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Three-particle aspects in an N/D approach to nuclear reactions
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Several approximations in a generalized N/D approach to nuclear reactions are tested for the three-nucleon
system. A detailed analysis of the analytic structure of the amplitudes for transitions between stable two-
particle channels is presented. Three-particle unitarity is treated with a method which preserves the simple
structure of the one variable N/D equations. Calculations for the three-nucleon system are compared with the
exact solutions of the Amado equations. The importance of exchange contributions to three-particle unitarity
is stressed.

NUCLEAR REACTIONS Dispersion-relation method applied to the three-nucleon
system. Analytic structure of scattering amplitudes. Three-particle unitarity.

I. INTRODUCTION

In the last decade various methods have been
developed to describe nuclear reactions. In the
realm of few nucleon systems, the formulation of
the rigorous three-body equations' has stimulated
the development of several reaction theories which
treat the three-particle aspects of the reaction
along the lines of the Faddeev theory. If the num-
ber of nucleons exceeds three, the generalized
Faddeev equations become very complicated so
that one usually looks for methods to reduce the
number of degrees of freedom. This should be
done in such a way that the resulting amplitudes
and the equations which they satisfy have a clear
physical interpretation. Bound states, resonances,
virtual states, and their interactions should find a
natural embedding in such a theory.

An example of such a theory is the dispersion
theoretic approach, which is based on the analytic
properties of the amplitudes of various reaction
processes. In this paper we will be concerned
with an extension of the N/D theory of nuclear re-
actions formulated by Rinat and Stingl' (RS). Al-
though the separation of the amplitudes into an N
and D part serves a mathematical purpose, namely
to linearize the unitarity equations, it has a phys-
ical relevance, too. It implies a separation of the
dynamics of the reaction (i.e. , the forces which
act between the particles) and the fundamental con-
straint of matter conservation which is expressed
by unitarity. In the N/D theory, both aspects can
be treated to various degrees of sophistication, so
that we can interpret the properties of the system
in terms of these features.

In the present paper we will perform such an
analysis for the three-nucleon system. The exact

solution of the N/D equations for separable inter-
actions should correspond with the solution of the
Amado-Lovelace equations. ' Since the latter solu-
tion is known, "' we have a natural reference frame
for performing our analysis.

In Sec. II we will review the many-channel N/D
theory for two-body bound state channels. It has
been shown by Rubin, Sugar, and Tiktopoulos'
(RST) for the case of local Yukawa interactions,
and by Stelbovics' in the case of the Amado-Love-
lace model, that the amplitudes have the proper
analytic properties for satisfying dispersion rela-
tions. The singularities in the energy E are situ-
ated along the real axis. Right-hand branch points
correspond to physical thresholds; i.e. , the ener-
gies at which reaction channels open. Left-hand
branch points correspond to exchange processes
involving nucleons, pions, or both. The cuts due
to nucleon exchange are closest to the physical
region. The corresponding forces therefore have
a long range character. The range is roughly in-
versely proportional to the separation energy in one
of the vertices. In our nonrelativistic approach,
the pionic degrees of freedom are absorbed in the
form factors of the vertices. The exchange forces
of pionic nature have a range roughly inversely
proportional to the pion mass and are therefore
short ranged. The corresponding cuts lie far to
the left and are thus well separated from the phys-
ical region. Other singularities in the amplitudes
are bound state poles, whereas the N/D amplitudes
may also contain ghost poles if the input in the N/D
equations is inadequate. In the unphysical sheet
there may be resonance poles off the real axis.

In Sec. III we will study the left-hand singularity
structure of the first- and second-order partial
wave amplitudes in detail. A similar study has
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been performed by RST in the case of local two-
body Yukawa potentials; however, with a different
purpose. They prove the analyticity of the unpro-
jected on-shell amplitudes in a rigorous way, which
is not the aim of the present paper. We concen-
trate on the case of two-body bound state channels
and are interested in the actual positions of the
singularities and their origin. With this knowledge
we can construct the left-hand projection of the
amplitude, which serves as input for our N/D
equations. The amplitudes satisfying the Amado
equations were also discussed by Stelbovics', how-
ever, he only considers one two-body bound state
channel, which is insufficient for our purposes.

In Sec. IV we will discuss three-particle unitar-
ity. The exact treatment of three-particle chan-
nels is possible in dispersion theory', however,
this would complicate the equations to a level com-
parable to that of the Faddeev equations. Several
approximations have been suggested to deal with
this problem. "' ~ ' In this paper we reexamine this
problem from the following point of view. Suppose
that the Amado equations which manifestly preserve
three-particle unitarity yield amplitudes a(E) de-
scribing at all energies E the transition from one
two-particle channel to another (or the same) two-
fragment channel. One can now define new phase
space factors p(E) in terms of the amplitudes a(E)
Below the three-particle threshold they are identi-
cal with the original two-particle phase space fac-
tors. The solution of the N/D equations with this
phase space matrix is exactly a(E). Our aim,
therefore, is to compute the thus modified phase
space factors p(E) as well as possible, without
having to solve the full set of rigorous equations
for a(E} To accom. plish this we use the isobar
ansatz for the three-particle states. We wiQ be
particularly interested in exch:mge contributions to
three-particle unitarity, which were hitherto ne-
glected.

