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Explicit relationships are derived connecting the author's boundary condition formalism to the Faddeev theory
of three-body scattering. In particular, it is shown that suitable input to the boundary condition formalism can
always be chosen so as to exactly reproduce the Faddeev amplitudes. This is also true in the presence of
explicit three-body forces. It is further shown that such forces cannot be distinguished from off-shell

properties of the two-particle interaction on the basis of three-particle scattering observables. A previous

analysis of the n-d breakup reaction is discussed in some detail.

NUCLEAR REACTIONS Three-body scattering theory, three-body forces, N-d
scattering.

I. INTRODUCTION

Our present understanding of the nuclear force
is largely empirical, and has developed in re-
sponse to two-particle phenomena. The historical
procedure has thus been to introduce just what is
necessary in order to explain an enlarging class
of experimental facts. ' The constructs of such an
empirical procedure are necessarily nonunique;
these ambiguities are commonly referred to as
the "off-shell" characteristics of the theory, and
cannot (by definition) be resolved at the two-par-
ticle level. One can easily demonstrate at least
a formal dependence of three-body systems on the
off-shell properties, and this has stimulated a
great deal of interest in studying the three-body
problem. '

In principle, therefore, studies of the trinucleon
system should provide a clear test of the off-shell
characteristics of the nucleon-nucleon interaction,
enabling one to choose from among the many phe-
nomenological potentials which have been pro-
posed. Early calculations of the triton ground
state properties were very encouraging, in that
considerable sensitivity was exhibited to the mo-
mentum dependence of the interaction, the type of
short-range repulsion, tensor vs central forces,
etc.' However, after a great deal of labor in-
volving increasingly more sophisticated models,
it appears that the differences generated by com-
peting "realistic" potentials are comparatively
minor. Thus, by concentrating on models which
produce identical (or closely similar) taboo-particle
properties, much of the apparent off-shell sensi-
tivity has been eliminated. In particular, theo-
retical values for the triton binding energy (Er)
differ by only a few tenths of an MeV for realistic
potentials, although the 1.5 MeV missing as com-
pared to experiment is a clear signal that the in-
teraction has not been fully understood. 4

What has emerged from this effort is the realiza-
tion that the on-shell two-particle properties, and
(more subtly) the constraints of three-body uni-
tarity, to a large extent determine the three-par-
ticle observables. This understanding was ob-
scured for a long time by the difficulties inherent
in three-body calculations. The standard pro-
cedure has been to perform successive computa-
tions with different potentials, thus generating a
selection of input and output for comparison. In-
asmuch as the on-shell and off-shell properties
are inextricably linked in the parameters char-
acterizing the potential, this is a crude procedure
at best. Nevertheless, if the numerical work were
comparatively simple this would probably be ade-
quate, but in practice it is slow, laborious, and
expensive. Also, it is clearly quite important to
require phase-equivalent input when making
judgments about off-shell sensitivities, but this
is not entirely practical within the conventional
(Faddeev) framework.

Although N-d scattering calculations are con-
siderably more difficult than the triton problem,
and hence, in a comparatively early stage, the
success of fairly trivial models in fitting both
elastic and inelastic (breakup) data suggests that
a similar picture will emerge once the Faddeev
calculations have become sufficiently exhaustive. '
However, due to the inefficiencies of that ap-
proach, and the particular difficulties associated
with the inclusion of local potentials, a definitive
conclusion is likely to be some years away. This
is particularly unfortunate from the standpoint of
proposed experiments, since the outcome has
clearly a great deal of bearing as to which will
be most profitable.

The boundary condition formalism (BCF) pro-
posed by this author was designed to shortcut this
problem, and provide a practical, efficient frame-
work for analyzing experimental sensitivities to
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specific effects. ' As a test case, the technique
was applied to the analysis of the n-d breakup re-
action at 14.4 MeV. ' The results demonstrated
that the differential cross sections are sensitive
to only a single parameter, which may be fixed
in terms of the n dd-oublet scattering length (it-
self strongly correlated with Er). This implies
that with regard to these observables there is
little to gain either from costly calculations with
"realistic" potentials, or from the corresponding
experiments. This conclusion is not dissimilar
from that reached concerning the triton proper-
ties, but it was much easier to come by.

