined. It was shown" that a particular
choice could be made which had the merit of al-
lowing for the use of rather powerful Rayleigh-
Ritz bound-state techniques as a computational
aid. This is important since the construction of
the effective potential is in general a complicated
multiparticle dynamical problem. The method has
two significant features, both of which are main-
tained in the generalization developed in the pres-
ent work. Firstly, the subsidiary Rayleigh-Ritz-
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type minimum principle, whose applicability de-
pends on a separation of the wave function into
open- and closed-channel parts, can be maintained
rigorously even when (as is usually the case) the
target wave function is imprecisely known. Sec-
ondly, the above-mentioned channel separation
can be carried out effectively without the introduc-
tion of Feshbach projection operators. 7 This is
significant since the projection operators are dif-
ficult to construct in practice when rearrangement
processes can occur. A brief outline of this
earlier work is given in Sec. II below. That dis-
cussion serves as a point of departure for the gen-
eralizations taken up subsequently.

When rearrangement processes (such as deute-
ron stripping) are considered, or when the effects
of three-body open channels are significant, it is
more appropriate to analyze the system in terms
of effective three-body (rather than two-body}
equations; this is worked out in Sec. III. It will be
clear from the derivation that systematic generali-
zations are possible, in which effective n-body
equations are introduced; they would be appropri-
ate at still higher scattering energies. However,
we shall for simplicity restrict our present con-
siderations to the energy domain below the thresh-
old for breakup into four or more bound clusters.
The effective three-body equations are of the form
given by Newton', they represent the modification
of the original three-body Faddeev equations'
which is appropriate when both two-body and
three-body forces are present. The two-body ef-
fective potentials which appear here have been in-
troduced earlier. ~ The three-body effective poten-
tial is of course a new feature. These effective in-
teractions are here defined explicitly in terms of
the original multiparticle Hamiltonian.

The Faddeev-Newton equations are of interest
in their own right. They may serve, for example,
as the basis for unitary approximation schemes in
analogy with the use of the usual three-body Fad-
deev equations for that purpose. ' For our present
purposes they serve as a formal tool in the analy-
sis of the structure of the wave function. This
analysis leads to the specific decomposition into
open- and closed-channel components developed in
Sec. IV. The decomposition provides the basis for
a variational formulation of the problem in config-
uration space. We have previously described' how

a subsidiary minimum principle for the closed-
channel component can be used in conjunction with
the Kohn variational principle for the scattering
amplitude to give a tractable calculational proce-
dure. The generalization of that procedure appli-
cable to reactions above the three-body breakup
threshold is described in Sec. V. A summary of
our results appears in Sec. VI.

(h+k+v}
I
g&=e

I g&. (2 2)

Here k is the kinetic energy operator for the rela-
tive motion of the projectile and the center of
mass of the target, while v represents the inter-
action potential. To simplify the present discus-
sion the scattering energy e is assumed to lie
below the threshold for the onset of rearrangement
processes and for target excitation. We now in-
troduce the modified target Hamiltonian

h-=h- e lx&&xl, (2.3)

whose spectrum differs from the spectrum of h

only in that the ground-state level has been dis-
placed upward by an amount a." Equation (2.2)
can evidently be rewritten as

(h+ k+ v - e}
I &&

= —~
I x&&x I && (2 4)

The solution can be represented formally in terms
of the resolvent

g(e) =(e -h —k —v) ' (2.5)

as

I e& =i( } I x&&x I e&. (2.6)

A decomposition of the wave function into open-
and closed-channel components can be obtained
directly from Eq. (2.6). We introduce the resol-
vent equation

g =gp+gvgp q

where

g, (e) =(e —h —k} '.

(2 'f)

(2 6)

It follows directly from the eigenfunction expan-
sion of g, (e) that

io(e) lx&= Ix&(e-k} ' (2.9)

Hence, by combining Eqs. (2.6) and (2.7) and de-
fining the effective single-particle wave function

f according to

(2.10)

we find that

IP&=(1+gv) Ix&lf&

This representation is of the form

(2.11}

II. PRELIMINARIES: TWO-CLUSTER STATES

In this section we shall consider the scattering
of a structureless particle by a composite system
in its ground state. The target ground-state wave
function X satisfies

(2.1)

The Schrodinger equation for the scattering pro-
cess is written as
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I e&
=

I xf &+ lm&, (2.12)

where we have written lx) I f) =
I xf) and have de-

fined

Im) =&
I xf) (2.13}

Now i(e) is a bounded operator since, by assump-
tion, e lies below the level of the first excited
state of h and hence below the lowest energy level
of k. Then, since v lx f) is a vector of finite length
the same is true for lm); that is, the configura-
tion-space representation of lm) is a function
which decays asymptotically. We may therefore
identify lm) in Eq. (2.12) as the closed-channel
component of the scattering wave function, and

IXf) as the open-channel component. This de-
composition is of course not unique. However, as
discussed in detail in Ref. 6 (see also Sec. V be-
low), it has the merit of allowing for the use of a
subsidiary minimum principle in determining ac-
curate approximations to lm). Significantly, the
rigor of the minimum principle can be maintained
even when the target function X is imprecisely
known. "A variational procedure for finding ap-
proximations to the single-particle wave function

f, which may be used in conjunction with the mini-
mum principle for the function m, was outlined in
Ref. 6. A knowledge of the exact form of the de-
fining equation for f is useful in this connection.
To determine this equation we make use of Eq.
(2.11) and the adjoint of (2.7) to write

&xl 0&
= If)+&x lli. +iovilv I xf &.