In Sec. V we apply the N/D approach in different
orders of approximation to the three-nucleon sys-
tem. We discuss both quartet and doublet scatter-
ing. In the latter case the singlet nucleon-nucleon
interaction plays an important role. The corre-
sponding t matrix has a pole close to the physical
region (antibound state). In order to retain our
formulation in terms of stable two-particle chan-
nels, we increase the strength of the singlet inter-
action somewhat so that it generates a bound state
with small binding energy. The effect of the con-
tinuum singlet and triplet two-nucleon states can
then be described in an approximate fashion by us-
ing modified phase space factors.

The introduction of the singlet state with a very
small binding energy necessarily introduces an
anomalous threshold. The present model of nucle-

on-deuteron scattering, therefore, is also a first
application of the extended N/D equations intro-
duced in Ref. 11. In that paper we showed that in
the anomalous case N/D equations can be formu-
lated which have the same structure as those for
the normal case.

The results of the calculation are discussed in
Sec. VI. Since our main purpose was to test vari-
ous assumptions in the N/D approach, we did not

try to introduce further refinements in our de-
scription of the three-nucleon system. We stress,
however, that many refinements, such as the in-
clusion of noncentral and Coulomb forces, can be
carried out in the N/D description, as has been
shown in the recent study of the five-nucleon sys-
tem. " We trust that the present study will clar-
ify the conditions under which the N/D method can
be successfully applied to nuclear reactions.

A,~(E;k, , k~) =Q P~(k( k,.)
L

xa[&(E; k„k&) (k,.kz)~, (2.1)

where the center of mass (c.m. ) energy is denoted

by E, and the relative momenta in the in going and

outgoing channels are k,. and k, On-shell momenta
satisfy

k,. =2M, (E-E,), . (2 2)

where E,. is the threshold energy and M, the re-
duced mass in channel i The factor .(k,k&)~ was
introduced to define partial wave amplitudes free of
certain kinematical singularities. The on-shell
partial wave amplitudes a,~(E) = a~& (E;k, k ) sa—t-
isfy unitarity equations in the physical region:

a(E+ ic) —a(E —ie) = —2via(E+ie)

x p(E+ic) a(E —ic}, (2.3)

with phase space factors

p, ,(E+ i~) =M,.k", "a„e(E E,). (2 4)

Here we adopted a matrix notation for a and p. As-
suming the usual reality properties of scattering
amplitudes,

II. NjD FORMALISM

The N/D formalism has been discussed exten-
sively in the literature, ""so we only will mention
the most important assumptions and equations. In
dispersionlike treatments one assumes —and some-
times proves —that the scattering amplitudes which
describe the different reactions are analytic in the

energy plane. Since we restrict ourselves to cen-
tral interactions, partial wave amplitudes can be
defined according to
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ah(E) = a(E*), (2. 5)

one writes (2.3) above the relevant thresholds in
the form

disca '(E+i+) =2iIma '(E+iz) =2zip(E). (2.6)

In the N/D approach one writes the amplitude as a
quotient of the numerator function n which contains
the left-hand (dynamical) singularities and the de-
nominator function D which carries the right-hand
(unitarity} singularities,

a(E) =n(E) D '(E).

Defining the input function b(E) as the left-hand
projection of the amplitudes a(E), i.e. , as a spec-
tral integral over the left-hand cut L,

(2. 7)

b(E) =— dE' Ima(E')/(E' —E),
1 (2.8)

one readily obtains the N/D equations (no subtrac-
tions)

b(E') —b(E)
n(E) = b(E) — dE' ,

— p—(E')n(E'),

III. SINGULARITY STRUCTURE OF THE AMPLITUDES

The singularity structure of amplitudes in poten-
tial scattering has been studied extensively. "'"
In particular, one has established the principle of
nearest singularities which relates the proximity

(2.9)

D(E) = 1+ dE' p(E') n(E')/(E' —E) (2. 1. 0)
Q ~

We note that in writing down the unitarity equations
in the form (2.3) we neglected continuous channels,
i.e. , three-particle unitarity, and excluded anom-
alous thresholds since we assumed that the singu-
larities of dynamical and kinematical nature are
well separated. We come back to the first point in
Sec. IV, whereas for the treatment of anomalous
thresholds we refer to Ref. 11.

The input function b(E) is unknown, and the com-
mon strategy is to find good approximations.
These may be based on perturbation expansions of
the amplitudes a(E) if these are known, or on some
diagrammatic method. The one cluster exchange
(OCE) amplitudes and the repeated OCE amplitudes,
as defined by Rinat and Stingl, ' allow both a simple
graphical interpretation and an explanation in terms
of perturbation expansions. The nuclear models
for the fragments enter via the dressed vertex
functions. In nucleon-deuteron doublet scattering
even third- and fourth-order input appear to be
important, as was shown by Dodd and Stelbovics. "
In the next section we will investigate the analytic
structure of the amplitudes, in principle up to any
order.