This result has stirred considerable contro-
versy, particularly among those doing the "wrong"
experiments. Various claims and counterclaims
have arisen concerning the content, implications,
and generality of the analysis. "' In particular, it
has been suggested that the variations considered
correspond to three-body forces rather than to
two-particle off-shell properties, and that the
results depend strongly on the particular N-X
phase shifts employed as input. ' These claims
are in direct conflict with previous statements by
this author, and it is therefore clear that a certain
amount of confusion and misunderstanding exists
concerning the BCF technique in general, and the
n-d analysis in particular. A major purpose of
this article is therefore to make quite explicit
the connection between the BCF and the Faddeev
formalisms, with and without the inclusion of
three-body forces. In particular, it will be shown
that BCF input of the class considered in the n-d
analysis can always be chosen so as to exactly re-
produce the Faddeev results, irrespective of the
phase shifts, two-body potentials, or possible
three-body potentials. Thus a systematic varia-
tion of the BCF parameters must encompass any
and all possibilities realizable in the Faddeev
theory.

On a more general note, the remarks of Haftel
and Petersen illustrate a persistent misunder-
standing concerning the equivalence of off-shell
properties and true three-body forces. ' Thus,
there is a general impression that such effects
can be distinguished experimentally by concen-
trating on specific regions of phase space." How-
ever, this is simply not the case, as will be shown
via a simple extension of the off-shell equivalence
proof. Specifically, there is no means by which
one can distinguish a three-body force from off-
shell properties even in principle, given a com-
plete knowledge of three-particle scattering ob-
servables. This result is implicit in the interior-
exterior separation proposed sometime ago by
Noyes, but has not been widely appreciated. "
Hopefully, the more explicit development pre-

sented below will serve to exorcise the recurrent
confusion concerning this point. If studies of the
three-body problem are to succeed in enhancing
our knowledge of the nuclear force, it is essen-
tial that we clearly understand the limitations in-
herent in the problem. Thus, although the Fad-
deev equation provides a useful formalism in
which to test a, specific potential model, its com-
plexity tends to obscure certain general features.
In contrast, the BCF emphasizes three-body ob-
se~vabies, and hence is a more suitable tool for
experimental analysis.

The organization of this paper is as follows.
In Sec. II we briefly derive the Faddeev equation
for three spinless particles in the presence of an
explicit three-body force. The equation is then
cast into operator form for ease in subsequent
manipulations. Section III is concerned with the
reduction of the Faddeev equation to an effective
one-variable form comparable to the BCF equa-
tion. The main content of the paper is presented
in Sec. IV, which contains the explicit proof of
off- shell equivalence. The essential ambiguity
involved in distinguishing off-shell behavior from
a true three-body force is also demonstrated in
the context of this proof. Finally, Sec. V is
devoted to a discussion of these results and the
general problem of effectively utilizing three-
body observables in investigating the nuclear
force. In particular, assumptions underlying
the 14.4 MeV analysis are discussed in con-
siderably greater detail than was possible in pre-
vious letters. Relevant details concerning the
BCF are provided in the Appendix.

II. FADDEEV EQUATIONS WITH THREE-BODY FORCES

Although the inclusion of three-body forces in
the Faddeev formalism is straightforward, such
forces have yet to be employed in scattering cal-
culations and hence the formal development is
largely unfamiliar. " We thus begin by briefly
deriving the relevant equations. " In order to
avoid mathematical subtleties we shall assume
that the potentials are sufficiently well behaved
to guarantee the existence of various operator
products and inverses employed below. For this
purpose it is sufficient for the two-particle poten-
tials to be bounded by a Yukawa potential, with a
corresponding assumption regarding the three-
body potential. In practice this includes all of
the potential models (excluding Coulomb) actually
employed in few-body calculations. " For simpli-
city we shall ignore the spin, isospin degrees of
freedom; this specialization clearly has little
bearing on the questions to be addressed. Further-
more, it should be obvious that the operator for-
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malism we employ is equally valid in the general
case given a trivial expansion of the basis, and

hence the proofs are actually quite general.
Consider the state vector I4'& describing the

three-body system in its center of mass (c.m. ),
and let W denote the total energy in that frame.
The Schrodinger equation may then be stated. as

Ho+ V +V3 0 =%4

Here IIG is the free Hamiltonian (kinetic energy
operator), V, is the two-body potential for par-
ticles p and y (n 4 p G(: y), and V, is the three-body
potential. We consider a solution consisting of
outgoing waves originating from an initial plane
wave state

