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Normalized shell model alpha decay theory applied to unfavored decay
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A shell model & decay theory is presented which uses correctly antisymmetrized and
normalized wave functions. Numerical calculations are performed for the & decay constants
for n~f&vored decay of 2 Po and Bi and for hindrance factors of excited 2 Po states. The
results are compared with those of the conventional shell model o.'decay theory.

NUCLEAR STRUCTURE G. decay rate theory, 2 Bi, ' Po. Calculations of rates
by conventional and by revised shell model. theory.

I. INTRODUCTION

Shell model n decay theory has over the years
enjoyed considerable success in calculations of
relative transition probabilities. However, there
has been some uncertainty as to whether the the-
ory, even using the best configuration-mixed
wave functions, could satisfactorily explain ab-
solute rates.

In the usual theory a channel radius 8, is cho-
sen and the shell model wave function of the par-
ent nucleus is projected on the product of the
daughter nucleus and a-particle wave functions.
The resulting projection amplitude G(Ro) is re-
garded as the n wave function boundary condition
for propagation outward through a barrier de-
rived from Coulomb and nuclear optical. model
potentials.

The absolute rate agreement has remained un-
certain largely because of the great sensitivity
of the penetrability to the optical potential de-
fining the barrier. Furthermore, to make a
cluster projection practicable it has been neces-
sary to use harmonic oscillator nucleon wave
functions, and the Gaussian-like tails of such
wave functions are known not to be a valid approxi-
mation in the tail region. In spite of these un-
certainties it seems that simple shell model the-
ory falls short by at least an order of magnitude
on absolute rates.

It was only recently that a careful reexamina-
tion' focused on the problems connected with
the antisymmetrization of the product wave func-
tion of the u particle and the daughter nucleus.
This antisymmetrization was usually taken into
account in the shell model theory of u decay. '
It enforces the requirements of the Pauli princi-
ple, preventing double occupation of states. How-
ever, antisymmetrization between two composite
particles leads to non-normal. ized states. The

proper normalization may be hidden in the func-
tion of relative motion between the n particle
and the daughter nucleus. We are not able to ca, l-
culate this function (including the normalization)
exactly; instead we introduce a distorted wave
approximation for the wave function of relative
motion, and then it is vital to take the proper
normalization explicitly into account.

This normalization results' in a considerable
enhancement of the reduced width for e decay.
Reduced width means here 5'=a/(PT), with T the
mean lifetime and P the barrier penetration fac-
tor.

Since the new theoretical absolute ground-to-
ground state decay widths are strongly enhanced'
over the previous version of the theory, we felt
it important to check also on various cases of
hindered a decay to see to what extent relative
n transition rates would be affected by the nor-
malization.

II. THEORY

Let us give a short review of the formalism.
The conventional reduced width amplitude is given
by

G((()=(((z.(((((-((.&lv, (((.h.('(' ('„,),
(2.1)

where g is the internal +-particle wave function,
Q„" and P„,4 are shell model states for the daugh-
ter and parent nucleus, respectively. All states
g, y& and Q&, are normalized and antisym-
metrized. R is the center-of-mass coordinate
of the a particle. The spherical harmonic is
denoted by y, (8 ). The square brackets in (2.1)
denote the coupling of the a-particle angular mo-
mentum l and the daughter nucleus spin j to the
total spin J. The antisymmetrization operator
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is given by

where the sum runs over all (4 +4)! possible

(2.2)

permutations P.
The normalization of the state

~
IZ(I/R')5(R —R )[y, (R )g 4)'„] ) in (2.1) defines

the operator K, (R, R')

R. 6(R —R')-K (R R')=(R —.6(R —R )(6 x O'I' R,. 6(R' —R 1(xxd, ')'). (2.3)

Since these states are not normalized to (I/RR)5(R —R') the function G(R) is not a wave function and
(G(R)~ cannot be interpreted as a probability density. In order to define such a probability density we
introduce an operator N(R, R') which normalizes these states to (1/R )6(R —R'} by

J!IRR'dR 'dR, R(R R ),6(R—R ),—K (R„R) R(R, R') —,6(R —=R') (2.4)

This means we introduce the inverse square root
of the operator 1 —K, as N(R, R') = [(1 —K, )

' R]~&.
The wave function of the + particl. e is then given

by

which means with more than one open channel.
This implies neglect of the coupling between these
channels.