This may be rewritten, with the aid of Eqs. (2.9)
and (2.10), as

in the language of Feshbach projection operators.
When rearrangement processes are possible
(Pauli exchange is of course always possible when
identical particles are present) the required pro-
jection operators are difficult to construct. The
approach outlined above, on the other hand, is
easily generalized to account for rearrangement
and target excitation processes. [The generaliza-
tion of Eq. (2.3), providing the modified Hamil-
tonian appropriate in such cases, appears in Ref.
5]. However, for scattering energies high enough
so that three-cluster channels are open, a sub-
stantial modification is required in order to re-
tain the subsidiary minimum principle for the
closed-channel component of the wave function.
The necessary generalizations will be worked out
in the following three sections.

III. EQUIVALENT THREE-BODY FORMULATION

A. Statement of the problem

We wish to generalize the discussion of Sec. II
to the case where the scattering process can lead
to three-body final states. For definiteness we
assume that one of the bodies is a bound cluster
C while the other two are neutral structureless
particles, labeled 1 and 2, which are distinguish-
able from each other and the constituents of C.
The more general case, where all three bodies are
composite, and where Pauli exchange processes
are accounted for, can be treated by similar meth-
ods. To account properly for long-ranged Coulomb
effects in three-body channels is a far more diffi-
cult ta,sk.

The Hamiltonian for the system is written as
8 —k 1 , &x lv+ viv I xf&. (2.15) H =h+K+ V. (3.1)

If we rearrange Eq. (2.15) slightly and define the
effective potential

~(e &
=

&x I
v+ viv

I x), (2.16)

we may put Eq. (2.15} in the form

(e —k —e) If) = kv(e) If).

Equivalently, we have the integral equation"

(2.17)

If) = lp&', (2.18)

where lp& is the momentum eigenstate represent-
ing the relative motion in the initial state. The
eigenvalue problem for bound states can be form-
ulated in terms of the homogeneous version of Eq.
(2.18), a result which will be of use to us later
on.

Much of the above analysis can be reformulated

V = vg+ v2+ v3 ~ (3.2)

We have represented the interaction between par-
ticles 1 and 2 as v„while v„ i =1,2, represents
the total interaction potential between particle i
and the constituents of C. To complete the defini-
tion of H, we identify k in Eq. (3.1) as the Hamil-
tonian of the cluster C in its own center-of-mass
frame. The ground state of C is defined by the
eigenvalue equation (2.1). We assume that bound
states exist for the subsystems (12), (1C), and

(2 C); the ground states are defined by the equa-
tions (appropriate in each case to the center of
mass of the subsystem)

(k, +v, )
I P,& =a,

l @,&, subsystem (12); (3.3a)

Here K is the three-body kinetic energy operator
associated with the relative motion of particles
1, 2, and the center of mass of C; V is of the form
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(h+k, + v, ) I Q&&
= e,

I Q,&, subsystem (i C), H =h+K+ V. (3.12)

I~, lp, &=«-~,)lp, &, (3.5)

where K, is the kinetic-energy operator associated
with the relative motion and E is the total energy.
The initial state 4, for channel 2 is analogously
defined. In channel 3 subsystems (12) and C are
both bound. The initial state is

l4,&= ix~,p, &, (3.6)

where lp, ), the momentum eigenstate for the rela-
tive motion of the two bound subsystems, satisfies

K, I p,) = (E —e —a, )
I p, ) . (3.7)

The initial state associated with the three-cluster
channel 0 is given by

with

I
~.&

=
I xp, &, (3.8)

Hlp, &=(E — ) lp, &. (3 9)

The Schrodinger equation for the scattering prob-
lem is

(H E) IC&&=0, j=-0, 1, 2, or 3. (3.10)

The index j specifies the channel which contains
the incident wave. The energy E is taken to be
low enough so that channels other than the four
enumerated above are closed.

B. Effective three-body Faddeev-Newton equations

In analogy with the two-cluster treatment dis-
cussed in Sec. II we write the Schrodinger equa-
tion (3.10) in the form

(H-E) lg, &=-~ x&&xi', &, (3.11)

with

i =1,2. (3.3b)

For simplicity we ignore the possibility of addi-
tional subsystem bound states, thus limiting the
number of open channels which need be consid-
ered. Multichannel generalizations can easily be
worked out (indeed, as mentioned earlier, such
generalizations are required if Pauli exchange
processes are to be properly accounted for) but
their inclusion at this point would add an inessen-
tial complication. As it is, we deal with four open
channels, or equivalently, with four different
initial (or final) states which must be considered.
Thus, the initial state for channel 1 is given by

lc,&= e,p, &, (3.4)

where lp, ) is a momentum eigenstate for the rela-
tive motion of the center of mass of subsystem
(1C) and particle 2. It satisfies

G(E}=(E-H)-'.
We have the resolvent identity

G Go+ GVGO

with

Go(E ) = (E —h —K) ' .
In analogy with Eq. (2.9) we have

G.(E)
I
x&=

I x&(E -ff) '.

(3.14)

(3.15)

(3.16)

(3.17)

These results may be used to write Eq. (3.13) in
the form

I~,&
= IxF,)+ IM, &,

with

&xi~,&

and

IMg&
= GI'I xFg& .

While the formal analogy with Eq. (2.12) is clear
the argument given below Eq. (2.13) cannot be
generalized to show that M,. is a square-integrable
function. The reason lies in the fact that V is a
sum of two-body potentials and is therefore not
everywhere decaying in configuration space.
Hence V XF,.& is not represented by a square-in-
tegrable function. The argument based on the
boundedness of G then breaks down. In fact, it is
not difficult to verify directly that F~ does not con-
tain the complete outgoing-wave part of the wave
function; the remainder must be contained in M&.
The above decomposition fails to provide the de-
sired separation of the wave function into open-
and closed-channel parts. To achieve our objec-
tive a more careful treatment of the disconnected
parts of the interaction is required. In the re-
mainder of this subsection we prepare the way for
such a treatment by studying the structure of the
effective three-body wave function (xi&,&. The
channel decomposition of 4& is taken up in Sec. IV.