I 4», and introduce the Green's func-
tions

GG=(HG —W-ie) ',
G, = (II,+ V, —W —it) '

=- Go-Got~Go .
(2)

The latter equation defines for us t, the two-
body scattering operator (t matrix), and implies
that G V =Got ~

As it stands, the solution l)lv& of Eq. (1) must
satisfy rather complicated boundary conditions
related to the various types of asymptotic states,
and hence we introduce the Faddeev channel de-
composition, I4'& =Z l(t, & . In the momentum-
space representation this same decomposition
solves the problem of disconnected graphs, as
is well known. The

I g, & then must satisfy

lt. & = )(1— t.G)le —
&
-', G„v, lv& —G.t.g Itt&.

(4)

Substitution into Eq. (3) then yields the equation

(3)
If we define the three-particle t matrix T via the
relation

lq& =(1-G.T) lq&

and expand T =Z,r„we have

IC.& =(-.'-G.r.) IC» . (6)

~ —,'(1 —t G )V (1 —G, T) —t G $ t
(6)

Below we shall employ the momentum

«, =[2p„(W-q'/2M )]'~', (8)

which is positive imaginary for q&(2M W)~&2=@
Thus the physical states correspond to momenta
q~Q, with p=a .

We define a Hilbert space of states
I
u p q) with

the normalization

& pq I
Sp'q'& =6.~6(p-p')6(q-q'),

g f tt)tiGl )tittt( &tti)tl= ).t
On this space we define a number of operators.
The first is I, which "interconnects" the various
Faddeev channels, and provides the transforma-
tion between the a and P representations. Spe-
cifically,

since IC» is arbitrary (II, I)= WI4)). In the
special case V, =0, Eq. (6 is the usual expres-
sion of the Faddeev equations, and its solutions
are known to be well defined for potentials V of
the type considered. The mathematical proper-
ties of the equation are not altered for reasonable
choices of V, 4 0 (as in the present case), and

hence w is uniquely specified.
In order to perform the manipulations required

below it is a great convenience to employ an
operator notation which frees us from the explicit
e indices. We shall thus describe our three-body
state by the three sets of Jacobi variables (apq),
where p is the relative momentum of particles P
and y, and q is the momentum of e relative to the
Py c.m." The reason for employing three sets
rather than one (only two vectors are linearly in-
dependent) is that t is much more simply de-
scribed in terms of (ap q) than (Pp q). The p, q
vectors correspond to the reduced masses p. ,
M, respectively, and a physical scattering state
satisfies the on-shell condition

P'/2 p.,+ q'/2M, = W .

(.Tilt))tv;&= t(v. "
v . "

~ p+ ~s p-I ~s
m„MN

q' 5 q-p'+ q' if aPy are cyclic;
m7

q' 5 q+p'+ q' if Pay are cyclic;
my

(10)

here m is the mass of particle n. It follows that

I=I~,

I '=-,'(1+ I),
(1 —I) =3(1-I) .

i

We also define operators t, G„V, such that

&np'q'ItlPpq&=6 6(q —q')t (p', p; W-q /2M ),
6 &6(q - q') 6(p —p')

(»)

&op'q'IV. IPpq&=6.~V.(~p~q';m q) .
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Here t (p', p; s,) is the off-shell two-particle (Py)
t matrix. In addition we define

V= —' (1 —I)Vs(1 —I),
which implies that

(~p'q'I V( opq)= ~(op~q'IV,
I opq) .

(13)

(14)

We can now state Eq. (6}as an operator equation
on the ~a pq) basis; the r operator must satisfy

r = t(1 I)+ (—1 —tGO)V(1 —Gor)+ t IGor . (15)

Finally, we observe that T may be expressed as
T = (1 I)T-

Appendix. We now define t' by Eq. (16) using the
modified f,(p, K ) function defined in Eq (.18),
and also using t„(s ) in place of t, (s,). Defining
t"= t —t', we deduce the following properties: (1)
t' contains all singularities of t, including the
elastic cut for s &0 and the proper residues at
bound state poles; (2) t" is real, bounded, and

analytic in the disjoint domains s & s and s
& s'„(3) t" vanishes half on shell for s & s'. In
particular, for physical three-particle scattering
states (s &0) t" vanishes; for such states G,
possesses a right-hand cut with discontinuity
EG„and this fact can be stated in the form

