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Background phase shift in R-matrix theory

S. K. Gupta
Van de Graaff Laboratory, Nuclear Physics Division, Bhabha Atomic Research Centre, Bombay 400085, India

(Received 18 June 1975)

It has been shown recently by Cugnon in his generalized version of the R-matrix theory
that the hard sphere phase shift used in the standard R-matrix theory is arbitrary and can
be replaced, in general, by any other phase shift. In the present paper similar results have
been derived in a straightforward m~ri~er, within the framework of the standard R-matrix
theory, from the usual division of R matrix into a background matrix Ro plus a matrix R'
cont~i»ng pole terms and further constraining Ro to be a diagonal matrix. Thus Cugnon's
theory and the standard R-matrix theory lead to algebraically equivalent results. An ex-
pression for the renor~»ization factor for the reduced width has also been given in terms
of the new phase shift and the hard sphere phase shift.

NUCLEAR REACTIONS R-matrix theory, arbitrary phase shift within standard
formalism. Expression for reduced width.

I. INTRODUCTION

R-matrix theory is most widely used by experi-
mentalists to analyze resonance reactions. Other
available theories are not always amenable to a
simple parametrization of the experimental data.
It has been found in many experimental studies that
the R-matrix theory fails to reproduce the off res-
onance cross sections if the hard sphere phase
shifts, as required by the theory, are used. ' In
an experimental study of the reaction 26Mg(o, u) in
our laboratory, "it was found that the absolute
value of the experimental cross section at back-
ward angles differed by as much as a factor of 2
even though 19 levels mere explicitly included in a
two-channel multilevel expression of the R-matrix
theory. When the R-matrix expression mas modi-
fied, replacing the hard sphere phase shifts by the
appropriate optical model phase shifts, the data
could be fitted satisfactorily. On the basis of the-
oretical studies similar conclusions have been ar-
rived at by Mahaux and Weidenmuller, 4 who found
the one-level approximation of the R-matrix the-
ory failing to fit a resonance produced by a math-
ematical model in which exact solutions could be
arrived at by solving the Schrodinger equation.
These authors also compared the formal expres-
sions of the R-matrix theory with a theory based
on the shell model. They concluded that expres-
sions in the two theories are analogous, though the
interpretation of the parameters differs in the two
approaches. Mahaux and Weidenmuller suggested
that the R-matrix expressions should be used, re-
placing the hard sphere phase shifts by the realis-
tic optical model phase shifts. This mas a practi-
cal suggestion but it did not have any sound basis.

Recently the work of Cugnon' has clarified this sit-
uation. The arbitrariness involved in the use of
the hard sphere phase shifts has been brought out
clearly in his generalized version of the R-matrix
theory. It has been further shown that any other
background phase shifts can replace the hard
sphere phase shifts. Essentially Cugnon' has in-
vestigated the continuity condition in the R-matrix
theory using the projection operator formalism
giving an alternative derivation of the R-matrix
theory. He further shows the freedom of using two
distinct boundary condition parameters in con-
structing the theory. The standard R-matrix the-
ory is a special case when one of these two bound-
ary condition parameters tends to infinity. With
such an approach he generalizes the expression of
the standard R-matrix theory.

In the present paper we show that the results of
the standard R-matrix theory given by Lane and
Thomas' easily yield the general expression of the
scattering matrix derived by Cugnon. The mathe-
matical structure of the two expressions for the
scattering matrix obtained in the present approach
using the standard R-matrix theory and in Cugnon's
generalized version of the R-matrix theory is iden-
tical. In Sec. II we describe in brief the results of
Cugnon. ' In Sec. III Cugnon's results are derived
from the standard R-matrix theory. In Sec. IV an
expression has been derived for the factor renor-
malizing the reduced width in terms of the new
phase shift and the hard sphere phase shift.

II. CUGNON'S R-MATRIX RESULTS

The new result obtained by Cugnon is essentially
contained in Eq. (6.7) of his paper. ' This equation
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as given in Ref. 5 has many printing errors in it.
Correcting these errors, the expression for the
scattering matrix U reads

U„.=Q,'(b„)5„.