We proceed by projecting both members of Eq.
(3.13) onto the state (x I. To evaluate (x I

G we use
the resolvent identity in the form

G G()+ GOVG (3.18)

along with the analog of Eq. (3.17). We then find

&x I
g'~& =z

'
H &x I @,&+ E H&(E)E

'
H &x I @,&

(3.19)

The solution can be expressed formally as

I g,& =G(E}e
I x&&xi ~;&, (3.13)

where
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where we have defined the effective potential

7 (E) =&xll"(E) lx), (3.20)

with the modified three-body propagator given
by'

with
9=(E —e —K) ' —(E —K) '. (3.32)

T(E) = V+ VG(E)V .

Equation (3.19) may be rewritten as

(E - K- e) &xl@(&= Uz K&xl+(&.

(3.21)

(3.22)

With the use of standard methods, ' Eq. (3.31) can
be put in Faddeev form, modified by the presence
of the three-body potential po. Thus, we first de-
fine the operators 1, as the solutions of the inte-
gral equations

The effective potential may be expressed as a sum
of disconnected and connected parts. This is ac-
complished by expressing T as the solution of

T = V+ VGoT . (3.23)

These equations can be put in the usual Faddeev
form, as shown in Appendix B. For our present
purposes it is sufficient to note the representation

v, ='U,.+'U, g&), i =0, 1,2, 3.
Then v may be represented as

3 3

with the components 'W~ satisfying

v' =9(6((+ Q '7'97'(,

(3.33)

(3.34)

(3.35a)

T Tf + T (3.24)

'y' = r 6 + g y' 9'7' (3.3 5b)
where the disconnected parts T, satisfy the inte-
gral equations

T] = v]+ v]GoT], i =1,2, 3. (3.25)

Equation (3.24) serves to define the connected part
T,. Accordingly, we may expand the effective po-
tential in the form

The def initions

(3.36a)

(3.36b)
3

'U= 'U]

)aO

(3.26)

with

&( = (x I
7'(

I x) (3.27)

&.= &x I

1"".
I x& . (3.28)

The operators 'U, , i =1,2, 3, are effective pair po-
tentials, while Z, is a three-body (connected) in-
teraction.

The solutions to Eq. (3.22) may now be put in a
form which clearly exhibits their structure. Con-
sidering first the case j=0 (three bodies free in
the initial state) we write in place of Eq. (3.22) the
Lippmann- Schwinger- type integral equation

Ti —vy+ viGoTi,

with

(3.38)

j=O

will prove to be convenient later on.
One of the appealing features of the usual Fad-

deev equations lies in the physical interpretation,
in terms of subsystem scattering processes, thai
can be given to the input amplitudes. We shall now
provide an analogous physical interpretation of
the operators g „i = 1,2, 3, def ined above. Thus,
the operator J, plays the role of the effective
scattering operator for particle 1 and the cluster
C in the presence of the spectator 2. This follows
from the representation

(3.37)

here the operator T, satisfies

(3.29)
Go= (E —h —K) '. (3.39)

The solution is of the form Equivalently, we have the familiar representation
of the physical scattering operator,

&xl~.&= Ip.&+E, Kv'lp. &. (3.30)
Tg = vg + vgGyv (3.40)

Here &, the effective three-body scattering opera-
tor, is defined by the integral equation

with

G, =(E —h —K- v, ) '. (3.41)

(3.31) To verify Eq. (3.37), we compare the solution of
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Eq. (3.25) for i =1 with Eq. (3.38) to find'~

T, = T, + T, (GO —Go) T„. (3.42)
(3.48)

Furthermore, from the eigenfunction expansions
of G, and G, we have

G. -G. = Ix&9(x (3.43)

1
3 3 3g g 3 (3.44)

Comparison of this integral equation with Eq.
(3.33) for i =3 gives"

When we take the expectation value of each mem-
ber of Eq. (3.42) with respect to X and make use of
Eq. (3.43), along with Eq. (3.27) defining 'U„we
find that (x I

T, I x) satisfies the integral equation
(3.33) defining g, . The identification (3.37) then
follows. When K, is evaluated in momentum space
and a momentum conserving 5 function associated
with the spectator particle is factored out the re-
sult is a particular off-shell extension of the phys-
ical amplitude for elastic scattering of particle 1
from the bound cluster C. An identical discussion,
with the roles of particles 1 and 2 interchanged,
holds for ~, . Turning now to the operator K3 we
first observe that the expectation value in Eq.
(3.27) for i =3 can be evaluated directly to give

which are essentially eigenvalue equations for the
two-body bound-state functions f& in the presence
of the third spectator particle. For j =1,2, the
eigenvalue equation referred to is of the form
(2.17) with e = e~ and f=f~ defined by

If&=, ~ &x 0,).e) —k,

To verify Eq. (3.48) for j =3 we first write

(3.49)

(3.50)

(E —&-f~) '~. IA,P,&= ll, p, & (3.52)

Having established Eq. (3.48) we use it along with
Eqs. (3.46) and (3.47) to derive an inhomogeneous
integral equation for the scattered wave of the
form

a relation easily derived from Eq. (3.44). We next
observe that by virtue of the eigenfunction expan-
sion of the resolvent (E —e —v, )

' we have

~(E-II-~,) 'IA.p,)= IA.p.). (3.51)

These relations allow us to reduce Eq. (3.48),
j=3, to the eigenvalue equation in its standard
form

1
&3= 3+ 3~ ~&3 ~ (3.45)

Thus 1'3 satisfies the Lippmann-Schwinger equa-
tion in its usual form and may therefore be identi-
fied with the conventional scattering operator for
the pair (12) with C the spectator.

