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Scattering events of the type a + A ~ A + a, where A is composed of (n —1) particles all identical to a, are
studied within the framework of the channel coupling array approach to many-body scattering. The n coupled
equations describing the scattering derived under the assumption that the n particles forming the scattering
system are distinguishable, are shown to collapse to a single equation when particle identity is taken into
account and a particular choice of a channel coupling array which includes the important special case of
channel permuting arrays is made. For this latter choice, which guarantees connectedness, only the exchange
Born potential explicitly enters the integral equation for the transition operator or the differential equation for
the scattering function. The present derivation provides a justification of equations used previously in e + H
calculations.

NUCLEAR REACTIONS Antisymxnetrization effects in the Kouri-Levin- Tobocman
coupled channel & operator nuclear reaction formalism are studied for the special
case of a particle incident on a target containing n —1 particles identical to the
projectile, The approach features the channel coupling arrays of Baer, Kouri, and
Levin.

We have recently developed a new method for
describing many-body scattering, based on the use
of the channel coupling array. ' ' Coupled integral
equations for the operators T» describing transi-
tions between states of the arrangement channel
Hamiltonians H, and H~ have been derived and
discussed under the assumption that the particles
forming the scattering system are distinguishable. '
The effects of particle identity are to be taken into
account by forming proper linear combinations of
the amplitudes for distinguishable (labeled) parti-
cles, For the case of two identical particles and
a scattering center such as e +H, the pair of
integral equations has been reduced to a single
equation and calculations based on approximations
to this single equation have been carried out'; we
comment on the derivation of this equation below.
It is well known by now that a similar reduction
from three coupled equations to one also occurs'
in the case of three identical particles. While a
similar reduction to a single equation does not
occur in the general case of n particles and N
arrangement channels using an arbitrary channel
coupling array, if does in fact occur for a partic-
ular choice, one sufficiently general to be of in-
terest. Our purpose in this note is to examine this
specific case and derive the resulting integral
equation (and also the analogous differential equa-
tion).

The notation we use has been discussed else-

H=H~+ V„, 1 ~k ~N.

The asymptotic states ( 4z(k)) are eigenstates of
H„:

a, ie, (k)& =Eje,(k)) (2)

and are products of internal bound states for the
clusters or subsystem of particles forming chan-
nel k and of plane wave relative motion states. ' '
The V, are assumed to vanish sufficiently rapidly
when the relative separations of the clusters all
become large so that the (Cs(k)) can be defined. '

The transition operators T,~(E+i0) obey the
coupled equations' '

Ty~(+) = l, li ia + i, Q &» a( G)T+&a(+), (3)

where i, j, and l range over the arrangement chan-
nels of interest, the symbol + means E+f0, G;(+)
is the ith channel Green' s function def ined by

where, and we only review it briefly here. The
nonrelativistic scattering system, governed by a
Hamiltonian H, is assumed to be composed of n

particles, 1 +j &n. In the most general case, the
system can exist asymptotically in the states of N
arrangement channels, corresponding to the as-
ymptotic states of Ekstein. ' For each arrangement
channel k, 1 & k & N, H can thus be partitioned into
a channel Hamiltonian H, and a channel perturbation
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6;(+) = lim (E+le -II;) ' (4)
E ~0+

and 8' „ is an element of the channel coupling array
W. These elements obey

(5)

with l free to be chosen as is convenient. The
derivation of Eq. (3) has been given elsewhere' '
and need not be repeated here. We merely note
that k must be a two-body channel. Methods for
choosing I and the W „so as to ensure a connected
iterate of the kernel VW„G,'(+) of Eq. (3) are dis-
cussed in Refs. 1 and 3.

The amplitude f» for making a transition from a
state ICs(k)) of channel k to a state ICs(j)& of chan-
nel j, assuming all particles to be distinguishable,
1s

f» =&4'sU)IT& (+)ic (k)&,

where T,~ is to be determined from Eq. (3). If,
however, some or all of the n particles of the
scattering system are identical, then linear com-
binations of the f» must be formed. For an initial
state k consisting of a single particle incident on a
target of (n —1) identical particles, the linear com-
bination of the f» can be reduced to one "direct"
term, and (n —1) identical "exchange" terms in the
case of elastic or inelastic scattering. The sit-
uation we shall consider here is restricted to final
states corresponding to elastic or inelastic pro-
cesses only, i.e., to two-body final channels con-
sisting of a single particle and an (n —1) particle
bound state. Examples are neutron-nucleus scat-
tering below the threshold for reactions to occur,
or electron-neutral-atom scattering, below the
ionization threshold.