—2i g Q, q, P, '~'Ag„'qc P, ' 'y~ y~ Qc ~

X, ,p
(1)

Ref. 5 that q, is given by

bc b2c
q

C 2C

Another expression involving b2C is given by

(4)

(5)

In this expression c and c' stand for channels and

A. and p. for levels in the compound system.
Q, '(b„) is a function of the boundary condition pa-
rameter b„and is an element of new background
phase shift matrix. P, and P, . are penetration
factors and 0, and 0, . are elements of the hard
sphere phase shift matrix. A is a level matrix
given by

A &v
= (E & E}5 &u + g q L yu y v (2)

A is a matrix of finite dimensions, as has been
appropriately emphasized by Cugnon. Expression
(1}therefore already assumes the existence of only
a finite number of levels. L,' is given by

Lc = Lc bc =S +LPC

where I, is an element of the diagonal logarithmic
derivative matrix at the channel radius a„and b,
is an element of a real boundary condition param-
eter matrix used in the standard R-matrix theory.
In Eq. (1), q, is a new quantity appearing due to
the general choice of the second boundary condi-
tion parameter matrix b, . It has been shown in

Equations (1)-(5)describe the essential results
of Ref. 5. Combining Eqs. (4) and (5), b„can be
eliminated and yields q, as

L,'Q, '(b,.) L,' *—Q, '
C C

(6)

using the relationship L, —L,*=2iP,.

III. DERIVATION OF CUGNON'S RESULTS FROM

STANDARD R-MATRIX THEORY

It has been shown in Ref. 6 that if the R matrix
is divided as

R =R +R',

where R' is given by

(7)

(8)

the summation is over a finite number of levels,
and R is the remainder of the matrix R, then the
scattering matrix is given by (Expression IX-1c4
of Ref. 6)

Ucc =Qc 5cce+2iQcPc g (1 R L )cc Rc c&Pc Qcs+2iQcPc g u& A~opcePc Qcr
C X, ,p

(9)

where Aq„ is given by

(E~ E)AN, — g-L,'(1-R'L'}cc yw yccAcu=be
IVecsc

(10}

and a ~ is given by

U,'.—n, 2

cc UO LO g 2LO+
CC C C C

(Is)

The result for R,', with the boundary condition
b, = 5, has been given by Namjoshi. ' In the present
case, using Eq. (1S), Eq. (11)becomes

& x. = (I —R.'.L.') ' y~.

c'
(I gogo) —1 y = qC&XC ~

(14)

Equation (9) goes to Eq. (1) when R is con-
strained to be a diagonal matrix. Thus the stan-
dard R-matrix expression [Eq. (9)] is more gen-
eral than the expression used by Cugnon [Eq. (1)] .
This is shown in the following. With this con-
straint we set

where

Using (14), Eq. (10) can be written as

(E k E)Axp g Lc qcyxcy A pccbcxp

(14a)

(i5)
(i2)

Thus U,',6„.replaces the first two terms of Eq.
(9). Solving Eq. (12) for R,', we get

II,C

If we set U,', =Q, '(b„) then q, =q, , as can be seen
from Eqs. (6) and (14a). Also, by comparing equa-
tions (2) and (15) we see



1328 S. K. GUPTA 13

A=-A ',
and then (9) goes to

U,„=n, '(b„)5.~

(16) tion of the experimental data cannot distinguish
between the two theories.

IV. MODIFIED R-MATRIX EXPRESSION

+2in,P, ' ' g q, yq, A ~ q~ y„,P ~' Q,.
X. ,P

Equation (17) is identical to Eq. (1), keeping in
mind Eq. (16). Thus Eq. (1) results from Eq. (9)
with the constraint that R is a diagonal matrix. It
should also be mentioned that R' and b, are related
and the relation between the two can be derived as

n, '(b,.) I q, I'=n, 'q.'. (19)

Using (19), we can transform expression (17) into

Cugnon has transformed Eq. (1) in terms of ob-
served widths but his definition is a departure from
convention [see Eq. (6.10) of Ref. 5] . From Eq.
(18) it can be shown that b„ is real. With b„as
real we get, combining Eqs. (4) and (5) (ref. 5),