It should be clear that V, and g, are multiparti-
cle operators, i.e. , they each account for the scat-
tering of a particle by a multiparticle system.
The description of this scattering problem is es-
sentially that given in Sec. II; in the absence of
the spectator particle the effective potential takes
the form (2.16). This is to be contrasted with the
appearance of a tuo-particle potential in the inte-
gral equation (3.45) for T, .

We now turn to the analysis of Eq. (3.22) for the
case of two-body initial states (j =1,2, 3). In this
case we have the homogeneous' integral equation

(3.46)

To identify the scattered wave we introduce the

representation

(3.47)

+ (E —~ -K) 'v (x I 4,) . (3.53)

The solution can be represented as

&x I
4',) = (E - e - ff) ' g &'E

'
~ &x I

c' & (3 54)
gA~

by virtue of the relation

+gggl (3.55)

We therefore have, for j=1,2, 3, the representa-
tion

(xl@,&=&xlc',&+(E —&-ff) ' g y'z '
z(x IC',&

(3.57)

(3.56)

In analogy with Faddeev's treatment of the pure
three-body wave function' we may introduce the
decomposition

on the right-hand side of Eq. (3.46). The incident
wave 4& is defined in Eqs. (3.3)-(3.9). To proceed
we note the relations

For j =0 we have, from Eq. (3.30),

(x I
@0'& =

I
po&6(0+ E, ~ 'v'I po&, (3 .58)
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while from Eq. (3.56) we have

&x I
4",& =

&x I o,)5„+, g 'f' &x I +,&

(3.59}

for j=1,2, 3. The coupled equations for '1'~ imply
a set of coupled equations for the components

(x I
4'z&. As may be readily verified, these equa-

tions take the form

Use of Eq. (3.1V) then allows us to write

Iq;&= IxF',& IM;&,

with

M', &
= G v

I xF,'&

&xl~;&.

(4.4)

(4.5a)

(4.5b)

(E- ~-K}(xlq,"&=~„KP&xlq,'&.
fao

(3.60)

IV. CHANNEL DECOMPOSITION OF THE WAVE FUNCTION

The wave function 4~ can be expanded as
3

(4.1)
(=0

where, recalling the representation (3.13),

I~,'& = G~
I x&&xi~,'&; (4.2)

(x I4&& is given by Eq. (3.58) for j=0 and by Eq.
(3.59) for j=1,2, 3. These relations provide the
basis for a decomposition of the wave function into
open- and closed-channel parts. In this section we
consider those cases where 4~ evolves from a two-
body initial state, i.e., we consider entrance chan-
nels j=1,2, 3, . The case j=0 (three-body initial
state) is somewhat more complicated and is taken
up in Appendix B. To begin with, we set i = 0 in
Eq. (4.2) and introduce the resolvent identity, Eq.
(3.18), in the equivalent form

G =Go+GVGO. (4.3)

Most of the analysis given above has its counter-
part in the scattering theory of three structureless
particles. In fact, it is easy to see that in the ex-
treme tight-binding (or "frozen-core") limit, in
which virtual excitations of the cluster C no longer
play a role, the above formalism reduces identi-
cally to the usual Faddeev version. This formal-
ism therefore provides a convenient starting point
for a systematic investigation of corrections to
the frozen-core model. In particular, Eqs. (3.60)
reduce, in the tight-binding limit, to the coupled
equations satisfied by the Faddeev components of
the three-body wave function. As they stand, how-

ever, Eqs. (3.60) incorporate the multiparticle ef-
fects exactly. Note that one can anticipate on gen-
eral grounds that multiparticle effects will not
only alter the pair potentials but will also induce
a three-body potential term in the coupled equa-
tions. ' Here we have succeeded in expressing
these potentials explicitly in terms of the original
Hamiltonian.

where V'-=V- v, and

G, =(E-h —K —v3} '.
JE

The eigenfunction expansion of G, may be used to
verify the relation

(4.7)

GBIx&= Ix&(E —K-~3) '. (4.8)

Use of these results in Eq. (4.2) leads to the de-
composition

I ~,'& =
I
xF',&+ IM;&, (4.9)

with

IM,'&=Gv'I xF,'& (4.10)

IF;&=, K, &xlq;&. (4.11)

From Eq. (3.59) with i =3 and Eq. (3.51) we find

We note that in configuration space the function

E~ is defined by coordinates appropriate to a
"pure" three-body system, and satisfies outgoing
wave boundary conditions in the region where all
three interparticle separations are large. Two-
body bound states do not appear in the asymptotic
form of F~, as may be seen by examination of Eq.
(3.59) with i =0. The function VXFO~ falls off rapidly
enough to be square integrable. We conclude that

M~ is square integrable. Equation (4.4) then repre-
sents a decomposition of the wave function into
open- and closed-channel components. This parti-
cular decomposition serves as the basis for the in-
troduction of a subsidiary minimum principle for
the construction of the closed-channel component.
We shall return in Sec. V for a detailed discussion
of this approach. Here we complete the analysis
of the structure of the wave function by considering
the remaining three components (x I

I'~&, i =1,2, 3.
We first observe that use of Eq. (4.3) fails to

provide the desired decomposition in these cases
because of the appearance of two-body bound
states; such states must be completely accounted
for in the construction of the open-channel com-
ponent of the wave function. Thus, for i =3 we use,
in place of Eq. (4.3), the identity

G =G3+GV G3, (4.6)
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E —K —v E-K —«

x V'
X 4f (4.12)

&xi'',.&=&xlc,»„
+ (E —« —K) ' Q 'f'~ (x I @q) .