III. REDUCTION TO ONE-DIMENSIONAL FORM
~G,t" = t"~G, =O . (19)

In order to establish the connection between the
Faddeev theory and the boundary condition (BC)
formalism, we first proceed to reduce Eq. (15)
to an equivalent one-dimensional equation (only
the q variable) analogous to the equation derived
in BCA. We begin by observing that t may be quite

generally decomposed as t=t'+t", where, in a
state of angular momentum l,

t'l(P' P s ) =f 1(P' K,)t 1(s )f 1(P, K )

(16)

f,(K K )=1, and t" vanishes half on shell. Here
t, (s„) is the on-shell t matrix

i60t g

)
8 s1116

Tf g K

This decomposition was discussed independently
by Kowalski" and Noyes, "and is frequently re-
ferred to as the Kowalski-Noyes representation
of the t matrix. Unfortunately, the representa-
tion possesses some undesirable properties in
that t' in general contains the left-hand cut struc-
ture of t„(s ); i.e., singularities for s, ~ —K '/
8p, . These singularities are not proper to t,
and are canceled by corresponding terms in t".

In order to avoid this problem we choose s'
such that -K '/8p, &s', & s'„where s', is the
energy of the Py ground state (s~ =0 if no bound
states exist). We then define

f,(p, K ) =t, (p, K; s )It, (s ),
t, (s )=t,(s ), if s ~s'

(18)

f., (p, K.) =A.",'(p)ltV". ,'(K.),
t, (s)=t 1c(s ), ifs &s'.

Here N", '(p) is the BC function defined in BCA,
and t, 1 (s,) =It, (K,)/D„(K ) is t-he BC representa-
tion of the (on-shell) t matrix. Precise definitions
of these and associated quantities are given in the

Similarly, we define V' such that

x (n [ K [ lm q ~

V
~
P p'q'),

Z"=- V"G,+t G,VG, +t rG, ,
K' = —V'+ t'GoV+ t'I,
n"=V( -I)I+ "V- t GV

0' = t'(1 I) + V' —t'G, —V,
in terms of which Eq. (15) can be written as

7= 0"+ Il'+ (K"+K'G, )r .

(21)

(22)

Given Eq. (19), one may easily verify that K" is
a real L, kernel, and hence there exists a unique
inverse Z"= (1 -K") '. I et

r=z"(W+r, ).
then ~o satisfies

7o —Qo+E Z Go~o y

where Z'=GoZ"Go ', and

0, = 0'+ K'Z"G, Q"

= t'+K'Z"(Got" —1) .

(23)

(24)

(25)

Due to properties of t" and V", we observe that 7

and 7'o are identical on shell for physical states
(t1Gov' = nGo1o). The three-particle scattering
amplitude (T) can thus be calculated from the
knowledge of 7'o alone. It is clear from the defini-
tions of t', V' that Eq. (24) may be reduced to a
one-variable form. To exploit this it is con-

(20)

where o is 0 (1) if l is even (odd), and we have
employed the partial-wave decomposition p- (plm). Defining V" = V —V', it follows that (1)
V' and V" are real valued and nonsingular; (2)
+Go V 0 . We may now introduce
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-~e8~LL ~NN~~ll~~XX~

F (P, q)=f. (P, «),
A A A

and define operators t, V, Q, K such that

t'=Et,
Vs =EV

Q =EQ,
K'=EK .

(27)

(28)

Thus, for example,

(pL'M'1'~'p'q'
I
t

I
nLM»pq&

5(q —q')
ng IL' 6««' 6 l J' 6x x ' 2 fnl(Ps «n)tnl(«n )

(29)

venient to introduce a partial-wave decomposi-
tion corresponding to the basis

I nLM/XPq&, where
1(p) and A(q) are coupled to a state of total angu-
lar momentum L (L,=M) T.he normalization is

&pL'M'l'A'P'q' .
I nLM»Pq&

6(P —P') 6(q —q')
P

Let E be a diagonal operator on this basis such
that

i.e., the operators with the caret have no p' de-
pendence. We further introduce the diagonal op-
erator d such that

d;,z(P, q) =t, («)/N", '(» ) . (30)

Finally, setting ~, = —Ed' in Eq. (24), we find
that Xf satisfies the equation

X~ ——d -'0+(d 'Kz'G+d)Xi . (31)