Qz(x')
(x' —z) (x' —x) (3.2)

of the cut to the order of the amplitude concerned.
For example, for the Yukawa potential the left-
hand cut of the nth Born term starts at --,'n'p',
where p. is the range parameter of the potential.
The analytic properties of many-particle scatter-
ing amplitudes are far more complicated than those
of the two-particle amplitudes, as was shown in the
three-particle case by Rubin, Sugar, and Tiktopou-
los' (RST). The analysis of the present section
differs in several respects from this work. Start-
ing points of RST were the Faddeev equations for
local two-body interactions of the Yukawa type.
Our basis is the many-channel reaction theory of
Ref. 2, for which the driving mechanism is cluster
exchange. Bather than with two-body potentials,
we work with vertex functions which describe how

composite particles are built up from constituent
clusters. We choose the form factors to be of the
Hulthbn type. The analysis of RST concerns on-
shell amplitudes before partial wave projection,
whereas we will work throughout with partial wave
amplitudes. Furthermore, our aim is to use the
N/D method, which requires a distinction between
left- and right-hand singularities. The latter in
fact are an automatic consequence of the equations.

The basic mechanism in the theory of Rinat and
Stingl' is cluster exchange. In first order there is
OCE, in higher order there is repeated OCR. In
the three-particle system the expressions for the
amplitudes of successive order can be obtained
from the Faddeev equations, or in the case of
separable interactions from the Amado equations.
The latter formulation is closer to that of Ref. 2.
The OCE amplitude before partial wave projection
is given by (cf. Fig. 1)

(k I&u(E+ i&) Ik'&

I'*(—k' —ak) I"( —k —ak')
CA Cg$

'& E+ig —b /2m3 —b'3/2m, —(k+k') /2m„
(3.1}

where C,&
is a spin-isospin recoupling coefficient

and C,z is an antisymmetrization factor which—
apart from its phase —is factorable in the vertices. "
Furthermore, we introduced dimensionless mass
ratios a =mc/m, and a' =m3/m, . I'(q) is a vertex
function which is chosen of the Hulthbn form
q'(q'+p, ') v3, where p is a range parameter. This
choice leads to an analytic expression for the par-
tial wave amplitude. For central forces we have
l =l'=0 and obtain

aL(1)(E.Q Qt) C& Cls 3 a ch h 3h
7 I gc gc (baal)I+3 4 I

Q (z) 0 (x)
(z —x) (z —x') (x- x') (x- z)
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FIG. 1. One cluster exchange graph. The physical threshoM for this process lies at E&=-~, -eb or E&=-ec -&„.

with Q~ the well-known Legendre function of the
second kind and

logarithmic branch points of aP.'(E}due to Q~(z)
can be written as follows:

1 k' k"
kk' " " 2a 2a'

k' +a'k'+P'
2nkk'

(3.3)

(3.4)

1~2
(I)}4J'= u ~ fv il + + ~

f'lJ f J

(3.8)

Similarly, the branch points due to Qz(x) are given
by

k2 + ~t2k12 + PI2x'=—
2~'kk' (3.5)

The following relation exists between coupling pa-
rameters and the separation energy v'/2p~„=e,
—6g —E

N«„' = Z«„Px(z+ P)/v p,„ (3.6)

and

~&g =&c —&b —&x~

+&)=&c+&~—&u- &b

g, , = m, m, /Mm„,

f„=m, m, /Mm„=g, , + 1,

(3.7)

where M is the total mass m, + mb= m, +m~. The

The spectroscopic factor Z, ~„represents the prob-
ability for finding fragments d and x in a. The def-
initions of the several binding energies e, masses
M, and reduced masses p, follow fron1 Fig. 1. Re-
member that M, =m,m~(m, +m~) ' On-shell a.mpli-
tudes are obtained from (3.2) by putting initial and
final momenta on shell according to (22). The
singularity structure of the physical on-shell am-
plitudes is determined by the square root branch
points at the physical thresholds E, and E,. and the
logarithmic singularities of the Q~ functions for
z, x and x' equal to +1. For notational convenience
we introduce some constants depending only on
masses and binding energies involved:

(P) e e [g I/2
P pf I/2 (n, + P2)lg j2

(3.8)

where P' =f,&
Pz/2M, Finally, the branch points

due to Qz(x') are given by

a&'„'(E; k(E), k'(E')) —= a&~'(E; E,E'),
(3.11)p 00

a ' (E) =g dE'a ' (E;E,E')p~( 'E)

&Ep

x r,(E E') a„",'(E;E', E), .

(I)');;= (I));;. (3.10)

In the following we will see that the left-hand sin-
gularities close to the physical threshold are de-
termined mainly by the dynamical character of the
reaction (z singularities), whereas the more dis-
tant singularities are determined by the finite range
effects of the forces between the fragments d and x,
and b and x(x and x' singularities). The contribu-
tions of the latter singularities turn out to be of
particular interest in the higher order amplitudes,
since many of the z contributions then vanish.