(4.19)

1 1P 1R y
(4.14)

where V'» contains the bound-state pole. The sep-
aration is of course not unique; a particularly con-
venient form for our purposes is derived in Ap-
pendix A. When the decomposition (4.14) is in-
serted in the right-hand side of Eq. (3.35b) we
flnd

with

lq J —lgl +lg l
P R~ (4.15)

~P ~1p~l j + ~l P~ (4.16)

Referring to Eqs. (3.59) and (4.2) we see that the
decomposition (4.15) leads to a corresponding de-
composition of the wave function

I+,'&= Ig,' )+ I4,' ). (4.17)

Explicitly, we have

I
+', z&

= G«
I x&&x I 4'~a&

with .

(4.18)

The function Ff is a three-body wave function. In
the asymptotic domain it contains, in addition to a
three-body outgoing-wave contribution, a compo-
nent which describes the relative motion of the
bound pair (12) and the cluster C. If desired, an
explicit separation of these two-body and three-
body components could be obtained, though for
simplicity we shall not do so here. (This separa-
tion is not necessary in the variational approach
described in Sec. V provided the two-particle
bound-state function Q, is assumed known. ) Since
V'pFf is square integrable the same holds for the
function Mf.

The open-channel part of 4 f contains both two-
body and three-body components. We wish to sep-
arate off these open-channel components explicitly,
obtaining a representation of 4'f' in the form

@',&=
I @xFyz&+ I xFyg&+ IM', &. (4.13)

Here Ffp and F» are effective two-body and three-
body scattering functions, respectively. The func-
tion Mf is the closed-channel component. To de-
rive Eq. (4.13), and thereby obtain a prescription
for the construction of the closed-charnel compo-
nent, we first observe that the two-body component
P,F', ~ arises from the part of 'v' in Eq. (3.59)
which contains the bound-state pole associated with
subsystem 1. We therefore write

g, («, ) = («, —h —k, —v, ) (4.21)

According to Eq. (2.6) we may express the eigen-
value equation in the form

Ie, &=g, («)«lx&&xi@ & (4.22)

Thus, when Eqs. (4.18)-(4.20) are combined, with
V'» given by Eq. (A7), we obtain the representation

I
~»&= [I+G(K + I" E+ «i)]-I yg',.&, (4 23)

with F'~ defined in Eq. (A8). In a similar way we
obtain for the residual component Cf'R the repre-
sentation

I
~',.&

= G«
I x&&x I ~,'.& (4.24)

Use of the resolvent identity in the form (4.3) al-
lows us to write

I+';&=(1+«) IxF';&. (4.25)

Combining these results, we arrive at the form
(4.13) with the asymptotically decaying closed-
channel component given by

IM,'&=Gl.(K.+ y'-E+ «»
I yg';&+ I'lxF', .&]

(4.26)

In verifying that Mf is normalizable note that Ffp
has the oscillatory asymptotic behavior of a two-
body scattering function of energy E —&, ; then
(K, —E + «, )F~» vanishes asymptotically. This can
be seen explicitly from Eq. (A8). Since G, a
bounded operator, acts on a sum of normalizable
functions the stated property of Mf is confirmed.
We see again that a proper treatment of the com-
ponents of the wave function involving subsystem
bound states is crucial in this analysis. The diffi-
culties mentioned in the discussion following Eq.
(3.1'I) have been overcome. The decomposition of
4f into two-body, three-body, and closed-channel
components is achieved in a manner identical to
that just described for 4f.

To summarize, we have obtained the channel de-
composition

By construction, the function 4'f'P contains the corn-
plete outgoing scattered wave in exit channel 1 (1
and C bound in the final state). To decompose
4» into open- and closed-channel parts we intro-
duce the resolvent identity

G(E) ~gq(«~)+G(E)(Kq+ V —E + «~)g~(«q) ) (4.20)

where V'= V- v, and



1414 LEONARD ROSENBERG 13

Iq', &=
I @.F(~&+ I 02F'(r&+

I xF(s&+ IM(& (4»&

IF,.&
=- IF';&+ IF';&+ IF,'&+ IF,'& (4 28}

The function M( —=P~( OM(( represents the complete
closed- channel component.

We turn now to the identification of the matrix
element T,&

for transition from initial "plane-
wave" state C» to final state 4,' in which the clus-
ters separate from one another with relative mo-
mentum p&. The transition-matrix elements can
be determined by identifying the amplitude of the
scattered wave in each channel. Since the asymp-
totic form of the wave function is determined by
the singularities in its momentum-space represen-
tation (see, e.g. , J. Nuttall, Ref. 16) one arrives
at the equivalent prescription"

T,((p(, p() =. limi(} &C ( I
4'() . (4.29)

From Eqs. (3.30) and (3.56) we find that

T (Pl P.}=&Pll i"lp.& (4.30}

To((po py) = Q &po I
&(I f(p(& j=1 2 3. (4 31)

Here, to simplify notation, we use

lf,r,)=- 'K&xlc, &. (4.32}

The time-reversed amplitude may be determined
as

T„(p,', p, ) = Q (f p', I(f lp, ), i =1,2, 3. (4.33)

From Eqs. (4.12) and (A8) we find that, for i,j
=1,2, 3,

Here E» and I'~~ are effective two-body wave func-
tions. The three-body open- channel component
is represented by

V. APPROXIMATION METHODS

The scattering equations given above suggest a
number of approximation techniques. For exam-
ple, a cluster approximation is a very natural one
to attempt in the present context. That is, one as-
sumes that at each stage of the scattering process
the system can be analyzed in terms of three in-
teracting clusters. This amounts to the neglect of
the three-body potential 'Uo in Eqs. (3.60) or,
equivalently, the amplitude f, in Eqs. (3.35). Note
that this approximation does not violate unitarity.
The equations in this cluster approximation are of
the usual three-body Faddeev form and will gener-
ate unitary amplitudes (for energies below the
four-body threshold) provided that the Hermiticity
property of the effective pair potentials is main-
tained. A variational method for determining Her-
mitian approximations to these pair interactions has
been described previously. ' The approximations
may be represented in separable form to facilitate
the numerical solution of the Faddeev equations. "
While this approach should be useful in a variety
of scattering problems it suffers from the intrinsic
limitation of the neglect of '0, .