Since only identical particles are involved, it is
convenient to label the channels according to which
labeled particle is chosen as the incident pro-
jectile. That is, in terms of the transition oper-
ators T», there are n possible processes de-
scribed by the operators T», TQ etc. , where k

is the label of the particle chosen to initiate the
reaction. We shall choose k = 1. Then n transi-
tion operators are T», 1 &j &n, with T» describ-
ing the unique "direct" channel and the remaining
T», j +1, describing the (n —1) "exchange" chan-
nels.

We use the following notation. The initial state
ICs(1)& is written as

I C,(I)& =
I y, (2, 3, ..., n)X-„(»&

and the final state in channel j, i@s(j)&, is written

I4s( j))= I Q~(1, 2, ..., j —1,j+1, ..., n)x-, (j)), (8)

where [ I P (1, ..., j —1,j+ 1, ..., n)&) is a complete

set of target states and IX-(j)) is a plane-wave
state for particle j with momentum q. We also
assume

yli2k2f2 g

where E„ is the energy of the target state I Q ) and
p. is the reduced mass of the target-projectile
system.

To simplify the labeling, we introduce a notation
used previously':

[j]=—(1, 2, ..., j —1,j+1, ..., n),

where serial ordering is maintained. Thus, we
may rewrite Eqs. (7) and (8) as

Ics(I)& =
I to[I]x-, (I)&

and

I
c ( j)& =

I @.[j]x-„,( j)& . (11)

Finally, we shall work exclusively with systems
of identical fermions, since in this case there
occur phase factors depending on the particle la-
bels, while for bosons all such phase factors are
set equal to +1. Hence, we have that Ipgj]& is
antisymmetric under interchange of any two labels
in [j]:

P „ip„[j]&=—Ip [j]), m&j&n, mwn

where I' „ is the two-particle transposition oper-
ator. We also note that

I p.[j]x-,(j)& =(-I)' ' 'P~~l 4.[1]x-('»
where (- 1)~ ' ' is the phase factor that occurs in
restoring serial ordering to the state
I P (1, ..., j —1, l, j+ 1, ..., l —1, l + 1, ...n)& resulting
from application of the operator P» to I q„[l]x-„(1)&.

The amplitudes, for the process under con-
sideration is'

&..=&x-„,(I)e.[I]IT„(+)I O.ll]x-, (1)&

—(n —I)& x-, ,(2)@.[2] I T»(+) I @.Il] x-„(1)& (»)
From Eq. (12), this may be written as

&..=
& x-,(1)4.[I]I r (+) I 4.[I]x-(1)&, (14)

where

r(+) = T»(+) —(n —1)P»T»(+) . (15)
Equation (13) is a statement that all the exchange

amplitudes are identical. Our main purpose is to
find an integral equation for the operator whose
solution has matrix elements identical to Eq. (13).
The general result we shall derive is

T = [V,W„+(1—W„)P„V](1+G, v),
valid for any channel coupling array whose diagonal
elements are all equal. This includes the impor-
tant case of the channeL permuting array choice of
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W. Such a W guarantees that the (n —1)st iteration
of the kernel in Eq. (3) is connected. There are
(u —I)! choices of these particular W's, each of
which has elements satisfying

5';; =0, all i; (17)

properties of the other elements are given in the
second of Ref. 1 and are noted below.

To derive Eq. (16), we use the most general
form for 4„, involving all the T» [we suppress the
+ symbol in T»(+) and G;(+)]:

X q 4&x T11 —
g1 g1 &t)P 1 X], )

ge1
(18)

where the equality of Eq. (18) with Eq. (13) is easy to demonstrate given the antisymmetry properties of
the ( ~ p )) and the symmetry properties of the T„. For each T» we substitute Eq. (3) with k set equal to
1 and then make the choice 1 =j in 5'g, , this latter choice corresponding to the one initially used to special-
ize ~' to a channel permutingarray. Then 4 p may be written as

A~= X„,

(I)peal]

V, W„—Q P„VgWg, (1+G,T„)+Q V, W, —Q P„V,W, G T, go[I]X„(1)
g wl m&1 g~1

In this form, of course, r depends on all the transition operators T». However, just as in (13) where
the symmetry is used to reduce (n —1) different exchange terms to the same amplitude, the symmetry of
the amplitudes can be used to transform this matrix element into one involving only the operators T11 and
T2 1 The key is th e relabel ing of coordinates in the terms of the sums over l, so that l- 2 or l —1. To do
this, we use the expansion

G( ~ )= g f&'el', b1x , (sl», '(q, li-]x „(ill., - (20)
8

where Da, is an energy denominator independent of the label j. Notice, however, that the subscripts on the
8&& are not integration variables, and hence do not change under relabeling of coordinates, as was incor-
rectly assumed in the e +H calculations. 4