C (R) f„R' =dR'R(RR'')R(R'). , (2.5)
III. MODEL ASSUMPTIONS

A. Wave functions

A2
k (Ro) =R „—V(R)

a
(2 7)

and, more importantly, for the penetrability P.
T he decay constant ~ is then

A =52(P/h ). (2 8)

This result is still. channel-radius dependent.
We will also use the channel-radius-independent
formulation

(2 9)

using a spectroscopic factor

S = R'dR[G„(R}] (2.10)

and a single-particle decay constant2 A, ,„, de-
rived from a one-body Schrodinger equation.

Originally, these results were derived' in a
reaction theory for one open channel. and one
bound state. In the following we will apply (2.8)
and (2.9) in cases with different final states Q'„,

It is this wave function which enters instead of
G into the calculation of the reduced width

h ' k(R,), R,'
=2M 2 ' " 'k'(R)

A 0

(2.6)
The conventional theory used G in this formula.
The details of the derivation of (2.6) may be found

elsewhere. '' For the evaluation we need an +-
nucleus potential V(R), first for k(RR) in (2.6)

For the application of the norma'ized shell
model n decay theory to unfavored decays we
have taken three dimensional harmonic oscillator
wave functions with size parameter a =0.17 fm '.
The corresponding size parameter P for the +
cluster is taken as 0.47 fm '. For the odd mass
nuclei the wave functions have been taken as purely
the main shell model configuration with no con-
figuration mixing. For these near-closed shell
nuclei this approximation should be reasonable.

To check the effects of configuration mixing
we did the calculation also for the two-proton
configurationd 0.943(h, )2) o+0.101(f,)R) o
—0.317(i»i,) for R»Po, and for the two-neutron
configurations' 0.935(gRyR)'o+ 0.325(i» y2)'o
+0.141(d,~, ) for "'Bi. These configurations were
actually calculated~' for Po and Pb. For"Po ground and excited states we have taken the
configuration-mixed wave function of Glendenning
and Harada, ' including all configurations with
greater than 1/o admixture.

B. Channel radius

The expressions (2.6) and (2.8) are still chan-
nel-radius dependent. In a previous work we
showed that we have to take a channel. radius at
the nuclear surface where G„(or G) usually has
its outer maximum. Indeed we found a region 6
to 7 fm where the result (2.6) is approximately
channe l-radius independent. '

In (2.6) k(RR) is related to the velocity of an
a particle in the potential V(R). If the theory
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5'=5 MeV[R G„. (R )]a. (3 I)

C. n-nucleus potential

We still have to choose an a-nucleus potential
for the calculation of the penetrability P:

2M~J' = e p —2, [E „—V(R)] dB)' '
"R~

(3.2)

Here R& and R, are the outer and inner classical
turning points, respectively. M„ is the reduced
a-particle mass. The energy E is the measured
u decay energy plus the screening corrections
as given in Ref. 7.

In Table I we give the parameters for several
potentials. The first potential V1 has the ad-
vantage that it is consistent with the kinetic n-
particle energy at the nuclear surface calculated
from G„(see Sec. IIIB). The second potential
V2 is the Set A recommended by Barnett and
Lilley' for n decay calculations. The third po-
tential' is Igo's best fit Woods-Saxon potential
for u+ Pb; it gives a very low penetrability
which may be considered as a limiting case.
Similarly Igo's exponential potential gives a pen-
etrability which may be regarded as an upper
limit.

The tabulated results in Sec. IV are calculated
with V1. The penetrabilities calculated with V1
and V2 happen to be very close to one another;
V2 gives typically a 5 to 10%%u~ higher penetrability.

1V. RESULTS

leading to (2.6) is valid, we may as well derive
this velocity from the curvature of the interior
solution G„(R) [or G(R) in the old theory]. At
the surface this yields typically a value
k(Ro) =2 fm ', corresponding to a kinetic energy
of the + particle of about 20 MeV.

To simplify the calculation we used (2.6), unless
otherwise stated, at a channel radius R at the
position of the outer maximum of IG„I' (or [GI').
Then we have

to an approximation (Appendix A) in the calcula-
tion of N(R, R'), the accuracy of the results con-
taining G„ is at least s 5% (or perhaps a little
better).

The relative rates r, for the decay to a par-
ticular daughter nucleus Q„' are given by

~,s && ~', t I& ~ (4.1)

V. DISCUSSION

A. "Po and "Bi

From examination of Table II it appears that
the n branching ratios by the old and new theory

I I I I I I I I I

0[——02

OJ 5—
E

V

O

The sums run over all possible angular momenta
I, , the sum in the denominator running also over
z'.