One can attempt to refine the calculational pro-
cedure by introducing approximations to 'Uo. We
shall not take this course here, however. We con-
sider instead what appears to be a simpler ap-
proach based on the Kohn variational principle.
With the aid of subsidiary minimum principles for
the construction of trial functions this method al-
lows for systematic improvement. Such a method

was described previously for the case where only

two-body channels are open. ' Here we merely out-

line the modifications required to account for the

appearance of propagating three-body states.
We are interested in determining the scattering

amplitude T,&
in which two bodies are incident in

the entrance channel and either two or three bodies
emerge in the exit channel. The Kohn-type varia-
tional approximation for T,, is of the form"

T(((p(', P(}=B(((P(,P()(1 —5,.() T„„=T„,+&@((,'lff E I4,( &. — (5.1}

+ g g&f, r;I'~ If, r,),
l44i m&f

(4.34)

where

~u(s pr~=K((l(, )(~-~ &tlf, (~~. -

(4.35)

As remarked earlier [in connection with Eq. (3.49)j
the functions f, and f, are effective single-particle
bound-state functions determined by homogeneous
integral equations involving the effective subsys-
tem interaction potential.

Here T,~, is a trial scattering amplitude, deter-
mined as the amplitude of the outgoing wave in
channel i associated with the trial wave function

The superscript on the symbol 0,', ' indicates
incoming-wave boundary conditions. Alternatively,
standing-wave boundary conditions may be adopted.
This would be appropriate for the variational con-
struction of the K matrix, with the T matrix sub-
sequently determined from a set of multichannel
Heitler equations. " In this way unitarity can be
preserved in the approximation procedure. To
make use of the variational principle (for either
the K matrix or the T matrix} we require a pre-
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scription which enables us to generate trial func-
tions in such a way that the many-body complexi-
ties of the problem can be accounted for systemat-
ically. The cluster representation of the exact
wave function developed in Sec. IV is useful in this
connection; it provides us with an explicit separa-
tion of open- and closed-channel components of the
wave function. It is in the construction of the
closed- channel components that the many-body
nature of the problem is encountered. Thus, we
express 4&, l the superscript (+) is dropped since
the choice of boundary conditions plays no role in
the following discussion] in the form

g=0
(5.2)

as suggested by Eq. (4.1). To simplify the present
discussion we consider only two-body initial states
j=1, 2, or 3. The components 4,'., are to be chosen
in accordance with the exact representations, Eqs.
(4.4), (4.9), and (4.13). For example, we would
choose 4&, in the form

I4"„&=
I e,F,',&+

I xF,' &+ IM,' )

We are assuming temporarily that the bound-state
functions f, and y are known precisely. The pro-
cedure for introducing trial bound-state functions
is described below. Recall that the function F~pg
is a two-body wave function, depending on a single
interparticle distance; F», is a three-body func-
tion. Each of these trial functions can be ex-
pressed as an expansion in some convenient set of
basis functions which incorporate the proper as-
ymptotic boundary conditions. This is the same
procedure as that used in the pure three-body
problem. We shall assume that these trial func-
tions can be constructed with sufficient flexibility
to provide satisfactory approximations to the true
open-channel components F',.p and F». The choice
of the basis functions in the expansion of the as-
ymptotically decaying closed-channel component
M~, is more difficult since these are functions of
all of the particle coordinates. Experience in mul-
tiparticle bound-state calculations indicates that
these basis functions should be kept flexible by in-
clusion of nonlinear variational parameters; other-
wise the number of basis functions required to ob-
tain convergent results may increase to the point
where the calculation becomes unmanageable. Of
course, in bound-state calculations the Rayleigh-
Ritz minimum principle can be used in the search
for the optimum set of nonlinear parameters. As
we shall now show, an analogous minimum princi-
ple is available for the construction of the trial
function M~&, . We first note that Eq. (4.26) which
defines the exact function M,'. can be rewritten as

the inhomogeneous differential equation

(H E)—IMj~&= —IPj) ~ (5.4)

3)I,'= &M', lz', &+ &z,
'

I
M', &+ (M', IH —E IM', ) . (5 6)

The minimum property follows from the fact that
the energy E lies below the threshold of the con-
tinuous spectrum of the modified Hamiltonian H.
(If there are discrete eigenstates of H with ener-
gies below E they must be "subtracted out" in or-
der to preserve the minimum property. "To sim-
plify the discussion we shall assume that such
states are not actually present. ) The above dis-
cussion suggests that the nonlinear variational pa-
rameters in the trial function M&, may be deter-
mined by minimizing the functional

3R',.~
= (M',

I
Ji,&+ (J',

I
M', )+ (M',

I
H —E

I
M', ),

(5.7)

where

(5 8)

The above procedure is essentially equivalent to
that in which the trial function M&, is chosen in the
form

(5.9)

with the trial Green's function G, determined with
the aid of the minimum principle satisfied by G.'
More generally, we could write, for each closed-
channel component,

I M&~&
= Gt IZ'&&& I = 0, 1,2, 3,

with

(5.10)

(5.11)

(5.12)

and J ~, given by an equation similar to (5.8) with
1-2.