The cut structure of the Q~(z) term in a",~'(E) is
shown in Fig. 2. We have distinguished between
three cases: f,~&0, $,~=0, and g, , &0. The latter
case represents the so-called anomalous situation
where right- and left-hand singularities of the on-
shell amplitudes are no longer separated. In prac-
tice the Qz(x} and Qz(x') cuts never intertwine
with the physical unitary cuts.

The second-order an1plitudes can be given in
terms of the half-shell amplitudes
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gZg
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FIG. 2. Branch cuts of a&~)(s) for some values of E& (a) E; E& and. f& 0; (h) f=c and )E&(=)E&(+de 'e (0& 0, 0~$
~z); (c) )E&(&(E~&( and f& 0. This cut is the image of the [-1,I] cut in thez plane.

where k"(E') =2M,(E' —E„). In Fig. 3 the dressed
propagator of the intermediate state w~ has been
indicated by a blob. For separable potentials of the
Hulthbn form' one calculates

(«+ & f') (P+ & f-')'-
«(«+P) («+20+ & P') (E-E-') '

(3.12)

where P'/2)iz, =E —E' —«'/2)iz, is the energy of the
two-particle system (cf. Fig. 4) with «'/2 ps, the
separation energy defined before [E(I. (3.6)]. The
propagator has a square root singularity at p' =0
or E —E' =«'/2 pz„. The corresponding cut in a,"~'(E)
starts at the three-particle threshoM E = —e~- &~

—&„. Obviously, taking into account the contribu-
tion of the dressed propagator to the input functions
(2.8) is only consistent if three-particle unitarity
is also treated in a similar approximation. This
will be worked out in the next section. The dress-

ing of the propagator is important in actual calcu-
lations, however, in the determination of the left-
hand cut it plays no role.

In order to determine the singularities of a~&'(E)
in the left half of the energy plane we proceed in
the same way as in the study of anomalous singu-
larities. " We start from (3.11), which is valid in
the physical region below breakup. We trace the
left-hand branch points of this amplitude by ana-
lytic continuation to lower values of the energy. To
this end we need the branch points of the half-
shell function a', '&'(E; E', E) in the E' plane (mind the
ordering of the arguments):

[l)4(E)](i Ei —[giq' (
—- E+Eq)-' v7'i~' ] /ft~,

(3.13)

and similar expressions for the x and x singulari-
ties. As an example, we take nucleon-deuteron
scattering (n = a' =-,') where the rightmost branch

(a) (b)

II
0

b

FIG. 3. (a) Triangular graph for the reaction 1+2 1'+2'. (b) Repeated OCE graph as approximation of the triangu-
lar graph.
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X
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+ 0 ~ ~
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FIG. 4. Graphs contributing to the dressing of the propagator (3.12).

points correspond to the off-shell momenta k

(= [2M((E' —E )(]'@J.

k(~(E) =i( [--—,'(E —E()]'@+(- E()(&'I,

k(((E) =2i( 2[- -3(E —E()] ( +(3), (3.14)

k"„(E)= i( [- ,'(-E E,—)]'(s—+ P j,
where p(p') is the range parameter in the initial
(final) vertex. The cut structure for the z case is
shown in Fig. 5. As soon as the branch point of the
half- shell functions interferes with the integration
interval, the integration contour has to be de-

formed. The continuation of a((2('(E) has been treat-
ed extensively in Ref. 11. It was shown that left-
hand branch points in the energy plane can arise
in two ways.

First, it is possible that a branch point of one
half-shell function a (((s( E; E, E') encircles the end-
point of integration E„, returns to the left, thereby
deforming the integration path, and for a certain
energy encounters a branch point of the other ha3f-
shell function a„"~'(E;E',E). The branch point in
the E plane is then found as the solution of

k~~~(E) = —kss((E), (3.15)

[4) ij &~ ki

|2j
(3}—-

t~l

where e and P may be z, x, or x'. The minus sign
occurs because one of the branch points in the E'
plane moved onto the adjacent Riemann sheet (see
Fig. 5). Denoting the branch points of an ikj
second-order term corresponding to the product of
Q~(z) and Q~(x') as (1&" )(», one obtains the follow-
ing condition for E = (1&' )„,:

k (E) = —k"((E), (3.16)

so that

(1)"')((((=E, —+(((+2P')', (3.17)

'

I
I

I

I

' pi:-
ll

I
I

I

al

I

I

l

I

I

/
/

/

Re kl

where we used the equality x = v'-E&. Similarly,
one finds

(l)")(„, E, —a (((+ P)'. —— (3.18)

ks«E) =0 (3.19)

Second, it is possible that the two singularities
of the half-shell functions in (3.11) are the same.
For the diagonal case the cut in the E plane starts
as soon as the branch point of the half-shell func-
tion in the E' plane has reached the endpoint of
integration E„. Therefore, in this case the condi-
tion is simply

FIG. 5. Singularity curves of the QL(s) part of
a ('((E;E',E) in the k plane. The constants g (&

= $ and ('((
=E, are taken from nucLeon-deuteron scattering. The
curves denoted by (1), (2), (3), and (4) correspond to en-
ergies E =0, -E, , -2E&, and -7E, . The solid (dashed)
lines are the singularity curves which for E &E& lie in
the (un)physical sheet.