There are three sums to be considered:

o, = —Q W„&X„,(I)pgl] (P„V((1+G,T„)( +[I]X„(1))= —Q Wg M,
g ssl g ~1

(21)

o, = g W, & X-„,(I)&t.[I]l V,G.T., I&|I,[I]X-„ (I)) = g W.M."'; (22)

and

O', = —Q Q w, ~&x-„,(1)/~[1] )P„v,G T, ~ g[1]x~ (1))=—Q Q w, „MI
m+1 gss 1 m& 1 g&1

(23)

The symmetry properties of G, and T» mean that ( +[1]X-„(1))and G,T„(+[1]X-„(I))have the same prop-
erties under particle interchange. Hence, by analyzing the matrix element M" in o', first, we shall be
able to deduce the behavior of MI'~. Substituting Eq. (20) into the definition of M~'~ in Eq. (22), we find

= g J d'qadi'„*'(p, q}, (24)

where

M'."(P,q) =&X-„.(I)An[I] I V, I 08[~]X-,(~))D „'&X-(~)os[~]lT., I g[1]X-„(I)).

Since all coordinates are summation or integration variables, we may rewrite the first matrix element
on the right in Eq. (25) as
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(27)&x-(m)4s[m]l T., la[I]X+I)& =(- I)"&x-,(I)4s[I]IP.,T„Ig[I]x+I)&.
Substituting (26) and (27) into (25) and this result back into (24) now gives

M[. ] =&x-, (1)~.[I]IP„v,G,P„T„I4hl 1]x-„(»&

In similar fashion, M," of Eq. (21) becomes

M[, '] =
& x-„(1)4][1]I P„v,(1+G, T„)I 4h[l] x-„(1)&,

independent of f. The analysis for M", of Eq. (23) is slightly more complicated because of the double sum.
However, the procedure is made straightforward by isolating the term / =m, and we find

M.".' =
& x-„,(I)4.I 1]I v, G,P„T„I g[I]x-„(I)&

(28)

(29)

(30)

and

M[]']=-&X-, (1)[f[„[1]I P V2[, G,P„T„Itt[]1]X-„(1)&, (31)

Putting the expressions for the matrix elements into the equations for the o, , substituting into Eq. (19),
and'then grouping terms gives for & o:

&x-„,(»e.[l] I v, I ~s[qx-, (m}&

= ( X k
i(1)&4(m, 3, 4, ..., m —1, 2, m + 1, ..., n) I V& I As(1, m, 3, 4, ..., m —1, m + 1, ..., n) x-(2)&

=(-'} &x-„.(I)4-[I]l vll As[2]x-(2)&

=(-I} &x-„,(2)ed2]l v, l4s[I]x-(I)&, (26)

where the first transformation involves relabeling so that m —2. Similarly, we find for the second matrix
element

A ~ = X , (1}[}]„[I] V, W„ — Q W], P„V, (I + G, T„)
l & 1

w,„v,P-(I w v; p„T I]t[1]x„(1]
Ifl & I m& f
I &m

(32)

and

W„, g~1

(33)

The special case of channel permuting arrays'
satisfies these conditions.

From Eq. (33) we easily find

Q W„=l —W„

Comparison of this result with Eqs. (14) and (15)
shows that while T» and T» both occur in Eq. (32),
the single linear combination T does not enter the
general expression above. Clearly, without speci-
fying the array 8' further, no simple result occurs,
since for example Eq. (5) by itself does not allow
the sums of l and m in Eq. (32} to be evaluated.
However, by restricting 8' slightly, these sums
can be done. To do this, we first set l =j in Eq.
(3). Then the class of channel coupling arrays
which enable one to obtain integral equations for
singl transition operator are those obeying the
two conditions

W =(n —1)W„,
mssl,

and

mW l
$ss et

W, = Q (1 —W ) =(n- 1)(1-W„) .

Substituting these results into Eq. (32) and sim-
plifying yields:

A. , =
& x-, (1)4] [1]I [v, w„- (1 —w») P» v, ]

x(I + G, r) I 45[1]x-„(1)& (34)

Comparison of Eqs. (14) and (34) establishes Eq.
(16) as the integral equation for the operator whose
matrix elements evaluated as in Eq. (14) yield the
transition amplitude A. 0. As yet we have found no
other choice of the 8' which yields an integral
equation for T. If only bound states are used in the
spectral decomposition of G„ there are no dis-
connected diagram divergences that arise in the
solution of Eq. (16) and we are free to vary the
8', ~ away from the channel permuting array values
(W» =0}, as in some of the e +H calculations. 4