Having fixed the form of the trial function 4&, we
must make use of the variational principle, Eq.
(5.1), to determine the open-channel components
of the wave function. One would make an initial
guess at the open-channel components in terms of
which the functions J&, are defined, and then con-
struct the closed-channel components as in Eq.
(5.10). With the functions M&, fixed, Eq. (5.1)
would be used to generate variational approxima-

with the square-integrable function J~~ defined by

I Jg& (K + v' —E+ &i) I yg,'I»+ v
I xFys&. (5.5)

Alternatively, we can characterize the solution of
Eq. (5.4) as the function which minimizes the func-
tional
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tions to the scattering matrix and, at the same
time, improved approximations to the open-chan-
nel components. If it were desired this process
could be iterated. A more detailed discussion of
this and alternative procedures is given in Ref. 6.

We discuss, in conclusion, the manner in which
the above procedure must be modified to account
for the fact that the bound-state functions X, Q„
and Q, are in general imprecisely known. Firstly,
we note that subsidiary minimum principles for the
trial functions M&, can be maintained, in the form
shown in Eq. (5.7) for l =1, by making the replace-
ment H -H„with

X !)(Xf
(Xt h

I Xg)
(5.13)

VI. SUMMARY AND CONCLUSION

As an example of the type of problem for which
the formalism developed here would be appropri-
ate, consider the low-energy collision of a deu-
teron with a tightly bound nucleus. In addition to

This reduces to H if g, is exact. We have previ-
ously shown" that for y, sufficiently accurate the
operator H, -E will be positive, thus ensuring the
validity of the minimum principle.

The effect of the imprecisely known bound-state
functions must also be accounted for in matching
the boundary conditions at infinity. Clearly some
care must be exercised here since the trial func-
tion 4, , fails to satisfy the Schrodinger equation
asymptotically if inexact bound-state functions ap-
pear in the asymptotic form. The integral on the
right-hand side of Eq. (5.1) diverges under these
circumstances. To avoid divergent integrals we may
proceed formally" by evaluating (H —E)

I
4",,)with the

assumption that the exact bound- state functions are
used in the representation of 4&,. Here we take
advantage of the fact that the bound-state functions
appear explicitly in factored form, as shown in

Eq. (5.3) for the l =1 component. The variational
functional (5.1), when constructed in this way, will
involve the bound-state functions explicitly. If at
this stage approximations are introduced for these
bound-state functions the integrals remain finite. "
To preserve the va.riational principle (5.1), the ap-
proximate bound-state functions must be correct
to first order. Such functions can be obtained with
the aid of the variational principle for bound-state
wave functions proposed in Ref. 5. Here too one
ha.s subsidiary minimum principles to aid in the
determination of the trial functions which appear
in the variational principle for the bound-state
wave functions.

elastic scattering we are interested in the ampli-
tudes for rearrangement (one of the nucleons in the
deuteron is captured by the nucleus} and breakup
of the deuteron. The scattering energy is assumed
to lie below the threshold for breakup of the target
nucleus. In first approximation we may think of
this as a problem in three-body scattering theory,
with corrections required to account for the inter-
nal structure of the nucleus. With regard to the
three-body dynamics we have available some fairly
well-developed approximation techniques, based,
for example, on the use of separable kernels in the
Faddeev equations or on variational methods. Our
concern is then shifted to the problem of accounting
consistently for the fact that the nucleus is a com-
pound system. For example, in forming the final-
state wave function for the rearrangement process
we must consider the binding of a nucleon with the
nucleus. In our picture the effective nucleon-nu-
cleus potential is given by Eq. (2.16); the equiva-
lent two-body wave function is determined by the
homogeneous version of Eq. (2.18). This is the
wave function which appears in the formally exact
expression (4.34) for the matrix element. The op-
erators 'V in that expression are determined by
the generalized' three-body Faddeev equations
(3.35). The input to these equations are the multi-
particle operators W, which satisfy the Lippmann-
Schwinger equations (3.33). The original Faddeev
equations' involve three subsystem scattering op-
erators; here there are four, since in addition to
the effective pair interactions we have an induced
three-body potential. The "free" three-body pro-
pagator is given by Eq. (3.32). The appearance of
the second term on the right-hand side may seem
somewhat unusual; it would be absent in a Fesh-
bach projection-operator formulation. We have
avoided using that formalism since we are unable
to construct the required projection operators. As
an alternative to Eqs. (3.35) we have the coupled
equations (3.60) for the Faddeev components of the
wave function associated with the equivalent three-
body system. Since these latter equations involve
the effective potentials directly rather than the
subsystem scattering operators they may be sim-
pler to work with in practice.

The analysis of the wave function given in Sec.
IV serves two purposes. Firstly, it allows us,
with the aid of Eqs. (4.29}, to identify the physical
scattering matrix elements. Secondly, it provides
us with a specific decomposition of the wave func-
tion into open-channel components, which behave
like standing waves or outgoing waves at infinity,
and asymptotically decaying closed-channel com-
ponents. This decomposition is carried out with
the help of two separate techniques. One of them
is based on the introduction of the modified target
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Hamiltonian defined in Eq. (2.3). As discussed in
greater detail previously, "this procedure plays a
role analogous to the use of Feshbach projection
operators, in that a certain class of continuum
states is "subtracted out", and is more easily gen-
eralized to cases where rearrangement and Pauli
exchange effects are present. The second tech-
nique is to partially solve the basic equations to
the extent that subsystem scattering and binding ef-
fects are explicitly included in the formalism. ' As
indicated in the discussion following Eq. (4.26),
both techniques are required to properly identify
the closed-channel part of the wave function. Cor-
responding to this formal decomposition of the
wave function we can devise a computational pro-
cedure in which variational methods of the Ray-
leigh-Ritz type are used in the construction of the
decaying components. It is at this stage that one
comes to grips with the multiparticle complexities
of the target nucleus. Having "subtracted out" the
effects of the continuum we achieve a very much
needed simplification of this stage of the calcula-
tion. There still remains the problem of determing
the open-channel components of the wave function.
This is essentially a three-body (not a many-body)
problem on which a considerable amount of com-
putational experience can be brought to bear. In
Sec. V we have outlined a variational approach as
one of a number of possible computational meth-
ods. Our goal, more generally, has been to pro-
vide a consistent theoretical framework for the
development of three-body models of multiparticle
scattering processes.