Characteristic of the zz singularity is its indepen-
dence of the intermediate channel

(3.20)

Observe that this is just the left-most branch point



1358 J. M. GREBEN AND L. P. KOK

1& of the zero range part of the OCE amplitude [cf.
Eq. (3.8)].

The singularity structure of a general nth order
partial wave amplitude can be analyzed similarly.

Such an amplitude consists of many terms, corre-
sponding to different contributions of intermediate
channels i„... , i„„and the arguments z, x, and
x' denoted by n„.. . , o.„:

a(E)fl, ::,P,~
= dx, dx„,a«,'(E;E,x,) p, (x,)v, (E x,) ~ r, (E —x,)a, m (E;x„„E).

ED g ~

in 1

(3.21}

They demonstrate that the rescattering singulari-
ties of order n (all e =z) should vanish if n equals
(or exceeds) the maximum number of possible
classical binary contact collisions in the three-
particle system. This number obviously depends
on the mass ratios of the particles involved, and
reaches its minimum of 3 in the equal mass case.

We know that higher order input functions cer-
tainly cannot be neglected in some cases,"so we
must conclude that the finite range effects of Q~(x)
and Q~(x'} are essential in giving a good represen-
tation of the input functions in these cases. The
closest third-order left-hand branch point in the
nucleon-deuteron case is found to be

l)'"' E( —3(x + —,
'——2P)' (3.22)

where we omitted the subscript iii. Furthermore,
one finds that the xzx, xzx', and x'zx' terms have
a vanishing left-hand projection.

In our formal analysis we showed that nth order
branch points are obtained from a step by step pro-
cess. In some cases this can be carried through
completely. In particular we find

l) ""*"'
Eq —3P ——(1 —2 )', m =n/2

(3.23)

l) "x""'"'=Eq —Sp (1 ——', 2 ), m =(s —1)/2.

Note that these branch points move monotonically
to the left with increasing rn; however, they have a
finite accumulation point E, —SP', and thus have a
behavior completely unknown in potential scatter-
ing. An example of a general set of branch points
which have a more "regular" behavior is

"'"=E&—+ P (3.2~ —1} m =n/2.
(3.24)

Let us conclude this section by giving an explicit
expression for the left-hand projection of the sec-
ond order-amplitude (3.11). We give here an alter-
native to the spectral representation in terms of
the left hand discontinuity [cf. Ref. 11, Eq. (5.15)]
and use a dispersion relation for the dressed prop-
agator r,(E') to write b',3&'(E) =Q~b~@»'(E) in the
form'

In this expression the function a&,. represents the
a component in the off-shell amplitude (3.2). If we
continue (3.21) from the physical region to lower
values of the energy we will reach the point where
the first (or last} half-shell function becomes sin-
gular, so that the integration path must be de.-
formed up to x, = [l&&(E)]«[compare Eq. (3.13)].
Next one considers the singularities of the function
aP...'(E;7,(E),x,) in the x, plane. For a certain
value of E the rightmost singularity will reach the
end point of integration E,. and the integration path
must be deformed up to x,(E). This process can be
continued in a straightforward manner, both from
the left and the right. In the case of odd n it may
occur that finally all integration paths are de-
formed and that a)~, (E;x „x ) determines the
branch point of (3.21) in the energy plane [m =

—,'(n+ 1)]. For all other cases we are finally left
with one undeformed integration path with an in-
tegrand containing, for example, a, m, , (E;x „x )

pends on E and the labels n„.. . , n „, and

i, i„.. . ,i,. If the singularities of these remain-
ing off-shell functions interfere with the integration
path at the same time then the singularity of (3.21)
follows from the requirement that a(E;x,(E),E,).
should be singular. If the off-shell functions are
different then the singularity of (3.21) follows from
the requirement that the branch points in the x
plane coincide after approaching each other
from opposite directions, so that either
a(E;x,(E),x (E)) or a(E;x (E),x„„(E))deter-
mines the singularity.

Let us apply these techniques to the third-order
with n, =o., =n, =z, and i=i, =i, =). In this case we
should determine the singularities of the function
a'(E;l&(E), l&'(E)). However, for E&l&'—the point
below which the two integration paths should be
deformed —this function is free of singularities in
the three-nucleon case. Therefore a',.", ,(E) does not
have left-hand singularities and does not contrib-
ute to the input function. The physical picture
associated with this phenomenon has been given by
RST, who characterize the zz and zzz singularities
as rescattering singularities. RST determine the
position of the singularities using the Landau rules.
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dE' a,",&(E;E,E') p, (E') a,"~&(E;E',E)
K K+P

k

&&o &o dE I I
+- dE'Pk E' El tl bSk E" E

E Ee E„E

&&&&&(E».E» E&) &&&1&(Et&.E& E&i) g&l&(E. E E&) &&&&&(E.E& E) (3.25)

where

(Ey &

&&[p'+ (&&+ 2P)'] (3.26)