If we consider Eq. (16) for the channel permuting
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array choice 8'» =0, we notice that there is no
"direct" Born term (V,). Only the exchange term
V2 appears explicitly, although the direct channel
Green's Function G, does occur. The absence of
a direct Born term for 8'11 0 at first glance would
seem to ensure that our results cannot be correct.
However, we have proved' that each T» in Eq. (3)
has half-off-shell matrix elements identical to
those of T,, = V, + V(E+i0 —H) 'V„ the I.ow equa-
tion definition'6 of T». Hence the T,, of Eq. (3)
lead to the correct results. Since Eq. (16) is de-
rived from Eq. (3), it thus follows that on-shell
matrix elements of 7 will also be correct, i.e.,
will contain effects of a V, Born term. The ex-
plicit demonstration that the Born term is, in fact,
present has been given elsewhere and need not be
reproduced here. In addition, we note that in the
case of the e +H calculations, use of Eq. (16)
(with W» =0) leads to results in reasonably good
agreement with the variational calculations of
Schwartz. ' We would not expect such agreement
unless the effects of V, were indeed being taken
into account is some way. Hence, despite the lack
of a manifest direct Born term, use of F11:0
yields a correct result, a.nd Eq. (16) is the correct
operator to evaluate. Note of course that matrix
elements of T must be taken between states having
the symmetry [I] and not the symmetry [j], j &l.

Let us now consider unitary approximations to
Eq. (16) assuming that only bound states

I
QI„'~[1])

are included. We do this in terms of a K, or reac-
tion, operator. " Corresponding to Eq. (16) for w

is the reaction operator equation for K:

K = [U,W„—(I —W»)P» V, ](1 + G,K), (35)

T =K —ivK6(E —H, }7'

=K —iv T6(E —H, )K. (36)

These equations are consistent with the discontinu-
ity equation' for T, which is easily seen from Eq.
(16}to be the unitarity relation

ImT(+) = —vr(+)&(E —H, ) T(-), (37)

where r(-}= r(E —i0) and 2i Imr(+) = r(+) —r(-).
Since Eq. (36) also leads to Eq. (37), it readily
follows that any approximation to K that has zero
discontinuity will lead, via Eq. (36), to unitary
matrix elements for ~.

It is also possible to obtain the differential equa-
tion whose solution (subject to outgoing-wave boun-
dary conditions} yields the amplitude A, =

( II (1)p„[1]lr] +[1]II-(I)&. We omit the details
of the derivation and state the result without proof;
it is

[E —H, —v, w„+(I —w„)P v, ]I4,& =o. (36)

If we expand I4,& in bound target states only, we
obtain the equations

where G, =P/(E -H, ) and P means principal value.
Matrix elements of K(E) taken between the states
of II, will yield the elements of the K matrix, which
for energies below the first excitation threshold,
are proportional to tan &&, where &, is the 1th
order phase shift. The operators 7 and K are re-
lated by the damping equations

(&-&g-K) I+g(I)& = Q &e'g"[I]I &w„le'."[I]+.(I)&- Q,e'8"ll]l(1- w„)v le'."[2]4'.(2)& (39)
A

bound bound

Here, K, is the relative kinetic-energy operator
between particle 1 and the center of mass of the
target. Equation (39) is reminiscent of the integro-
differential equations found for the scattering of a
particle by a system of particles identical to it
when the full wave function is expanded in a term-
wise antisymmetric sum of target states. " How-
ever, there is only a superficial similarity, as
the detailed structure of the two sets is quite dif-
ferent. Indeed, I4,& is not the usual Schrodinger
equation. Nevertheless,

I
4'„(I)) asymptotically

yields the correct scattering amplitude A, as is
easily seen from Eq. (39), and thus Eq. (38) is a
valid equation to solve. This is yet another ex-
ample in which properly symmetrized amplitudes
can be obtained from a state not having the proper
symmetry under particle interchange. '-' Calcula-
tions ba.sed on Eq. (39) for the cases n =2 and n =3

are in progress and will be reported elsewhere.
We now return to Eq. (34) for the special case

n=2. Here T= T11 &21T21f and we note that

11 22

and also

(40)

Use of Eqs. (40) and (41) leads to the equation

r=[ V,W„—W„P„U,](1+G, T}.

(41)

(42}

Equation (42) is the one which was used in the
e +H calculations. ' Obviously, when we recall
that W» —-1 —W», Eq. (42) reduces to Eq. (16).
Equation (42) was previously derived' assuming
that in a term like tV;& G& T&, interchange of par-
ticle labels in G, would also interchange subscripts
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on the W&&, which is an invalid assumption. Never-
theless, the preceding analysis shows that Eq.
(42) is correct, and hence that the e +H results
are valid. ' Because of its form, Eq. (42) can be
used to study variations of 5'» away from the value
zero (and W» &1) when G, is approximated by ex-
panding it in teI ms of bound states of particle 2

only, as in Ref. 4.

The analysis of this paper has been based on the
assumption that the identical particles are fermi-
ons, so that under particle interchange, phase
factors occur, as in Eqs. (12) and (26). All such
phase factors become equal to unity in the case of
identical bosons. To treat this latter case we
merely need to change all factors -P» in the above
equation to + &2y.
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