APPENDIX A

Here we derive Eq. (4.14), which expresses the
subsystem scattering operator V, as the sum of a

pole term plus a nonsingular remainder. We first
note that the operators V

y Go and Gy defined by
Eqs. (3.38), (3.39), and (3.41), respectively, sat-
isfy the well-known relation

G~: Go + GOT~GO ~ (A1)

When we take the expectation value with respect to
x of both sides of Eq. (A1) and make use of the
relations

G.(E )
I x) =

I
x&(E—

&xlG.(E) =(E —& -K& '&xl

(A2)

(A3)

along with Eq. (3.37), we find

&xlG, x) =(E- &-K) '

+(E —e —K) 'v', (E —e —K) '. (A4)

We now write

1 lp 1R & (A5)

with G» defined as the bound-state contribution to
the eigenfunction expansion of G„namely,

(A6)

The decomposition of G, when combined with Eq.
(A4) leads to the desired representation Eq. (4.14),
with K» determined by

We may now replace 'y'~ in Eq. (4.19) by the right-
hand side of Eq. (4.16) with the above form for

This leads to Eq. (4.23) with

&x I
hi)(E —ei - Ki) '&@i

I x&

=(E —e-K) 'y'„(E —~-K) '. (AV)

lz,'.,&= Ip, &6„.+(E-e, -K,)-'(y, ', x& (E —~-K)(I —6„.)+ P g v' (xlc,).
L~ j m~1

(A8)

APPENDIX B

The discussion of Sec. IV leading to a channel decomposition of the wave function was restricted to the
case of two-body initial states. If one wishes to extend that discussion to include three-body initial states
(as would be required, for example, in the application of the variational approach of Sec. V to breakup
scattering) one encounters a new feature, related to the appearance of a new class of terms in the asymp-
totic form of the wave function. " Thus, according to Eq. (3.13), the wave function which evolves from a
three-body initial state is represented by

I
g'o& = Ge

I x)(x I
q'0&, (BI)

with (XI%'o& given by Eq. (3.30). In the analysis of the asymptotic form of this effective three-body wave
function separate consideration must be given to the first few terms in the multiple scattering expansion. "
We therefore write

3 3 3

&x I @o& = lpo&+ (E —& —K) ' g & + g p y' 9& (I —6~ )
I
pa&+ &x I

+o&.
7=1 l=l m=1

(B2)
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The asymptotic form of (X I@,& is the same as that
of (XI@~&, j =1,2, 3, defined in Eq. (3.47) and the
decomposition of the function

A

GOTr G&v

GOT =Gv

(B6)

(B9)

(B3)

into open-and closed-channel parts proceeds exact-
ly as described in Sec. IV. A different procedure
is necessary for the remaining terms, which decay
less rapidly at infinity. Thus, consider the contri-
bution of the plane wave

I p, ) in Eq. (B2); when in-
serted in the right-hand side of Eq. (Bl) we obtain
the function

These results, along with the relation

Go& I xpo) =
I x po) (Blo)

[which can be deduced from Eqs. (3.17) and (3.9)]
lead to the expansion

3 3

If,&= lxp. )+ P If„&+ g QGv II„&, (Bll)
1=& mI l

with

If.&
= G~

I
-x&

I p.&. (B3 )
If«& =Gi&i

I x po&. (B12}
This function consists of disconnected and con-
nected parts which must be treated separately.
The separation is achieved by expressing G as a
sum of disconnected and connected parts. For this
purpose we write

G =Go+ GOTGO (B4)

T=P T',
1=1

(B6)

with the components T' defined as the solutions of
the Faddeev equations

T'=T, + T GOT, . (B6)

This leads, when combined with Eq. (B4), to the
decomposition

G =GO+ Q GOT, Go+ Q Q GOT~GoT, Go. (B7)
l=l l=l m&l

The scattering operators may be eliminated in
favor of the potentials (which are often simpler to
deal with in practice) with the aid of the relations

and introduce a Faddeev-type analysis of the opera-
tor T. We have the decomposition

In the first term in Eq. (Bll) we recover the three-
body incident plane wave, a function we take to be
known in the present discussion. The function I„
represents a contribution to the closed-channel
part of the wave function for the pair l, with the
third particle playing the role of a spectator. As
mentioned in Sec. II (and discussed in detail in
Ref. 6) a subsidiary minimum principle is available
for determining approximations to this two-body
closed-channel wave function. Let us suppose we
have constructed an approximation to I„ in this
manner. Turning then to the third group of terms
in Eq. (Bll) we note that v Io„ for m tl, is square
integrable. The function Gz I„ is therefore square
integrable; it represents a contribution to the
closed-channel part of the wave function 4,. In
this way we arrive at a decomposition of the func-
tion I„Eq. (Bll), into open- and closed-channel
parts of the desired form. To complete the anal-
ysis we would consider the single- and double-
scattering terms in Eq. (B2) as contributions to
(X I4', & on the right-hand side of Eq. (Bl). The
channel decomposition of this part of 4, would then
proceed in a manner very similar to that just de-
scribed for the function I, and we omit further de-
tails of this analysis here.
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