Although Eq. (31) is expressed on the full (np q)
basis, it is clear that the p label is superfluous.
It is convenient to introduce a reduced basis
lnl+& such that

i
(Pl'X'q'

I n»q& = 6 s6, r, 6~ ~ ~ (32)

Xf = Qf+KfdXf,

where

(33)

and to reexpress Eq. (31) as an operator equation
on this basis. It is understood that the operators
have an implicit dependence on the conserved
quantities W, L, and M (only the driving term
depends on the latter). We thus write

N &o)

&«&lfl~lC&=- -" &nLMa». qlt K'Z
tnt «n

(34)

(n»q IK, I
pi'~'q'&= -" „P „'f,g, (P', «,')&nLM»». q IK'Z"

I
pLMi'VP'q'&,

and we have used the fact that t IC» vanishes since IC& is a (physical) on-shell state. The above defini-
tions imply that d 'KZ" is real, and hence that

&nltul Irma lpl'&'q'& = - ' ' &nLM»«q IK'z"
I
pLMl'&'«gq'& (35

tn~ «n

X~ = A~+ Kq dX

discussed in BCA (and the Appendix).

(37)

for q™Q~ (lmK& vanishes otherwise). We observe
that if the three-body potential vanishes identical-
ly, the on-shell matrix element of K'Z" required in

Qf and In1Kf reduces to t'I, and hence is deter-
mined entirely by on-shell information accessible
in two-particle scattering.

Finally, we note that the relationship between
the physical channel amplitude v and Xf is given
by

(nLM»». ql~lc»=- &,', &nl&IX, I@&.N ~g' »n
(36)

This is precisely the same relationship which
exists between v and the Bc function X~, defined
as the solution of the equation

IV. OFF-SHELL EQUIVALENCE

In the preceding section we have demonstrated
that the Faddeev equation for two- and three-body
potentials can be reduced to a one-dimensional
form whose solution (Xt) is simply related to the
on-shell three-particle scattering amplitude. This
sounds too good to be true, and of course one must
recall that the kernel K~ defined in Eq. (34) can on-
ly be constructed via a knowledge of the operator
Z". Except for separable two-particle potentials
(and V, —= 0), it is necessary to solve a two-dimen-
sional integral equation in order to determine Z".
However, although computational techniques are
irrelevant to our present purpose, it is worth
noting that the K" operator defined in Eq. (21) is
nonsingular, and hence our reduction may prove
useful in practical calculations.

We now consider the relationship between the
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one-dimensional integral equations, Eqs. (33) and
(3'|), which define Xt and X„respectively. Spe-
cifically, we recall that IrrW, is uniquely deter-
mined by on-shell information, whereas ReK, is
determined only up to an arbitrary real-valued
operator A described in the Appendix. Below we
demonstrate that such an A operator can always
be chosen in such a way that the Xz and X, ampli-
tudes are identical on shell, and hence describe
the same scattering observables. We also show
that one cannot distinguish between off-shell two-
body properties and true three-body forces on the
basis of such observables.

We introduce the operator 0' such that

&af~lQ'IC'&=&aLMf~~ qlt(I 1) IC'&-

Q, Ic&=(1 Y,)d-'Q Ic& . (39)

To do so we first consider any operator M on the
full Iapq& basis such that M=M(1-I), or

M = —M(1 —I) (40)

using Eq. (11). Examples of such operators in-
clude V, V, V", and Q. Correspondingly, we de-
fine an operator M' such that

(aLMt~q IM'
I
pLMt'&'p'q')

& aLMI~q IM I
pLMf'&'~e q') Ms& (P')
N,",,'(~,')

where M~, , (p') is an arbitrary function such that

dPP'Mgg (P) =1 .
0

(42)

i.,(~.)f =app*(arnnvq~i s~e) . -
0

(36)

We next demonstrate that a real operator Yf may
be defined such that

Since d 'K'Z" and cj 't'I are real, we have es-
tablished Eq. (39). We observe that Yz vanishes
in the absence of three-body forces.