IV. THREE-PARTICLE CHANNELS IN THE W/D APPROACH

In the &/D approach scattering amplitudes are
determined by their singularities in the whole en-

and ~ and P are the separation energy and range
parameter of the dressed particle in the intermedi-
ate state k. The momentum P was defined in (3.12).
The expression (3.26) holds in the normal case
(t;,&&0, „l, &0) a.nd for large enough energy. The
first integral which contains the contribution of the
bound state pole in 7k will be called the bare sec-
ond-order input, the remainder is due to the
dressing of the propagator. We also will need
some of the input functions at energies for which

the singularities of the half-shell function inter-
fere with the integration contour. The extension of
(3.25) to this case is obvious. Similarly, one can
define the input function in the anomalous case,
where the singularities of a",,&(E') or a,''&&(E') may
interfere with the integration contour. In this case
the regularization implied in (3.25) persists al-
though the integration paths for half- and on-shell
functions may differ. One should, however, be
aware that for the anomalous case the input func-
tions are redefined in such a way" that integrals
containing the square of the discontinuity of && „&(E'}

are treated separately.

ergy plane. For the general N-nucleon problem,
therefore, the behavior of the amplitudes is also
determined by three-, four-, up to N-particle
unitarity s ingularities. Four- and higher-particle
unitarity are usual. ly neglected both for physical
and practical reasons. Three-particle unitarity in

this context has been considered by a number of
authors. "0'

Contributions to three-particle unitarity arise
from two sources. First, the unitarity cuts of
the two-particle scattering amplitudes contribute
(the bound state poles in these scattering ampli-
tudes are responsible for two-particle unitarity of
the complete amplitudes). Second, the scattering
amplitudes themselves contribute. The two contri-
butions are shown in Fig. 6. Freedman et al.~ have
studied three-particle unitarity in the separable
model. They proved in an elegant way that the dis-
continuity can also be obtained from the isobar
ansatz. This isobar ansatz expresses the breakup
amplitude in terms of bound state or resonance
scattering amplitudes and two-particle propagators
(see Fig. 7), and is exact in the separable model.

In order to give an explicit expression for this
isobar ansatz we invoke the common three-particle
notation where &x= 1 means that pair (23} is coupled
to particle 1, and indices a specify the states of
pair + and particle a. Breakup channels are la-
beled by v. The total mass is M=m, +I,+m„re-
duced masses are l& „(internal in pair a) and M„
(of pair &&& and particle a).

The t matrix of pair a is assumed to be separ-
able:

!
I

I

I

I

!

I

(a}

FIG. 6. Contributions of (a) the tv'-particle propagator and (b) of the OCE ampl. inde to three-particle u~tarity.
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e~e~gy &d = p'/2p, normalized according to [cf.Eq.
(3.12), n2/2ll, = e,]

(4 2)

FIG. 7. Breakup amplitude in the isobar ansatz.

(p I t.(~) I p'& = I'*.(p)~.(~)l'.(p') . (4.1)

The propagator 7, is a function of the two-particl. e

If the pair ~ cannot support a bound state, 7, is
still defined; however, it no longer has the single
pole at ~ = &, in the physical sheet. The isobar ex-
pression for the unprojected breakup amplitude
A. „ is formulated in terms of unsymmetrized two-
body bound state amplitudes A ~ as fol. lows:

(:k IA, (k+ 's)l = f Ap f Ak & k )A~(k+'s)(x kc), (A —k 'loose-k +i )r(ps)&op i (.
~ C

(4.3)

The bar over A indicates that we deal with unsym-
metrized amplitudes. The labels y and c run over
all partitions and states consistent with the break-
up channel v. The three-body breakup threshold
is characterized by E, .

The three-particle discontinuity is given by

lier cal.culations of n -d scattering. ' In calculat-
ing these terms we use the expression for the
overlap integral

(cPl k) I &.(E) I du 2 k2&

(~&.l disc„A„S(E}lpf ks&

=2nf(a(2k IA„„(E+ie)rk„(E)A„2(E—ie) I pbkn&.

(4.4)

The operator &„represents the discontinuity of the
Green's function (E H, ) ', -where H, is the rele-
vant free three-particle Hamiltonian. In momen-
tum representation it is simply a 6 function which
dictates the on-shell condition E =Py2/2ll, &+ kl /2M&
+E„. If one inserts (4.3) into (4.4), thereby intro-
ducing two summations (yc) and (5d), two types of
terms will appear. First the direct terms, for
which y = 6. These terms come from the discon-
tinuity of the two particle propagator [Fig. 6(a)].
An explicit expression of this contribution to
three-particle unitarity has been given before by
RS.

The contributions of the OCE amplitudes them-
selves, for which y+D can be considered as the ef-
fect of overlapping resonances or bound states.
These exchange terms were neglected in the ear-

m„+ m~ " (m„+my)(m„+m2) "

X5 kb+py+ '
ky 5 E

2 2M
-E„, ,

(4.5)

where (y6g) =(123) or a cyclic permutation thereof.
The overlap factor Cl2 was introduced in Eq. (3.1).
We could stick to the notation of Sec. III by using
(2'=m)/(m„+m)), &2= /m( n„m+2m), f~'=m„M/
[(m„+m2)(m„+ m„)], and m„=m, ; however the fi-
nal results will be more easily expressible with
the present notation.