The relative amplitudes A(l) for different angu-
lar momenta are given by

/I(l, ):A(la):.. .

+ (5 2+ )1/2 . + (5 2P )1/2. (4 2)

The sign is determined by the sign of G„(or G)
at the nuclear surface.

The relative ratios are also calculated with the
spectroscopic factor (2.10). For this 5' has to
be replaced by the corresponding S in (4.1) and
(4.2). The absolute values are calculated by
formula (3.1).

The results for Po are given in a different
form: In Table V we listed the spectroscopic
factors and the hindrance factors (reciprocal of
S normalized to the ground state transition). In
Figs. 1 and 2 we show G(R) and G„(R) for the
first and second 0' states of Po.

Tables III-V give the results for relative and
absolute a decay rates for uxPo and axiBi. Owing

TABLE I. a-nucleus potential parameters for various
Woods-Saxon potentials V{R)= V /[1 + exp[(B —r A'/')/4

Vo ro a
(MeV) (fm) (frn) Ref.

'v
I I I I I I I I I

0 5 IO
R (fm)

V1 -58.8 1.454 0.56 Satchler Ref. 8
V2 -96.44 1.376 0.625 Barnett et a1 Ref. 9
V 3 -35 1.47 0.6 Igo Ref. 10

FIG. 1. The reduced amplitude & of the old theory
versus the radius for the first and second 0+ state of

~Po
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are not much different. That is, the substantial
enhancement of + decay rates by the new theory
applies rather uniformly to the various state com-
binations of Po and Bi decay. This result
is reassuring in that it suggests that extensive
previous calculations in the literature with the
old shel. l. model n decay theory are not all. in-
validated. Likewise, in Table III we see that the
relative amplitudes for various l values are not
much altered; also there seems to be some sys-
tematic lowering of higher / values by a few per-
cent.

From Table IV we see that the absolute decay
widths are increased by two orders of magnitude
in the new theory, giving good agreement with
experiment. The ratio of widths for the two nu-
clei differs by a considerable amount for the old
and new theories, with the result of the new the-
ory in better agreement with experiment.

As far as the absolute decay widths are con-
cerned there is still a considerable uncertainty
in the theory. This is mainly due to the sensi-
tivity of the penetrability of the n-nucleus po-
tential. For Igo's exponential potential' the
values would be enhanced by about a factor of
2; for Igo's best fit (V3 in Table I) they would
be reduced by about a factor of 5. The inclusion
of configuration mixing (see Sec. IIIA) results in

an enhancement by a factor of 3 for Po and
a factor of 1.5 for "'Bi. Even taking these un-
certainties into account (a factor of 5 up or down)
the old theory is obviously unable to reproduce
the absolute decay width.

It is interesting to see that there is not much
difference between the values from the channel-
radius-dependent equation (2.8) and from the
spectroscopic factor. The main reason for this
seems to be that the radial shapes of G„(or G)

0)

!0—
2 I 2 p

C4

E
0

O

-5—
lX

-IO—

are not too different for various decays. G„
(or G) usually has a large maximum at the nu-
clear surface at about 7 fm. It may be also noted
that the relative values calculated with the old
theory and a 7 fm radius here are in good agree-
ment with the literature values of Mang for a
9 fm channel radius.

-po
0 5 IO

R(fm)

FIG. 2. The reduced amplitude &~ of the new theory
versus the radius for the first and second 0+ state of
212P

TABLE II. n branching ratios for "'Po and "'Bi. The results of the old and new theory are
displayed versus the experiment. The numbers in the upper line are from the channel-radius-
dependent formula {2.8); the lower line is calculated with spectroscopic factors.

Parent
nucleus

Daughter
nucleus Experiment

a branching ratios
Old theory New theory

211po

99

0.5

0.5

83

98.0
98.0
1.6
1.6
0.4
0.4

82
82

96.8
97.8

2.7
1.7
0.5
0.5

78
81

18
18

22
19
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TABLE III. Relative angular momentum mixing amplitudes. The numbers in the upper line
are from the channel-radius-dependent formula (2.8); the lower line is calculated with spectro-
scopic factors.