In similar fashion, one may verify that

Q„Ic»=(1—1' }d 'Q'Ic),
where

(47)

Y~= 8+ —,'(1 —8)Y,

&aLMlkz qI QN(I-1) IPLMl'X'z8 q')
N~, , (d~)

in terms of operators 8, Q, N defined in the Ap-
pendix. Physically, 8 projects onto the interior
region where the two-particle forces overlap. The
development below is complicated by the fact that
Y„Y& are not compact, and hence we introduce
the diagonal projection operator 6' such that

~;, (q) = 8[@.-q], (49)

(1- U) '(1 —Yt&P) =1 —Y~(P,

U= 1 —(1 —Yt(P)(1 —Y~(P)
' .

(51)

The existence of U follows from the fact that Y~6'
is a real compact operator on the

I alXq& basis.
Defining V via the equation

Ky = Ug ~+ V,
our two equations become

(52)

where 8[x] is the unit step function. Thus (P is
unity acting on physical states such as I4&. It is
sufficient for our purposes to work with

Q~=(1 —Y~P)d 'Q',
(5o)

Qt ——(1- Yts')d 'Q',

which are equivalent to Q„Qt when acting on
I
4 &.

In order to establish the desired equivalence we
now introduce an operator U such that

One may then verify that

MIe&=M'd 't I4»-
=-.'M'd-'t(1 I) IC& . -

In particular,

QIc&=(t-Kz") I4&

= [ 1 —3(KZ" —t I)'d '] t (1 —I) I 4&

Recalling that 0& = —d '0, it follows that

Yf=3d 'Y,
where

(43)

(44)

(45)

K~=(1 —U) 'V, (54)

by proving that

(1-U) fmK, =fmV

= 1m'+ Ulmd(dd*) ' (55)
since U is real. To do so we define G such that

Xt —-Q~+ (1 —U) 'VdXf,
(53)

Xb = Q~+ K~dX~,

where it is understood that Xz, X~ are to act on I@& .
Inasmuch as ReK, is at our disposal, we can

establish the desired relation

&at~ I YI pt'vq'&

& aLMlkm q I
K Z" —t'I

I
pLMl'&' Kz q')

N'g, ', (d~)

(af~IGIpl x q &

(aLMlkxm q I
d t I IPLMl'X'x8 q')

N(0 j(+t )
(56)
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this definition implies that GN = O'G6'. Comparing
Eqs. (35) and (46}, we find that

Im8K, = —80'Imd(dd*} ',
Im(1 —8)K, = —(1 —8)(G+ 3 Ygd' Imd(dd*) '].

(58)

Solving Eq. (57) for ImK& and employing Eq. (58),
Eq. (55) is equivalent to

[(1-U)8+ U](1- G)tP =3[ Y~ —(1 —U)(Y~- 8)](P

(59)

or

[Yy —(1 —U) (Y, —8)] (2+ G)s' = 0,
using Eq. (51). However, the relations

YfG(P = —2Y~O',

(Y —8)G(P = —2(Y —8)s'

follow from the above definitions in a fashion
similar to Eq. (43). Note that

(1 —I)I = —2(1 —I )

(60)

(61)

(62)

as a consequence of Eq. (11). We have thus es-
tablished Eq. (55), and can therefore guarantee
Eq. (54) by requiring that

ReK, =(1 —U) 'ReV

=(1-U) '[ReK&- URed(dd*) '] . (63)

Equivalently, in terms of the off-shell functions
B, C;

& cii~
I
It

I
Pl'v q'&

&elks I(1 —8)[(1—U)"'ReV- ReK,"'] IPI'Vq'&
D(iroc') 7

(64)

&oi~ IC IPI ~ q &

&&I~ I8[(1—U) 'ReV R~s"'] —IP &'I&q
D(0)(P )

(for definitions see Appendix. ) We note that a

corresponds to Eq. (8) with W replaced by a nega-
tive energy parameter W & min(s'). The purpose
of this device is apparent in Eq. (64), in which
D~",.(R~) compensates the exponential decline of
V and K,"' in the limit q' -~. The result is that
B and C are L, functions decreasing at infinity ac-
cording to negative powers of (q, q'). Further-
more, they are smooth functions for real (q, q')
since they do not possess the a~ cut, and are an-
alytic in a strip about the real axis characteristic

Y~s'= ——,
' [G+ ImK&dd~(imd) '] (P.