The integrations over p~ and Rq can be trivially per-
formed. Next we write the amplitudes in the par-
tial wave series (2.1) and expand the whole inte-
grand in terms of spherical. harmonics of pz, k&,
k, and ks. The angular integrations over pz and
k& can now be performed. Symmetrization of the
amplitudes simply leads to the factor C",~ which
was introduced in Eq. (3.1). The resulting expres-
sion for the three-particle discontinuity of the
symmetrized amplitude .is

L L -~/2 +3/2
( 2 )-kd ~ nl (E) 2 GA GIS Q (l )( 2)I +2 )' 2 m 2 2 +) I2(E E )L+2

C2 1=0
2A**'"((-P))"-'":.(k, ; k, k„)r&P,),. k" „s)

0 y

j. I2
x d osSP(cock))' (P2 —')s (E —'c;kc, k'c')

-1 2jig
(4.6)
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a,„(E;k'„", k8) =a~(E)x,~(E, k8), (4.7)

or we can use a recently proposed" definition in
the spirit of Kowalski and Noyes":

a~~(E; k'„", k8) = P a „(E)x,,(E, kz) . (4.8)

We should realize that (4.7) or (4.8) are nothing
else but definitions of the off-shell. function X. in

terms of unknown amplitudes a . Whether (4.7) or
(4.8) is preferable will depend on whether they
constitute a useful approximation scheme for the
off-shell functions X.

The first formulation leads to a phase space
function p„~, which also depends on the "outer"
indices a and 6, so that the unitarity relation can-
not be inverted. Therefore (4.7) is only useful if
one neglects the dependence on the "on-shell"
indices &a:

X.;(E, ks)=X&(E, ks). (4.9)

The momentum pz equals x[2' (E —E„)]'~', p~ a,nd

kq are determined by the relation (4.5) and 8 is the
angle between pz and kz. A simple way of under-
standing the oecurrenee of the spin and antisym-
metrization factor is by realizing that (4.6) can
al.so be obtained by directly cutting the OCE am-
plitude (3.1) according to Fig. 6(b).

We would like to express the result in terms of
the phase space matrix p [Eq. (2.4)]. For this pur-
pose we relate the off-shell partial wave ampli-
tudes to the on-shell amplitudes. At this point we
can follow Ref. 10, in which off-shell functions y
are defined according to

If we restrict ourselves to the direct contributions
of three-particle unitarity, then this approxima-
tion leads to modified phase space factors which
are still diagonal, corresponding with the case
considered in Ref. 10.

The second formulation (4.8) does not destroy
the matrix character of the unitarity equations
(3.1}. It will, however, lead to a nondiagonal
phase space matrix. In this case, solving the N/D
equations is more eomplieated because of the non-
reality of the n and D functions. In the present in-
vestigation we did not attempt to perform the cor-
responding extensions in our numerical. work.
Therefore we will use (4.7) in combination with
(4.9}. We will also include those exchange contri-
butions of three-particle unitarity which contribute
to the diagonal elements of p.

We will apply the present theory in nucleon-deu-
teron scattering. In this case the antisymmetri-
zation factor equals -2, independent of the chan-
nels involved. The minus sign arises because we
have to relate the internal OCE coupling scheme
with the coupling scheme used in performing the
symmetrization. The latter coupling scheme is
based on a logical enumeration of states in terms
of permutation symmetry. Upon substituting (4.7)
together with (4.9) into (4.6) one obtains an ex-
pression for the three-partiel. e discontinuity,
which has the same structure as (2.3}. One can
now include the three-particle contributions of the
exchange type in the phase space matrix p.

In order to assess the relative importance of
two- and three-particle unitarity we introduce the
dimensionless inelasticity parameter ~ according
to

P,~(E) = (m,nz, )' ~'(k,k,)
"@ [8(E —E ) 6 + 8(E)X~ (E)] (4.10)

where the three-nucleon breakup threshold is set equal to zero. For completeness we recall' the form
of the direct contribution to three particle unitarity in the approximation (4.9):

1

(E)gg t=(E E ) E + (4&) dxx (1 —x ) +
~x (E k)'f (p )I' (p )

0
(4.11)

where P = xv E and k = 4 E(1 —x').
For E-0 all momenta in the integrand of (4.6) approach zero so that

~.;(E}-E'"[6., I X,'(E, O) r, (O)I' - 2C'.,'(-l}'X.'(E, O) T.(O)r (O)(lt„'(E, O)r, (O)r (O)} ] . (4.12)

Obviously, the relative importance of the direct
and exchange contributions in A„(E) is independent
of the specific form of the off-shell functions. In
nucleon-deuteron scattering the channel spin 8 can
be either ~ (quartet scattering) or —, (doublet scat-
tering). The relevant recoupling coefficients are

1 3 IC„„—,, S —z, I- 2,
3C„,=C,q= ~,

(4.13)

where d represents a triplet two-particl. e state
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singlet deuteron state. We therefore have one two-
body channel for quartet scattering, and two two-
body channels in nucleon-deuteron scattering. Be-
cause of the loosely bound singlet state an anoma-
lous threshold occurs in the doublet case. This
requires slight modifications in the &/D equations
and input functions which were discussed in a pre-
vious paper. " Some of the input functions become
discontinuous in a certain point L~ on the elastic
cut, which is chosen for convenience at the energy
where the argument of Q~(z) in (3.2) vanishes.
This point can clearly be recognized in Fig. 10(b).