Parent
nucleus

State of
daughter
nucleus

Relative angular momentum mixing amplitudes
Experiment Old theory New theory

211pp

211Bl

fS/2

P3/2

d2/2

1:-0.96:0.55

1:-0.14

1:-0.27

1:-0.88:0.58
1:-0.88:0.58

1:-0.33
1:-0.33

1:-0.33
1:-0.33

1:-0.85:0.52
1:-0.85 0 56

1:-0.32
1:-0.33

1:-0.32
1:-0.33

B. ' PQ

It is when we come to the spectroscopic factors
for Po in Table V that we find striking differ-
ences between the old and new theory. In par-
ticular the considerable hindrance factors pre-
dicted for the second 0' and second and third
2' states are lowered by an order of magnitude
in the new theory. To understand this effect we
plotted the reduced amplitudes of the old theory
(Fig. 1) and the new theory (Fig. 2) for the first
0,
' and second 0,' states. Obviously, the 0,' state

has a configuration mixing which leads to de-
structive interference for the amplitude G in the
nuclear surface. In the outer nuclear surface
A&V fm this effect is still preserved in G„. Since
N(R, R') is more important the larger the overlap
between the n cluster and the daughter nucleus,
the inner maximum of (G~' at 5.2 fm is relatively
strongly enhanced, resulting in a large contribu-
tion to the spectroscopic factor. Since various
parts of G are differently enhanced, the results
for G„are probably very sensitive to the details
of the wave function.

The question of whether the enhancement of the

0,
' over the 0,' in G„ in the outer surface is rele-

vant, or whether we may consider the spectro-
scopic factor as more important, is open. The
answer may be found in a better reaction theory.
We might also hope to get some answer from the
experimental side. Newer experiments and the
analysis of deVries et aI,." indicate the possibility

of deriving the absolute 0. width for the excited
states as well, by doing transfer experiments.

As far as the absolute decay widths are con-
cerned, the new theory can reproduce the ground
state decay width (see also Ref. 2); the old theory
falls short by two orders of magnitude. The
ratio I'(18', assumed to be the isomer at 2930
keV)/F(0, ') comes out too large by a factor of 30
in the new theory and a factor of 150 in the old
one.
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APPENDIX A

We consider the ground state transition of "Po.
The exact operator 1-K, has to be calculated
with Q"„=a(P,y, )('"Pb), where a(P, y, ) is the an-
nihilation operator for a neutron in the 3'/2 state.
In the calculation of 1-K, we use the following
two alternative approximations for this state:

(1) [y„)=( Pb),

(2) le ) =[ (P, g.)a(P, &.)),l'"Pb ).
According to Ref. 2 K(R, R') is given in the form

K, (R, R') = Qg I '(R)g I (R'), (A1)

a decay width (10 "MeV)
emitter Experiment Old theory New theory

211pp
211Bl

8.8
3.5x10 '

250

9x10 '
5.4x10 4

167

12
4.4x10 '

273

TABLE 1V. n decay width in 10 "MeV [calculated
with (3.1)]. The last line gives the ratio of the total de-
cay width fpr "Pp and Bj..

where i runs over al. l sets of four particl. es which
contain at least one in a Q„occupied level. g,'(R)
is the overlap of an a cluster at 8 with the product
of the four single-particle functions.

From the structure of K, it is cl.ear that the
error in N(R, R') = (1 —K, )z s ' a is positive semi-
definite for approximation (1) and negative semi-
definite for (2). Therefore, the exact spectro-
scopic factor has to be between the two approxi-
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TABLE V. a decay theoretical properties from ground and excited states of "'Po.

State of
212Po

Old theory
(x10 ')

New theory
(x10 ')

Ratio
new to old

(x10')

Spectroscopic factors S Hindrance factors
[S(0,)/3 (excited) ]
Old New

theory theory

0,
0,
03
21

22

23

24

25

4,
10
16,
18

6.0
0.71
0.17
1.6
0.09
0.17
0.08
1.6
0.79
2.8
0.79
6.0

2.6
3.1
0.16
0.56
0.40
0.47
0.04
0.29
0.20
0.76
0.39
0.50

4
44

9
3.5

44
3
5
2
2.5
3
5
1

1
8

35
4

66
35
71

4
8
2
8
1

1
0.8

16
5

7
6

68
9

13
3
7
5

mate values

S[approx. (2)] (S(exact) -S[approx. (1)]. (A2)

From the calculation of the approximate values
and from (A2) we find

S(exact) = S[approx. (1)](1 —0.05) + 5%. (A3)

The error is probably smaller than 5$. The
evaluation with formula (3.1) yields a somewhat
smaller difference between the two approxima-
tions.

As a generalization we employed (A3) for ail
"'Po and "Bi transitions.
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