Furthermore, the formulas for K~ in the Appendix
imply that

of the off-shell behavior. In particular, if p, is
the mass of the lightest exchanged particle, B and
C are analytic for IImq I( min(p, I2M WI' '}. In
practice we may choose 8' such that the bound is
given by p; note that W is on the same footing as
B,C in representing the off-shell st:ructure arising
from Vs and the V . We also observe that in the
special case V, =O

(1 —8,)(1 —U) '=1 —8, , (65)

where 8~ describes a somewhat larger region of
finite volume than does 8 (8,8 = 8). We then have

&ci piql(1 —8i,)II I 6 I'&'q'&

&a lkq I(1 —8,)[ReKi —ReK~~']Ill'X'q '&

D"' (s')

so that the long-range part of the off-shell struc-
ture can be read off quite easily givenK&.

In the development above we have assumed that
W'& 0 and that the initial state consisted of three
free particles. If W &0 and the initial state con-
sists of a two-particle bound state plus a specta-
tor, it should be clear that the same operator V
guarantees Eq. (54), and hence the equivalence of
the kernels follows as before. However, for a 9y
bound state q;„&Q, and hence 5'Iqi& =0. This
would appear to indicate that the expressions for
the driving terms must be modified, since now

Q~ I 4& = (1 —Y~)d 'Q 'I 4),
(1-U) 'Q, I4& =d 'Q'I4».

(67)

However, the prescription for calculating the
physical amplitude (elastic bound state scattering
or breakup} is to pick off the residue of the pole
arising from t~, (z ) acting on I4&. Such terms
arise upon iterating the Xz (or X,) equation, since
the factor d in the kernel can act on the 5(q-q;„)/q'
term in Qf (or Q, ). Thus, effectively one has

&6l'&'q'IQ, IC»=&Pi'&'q'l(I -U) 'Q, I@&

=&Pl ~ q Id 'Q'Ic»-

Iq i(» ),
6 ('q qin ) (0) ill

(68)

assuming a Py bound state of angular momentum

l, with a spectator of angular momentum X (z'~
= i I2iis' I'I' for , the ground state} This is .also
true for bound state scattering below the thres-
hold for breakup [min(s ) & W & 0], in which case
O', U, ImK~, ImKq all vanish and Eq. (55) is trivially
satisfied. Finally, these operators also vanish in
calculations of the three-particle binding energy
[W& min(s' }); in this case the equations are ho-
mogeneous (Q, =Qz = 0).
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K = —(1 —tG, ) VG, +tIG, (69)

from the fact that the n = P matrix elements of
IIG, vanish (whereas those of 7 do not).

However, the development above demonstrates
that this is not in fact possible. Suppose that the
data were adequate to completely specify 9 and C
in the BC representation (experience with the
three-nucleon system indicates that this assump-
tion is incredibly optimistic). KnowingK„one
could construct Kf from the relation

Kp = Ud ' + (1 —U)K ~, (70)

in which Uis any real-valued L, oPerator. For a
given U one could construct a corresponding Y&

via Eq. (51), and hence achieve an interpretation
of U in terms of a particular combination of two-
and three-particle forces [only certain matrix
elements of the potentials are required in Eq. (46);
the remaining degrees of freedom can be deter-
mined by Eq. (63)]. In particular, if one assumes
a Priori that V, =0 and chooses U accordingly, an
effective off-shell behavior can be deduced in
accord with the data. We therefore conclude that
a complete knowledge of three-particle scattering
data is not sufficient, even in principle, to dis-
tinguish true three-body forces from the off-shell
characteristics of the two-particle interactions.

V. DISCUSSION

Originally, the BCF was derived as a general
solution of the three-body unitarity relation con-
sistent with specified two-particle phase shifts.
In the present work we have demonstrated the
explicit connection between this representation of

We have thus demonstrated that functions 8, C
[summarized by A =—(1 —B)B+8C] can always be
constructed with the properties assumed in previ-
ous work providing one specifies two- and three-
particle potentials of the usual class. We now

consider whether it is possible to distinguish be-
tween off-shell two-particle properties and three-
body potential. s on the basis of three-particle
scattering data. Suppose, for example, that it
were possible to determine both Qz and K& from
the data using Eq. (33) to construct X&. In the
absence of three-body forces Q& and ImK& are
given by on-shell matrix elements of I'(1 —I) and
t'I, respectively, and hence are uniquely deter-
mined by on-shell information. One could thus
check whether the empirically determined values
of Qz and ImK& agreed with two-particle data, and