&.c-&c+Rcc '
~ (18)

U„=Q, (b„)

In writing down both Eqs. (1) and (9), a common
assumption, that the level matrix A is of a finite
dimension, has been made. Hence expressions (1)
and (17) are on equivalent footing and are identical
to each other in mathematical structure. All the
quantities appearing in the two cases have one to
one correspondence. Therefore, it is a natural
consequence of the present derivation that Cugnon's
theory and the standard R-matrix theory are sim-
ilar from an algebraic point of view. It should be
mentioned that, though Cugnon's theory does start
with a more general set of the continuity conditions
while the standard R-matrix theory uses only a
special set of the continuity conditions, surpris-
ingly, the two theories led to equivalent expres-
sions. This either implies that the generalization
of the continuity conditions is redundant or the
generalization is already built into the standard
R-matrix theory. From the point of view of inter-
pretation it can be argued that background arises
in a different manner in the two approaches. In the
standard R-matrix theory the background is due to
the hard sphere scattering plus the scattering
through distant levels, while in Cugnon's work the
background arises from the boundary condition
which allows the incident wave to be scattered dif-
ferently from what it is by a hard sphere. This
difference is not really so deep. It is well known'

that in the standard R-matrix theory the scattering
from distant levels without the random sign ap-
proximation for the partial widths gives rise tu a
direct process. In the present case of a diagonal
R, this will correspond to a direct or potential
elastic scattering. It can be further seen' that hard
sphere scattering is more a label than a physically
implied phenomena as far as the standard 8-matrix
theory is concerned. Remembering these points,
the interpretation of the parameters in the two ap-
proaches is similar. Even from the point of view
of an application the two theories have similar
parametric forms, and therefore the parametriza-

x b...+2iP, ' ' Q I q, I y~, A ~ I q, ,
I y~, ,P~' '

x Q,i(b .) .

Defining partial width I'&, as

r~. =2P. Iq. P y~.',
(20) becomes

(21)

where S,'=S, —b, . With the boundary condition
b, =S, [expression (23)] simplifies to

I q, I' = cos'(5, + p, ) . (23')

It will be useful to mention that, using the method
given in Ref. 6, expression (20) can also be writ-
ten in the channel matrix form as

U=n(b, )[1+2iP' '(I -RL ) 'RP' ']Q(b, ), (24)

where R is the modified R matrix with matrix ele-
ments given by

yx Qp yx ~

(24a)

and L' is

U„,=n.(b„) 5„,+i gr„,"A~r„,, '~' n, ,(b„,).
kp

(22)

When b~ tends to infinity, Q, (b„)-Q„q,—1, and
l q, - 2P, yq, '. The latter is the conventional defi-
nition of the partial width. Therefore, I q, I' is the
factor modifying the extraction of reduced width
from the observed partial width. As Q, =e'
Q, =tan 'E, /G, and &u, is the relative Coulomb
phase shift [see Eqs. III (4.5a,b) of Ref. 6], and if
we set Q, (b„)= e't~~' 't we get, using Eq. (6),

[S,sin(5, + Q, ) +P, cos(5, + P, )]'
C
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—0 0 ~c
~e

i
i2

cc'
&c

Lo&
C C CC

S,' sin(5, +Q, ) +P, co s(5, +P,)
' (24b)

In comparison to the R matrix, which contains a
summation over an infinite number of levels, R
contains a summation over only a finite number of
levels and therefore will yield better results when
approximated. This is a situation similar to the
K-matrix theory based on the shell model, where
the K matrix contains only a finite summation. ' In

practice Q, (b„) may be considered to be similar to
a phase shift matrix element produced by a single
particle potential. In the above treatment Q, (b„)
has been assumed to be unimodular; phenomeno-
logically nonunimodular Q, (b„) produced by the
complex potential well model (optical model) may
be used. Both Eqs. (20) and (24) should be useful
forms for analyzing the experimental data.

The author thanks Dr. M. K. Mehta for bringing
Cugnon's work to his notice, and for his interest
in this work.
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