FIG. 10. Input functions for S-wave doublet scattering.
The various curves correspond to: 1=first Born term;
2 = 1+second bare Born term; 3 = 1 + second dressed Born
term; 4 = 3+third-order pole; n' = n + anomalous contribu-
tions. For {a) and (b) the origin coincides with the first
physical threshold E& (=-E&); for {c)and (d), with the
second physical threshoM E2 {=-E,).

The bare second-order inputs shown in Fig. 10 are
reduced in a sense discussed in Ref. 11. This re-
duction essentially means that singular parts aris-
ing from the anomalous threshold are treated an-
alytically. These singuLar parts are necessary in
order to define a unique continuation of the &/D
equations from the normal to the anomalous case.
We used a singlet deuteron binding energy &, of
0.1 MeV. The results did not depend sensitively
on the value of &,. In S-wave doublet scattering we
included a third-order pole contribution which was
fitted to the third-order Born term given in Ref.
16. The pole position was -62 MeV.

In Fig. 11 part of the cut structure of 5« is
shown. In Fig. 10 we showed the input functions
for the S-wave two-channel. &/D equations. Obvi-
ously the dressing of second-order terms is very
important. After inverting the N/D equations one
obtains the scattering amplitudes and from these
the nucleon-deuteron phase shifts and absorption
coefficients. These phase shift parameters are
depicted in Fig. 12 and Fig. 13, respectively. Also
shown are the results of an Amado-Faddeev calcu-
lation for the corresponding case, ' and one-chan-
nel calculations in which the singlet channel only
enters as an intermediate state in the input func-
tions. The range parameters used in these calcu-
lations are P~=1.449 fm ' and P, =1.161 fm '.
Remember that only the diagonal contributions of
+,,„.„are taken into account. Calculations for the
less realistic input of first- + bare second-order
input were also performed, but not shown in the
figures. These results are included in Table I, in
which the triton binding energies for different cal-
culations are listed. As the first-order input is
too weak to bind the triton we have not included
this case in the table.

In quartet scattering the absence of channel cou-
pling simplifies the problem greatly. Input func-
tions for S- and P-wave scattering are shown in

Fig. 14; the corresponding 8-wave phase shift pa-
rameters are depicted in Fig. 15.

The various calculations presented in this sec-
tion differ in their treatment of three-particle uni-
tarity and the input. In the next section we will try
to explain the results from these underlying ap-
proximations.

- 5l Mev

ZX

g ZZ

I E~

I Er'

FIG. 11. Left-hand singularities of b~. Scale follows from the positions of the elastic (E& = -2.225 MeV) and breakup
threshold (Ep= 0) ~ The second-order branch points are both branch points of the input terms with intermediate triplet
and singlet channel. The first branch points not shown on the left {near -75 MeV) are of third order and arise from the
intermediate singlet channel. The second-order branch point l,& lies even further to the left (—90 MeV).
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&, =0 there may occur some simplifications such
as the fact that the bare second-order input terms
vanish if the intermediate state is a singlet deuter-
on. ~t is known that a resonance can be treated
approximately by introducing a set of discrete
channels"; however, whether a similar treatment
is possible in the case of a virtual state is not clear.

(4) The low energy behavior of the S-wave phase
shift is closely related to the position of the triton
pole, which in the exact calculation lies at -11
MeV. Since our input is weaker than the exact in-
put, this pole lies closer to threshoM and the
phase falls off too fast at low energies. Stelbovics
and Dodd" showed that even fourth-order terms
are important in reproducing the exact binding en-
ergy. From studies in potential scattering" we

hope, however, that in general second-order in-
puts or at most third-order terms (which may be
phenomenological poles) will be necessary. In ad-
dition, it may be possible to develop approxima-
tions for higher input functions on the basis of the
left-hand spectral representation.

The present investigation has been a test of var-
ious assumptions in the N/D theory of nuclear re-
actions. Consequently we should now briefly com-
ment on the usefulness of this theory in more
quantitative applications. As mentioned in the in-
troduction, various extensions can be and have
already been performed in the N/D theory. Actu-
ally, noncentral and Coulomb forces have been

used in the five-nucleon problem. ~2 Other exten-
sions which proved necessary in the present in-
vestigation are related to three-particle unitarity
(which may also turn the N/D method into a use-
ful tool for describing breakup reactions) and to
the description of higher order inputs. The input

may also be improved by using better form factors
and by considering those pion-exchange graphs
which are neglected in the Faddeev equations.
Formal investigations may open the way to better
treatments of resonances and virtual states. We
realize that the present N/D calculations do not

yet contain all these desirable ingredients, how-
ever, since most of the extensions which were
mentioned are straightforward, we think that the
N/D method may still develop into a quantitative
tool for describing nuclear reactions and into a
qualitative tool for understanding the underlying
dynamics of the reaction,
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