thereby prove the absence (or detect the presence)
of a three-body force. Similarly, if one could re-
construct the Faddeev kernel [e.g. , in Eq. (15)],
one could distinguish the two terms in

the off-shell degrees of freedom (including three-
body forces} and the conventional representation
in terms of two- and three-particle potentials.
Specifically, we have shown that for each set of
such potentials, there exists a real-valued L,
operator A such that the BCF generates precisely
the same scattering observables as does the
Faddeev equation. The same is true regarding
three-particle binding energies, which appear as
poles of the operator (1 -K,d} '. Thus the BCF
reproduces the primary singularity structure of
the on-shell three-particle scattering matrix T
(right-hand cut plus bound state poles), but not its
left-hand cuts (except for the very important con-
tribution arising from the exchange of a physical
particle). Correspondingly, the BCF does not
yield the correct half- or fully off-shell values of
1, nor the bound state wave function. It is specif-
ically designed for scattering calculations, which
are most difficult in terms of the Faddeev formal-
ism, and for which it possesses unique advantages.

Some of these advantages are apparent in the
analysis of n-d elastic scattering and breakup at
14.4 MeV. ' By taking advantage of the smooth be-
havior of A as a function of the integration vari-
ables (q', q), and expanding A in a complete set
[i.e., as an operator of finite rank; A =P~a~~g, )(g~~
for a set g '~q(q} = (alkq~g~)], it is trivial to reduce
the BCF equation to a set of algebraic equations
with coefficients determined by the minimal equa-
tion (A =-0). This form is highly efficient for gen-
erating three-particle amplitudes corresponding
to all possible values of A (arbitrary a, ); we have
shown above that this must necessarily include all
possible combinations of two- and three-particle
potentials. In this way it was easy to demonstrate
that the scattering observables at 14.4 MeV are
sensitive only to a single off-shell parameter, the
over-all scale of A, which could be normalized by
fixing the value of the n-d doublet scattering
length a, . Thus, taking A =X,A, choosing an
arbitrary operator A, and varying Ao from zero
to a value which gave a, =0.41 fm (chosen to best
represent low energy s-d scattering), the differ-
ential cross sections were found to be independent
of A to the level of a few percent. The conclusion
was thus that no off-shell information can be ex-
tracted from such data which is not already im-
plicit in the value of a, .

Underlying this result are a number of specific
assumptions concerning A. These are based
partly on empirical experience with the trinucleon
system, and partly on theoretical estimates linked
to potential theory. In particular, one expects A
(or the a~) to be a slowly varying function of 8';
this is clearly necessary if A.o is to be fixed at the
n-d threshold and employed at 14.4 MeV (or high-
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er). Inasmuch as the dominant part of the (s-
wave) nuclear force has a range &I fm, one can
infer quite generally that the appropriate scale is
essentially (M„W)'~'/[ —,'(3pn„)], and hence that A is
approximately constant for TI & 70 MeV. This
estimate is supported by numerical studies of
specific models. In particular, these considera-
tions rule out exotic energy dependence such as
employed by Haftel and Petersen'; this is equiva-
lent to specifying that T has conventional analyti-
city properties as a function of S'.'

Secondly, since the a, parameter involves only
the L=0 state (fors-wave N Nforc-es), our nor-
malization procedure would not constrain the L» 1
contributions (which dominate the cross sections
even at 14.4 MeV) if A were completely general.
Here again one must appeal to potential theory,
in which the various L states arise as the angular
momentum projections of a function of the vectors
p, q. For example, in the simple case of separable
interactions the off-shell dependence is given in
terms of form factors g ($), gs(p'), where p, p'
are linear combinations of the integration vari-
ables q, q'. Thus, if A is to represent a plausible
interaction, the operators A. @~ are correlated and
can be represented as angular momentum projec-
tions of a smooth function of q, q' and q ~ q'. This
was assumed in constructing the 4 set employed
in the n-d analysis.

It should also be evident that for a given/i, the
value of X, which corresponds to a fixed a, is not
unique. This is a simple consequence of the fact
that if A. is taken sufficiently large it will domi-
nate K~, and hence one can obtain almost arbitrary
results (at least for W& 0). It was therefore as-
sumed that off-shell corrections are a relatively
smal1 effect, and hence that the smallest value of
X, is the only plausible one. This is in accord
with empirical experience regarding this particu-
lar three-body system, and may be inferred from
the undramatic off-shell variations noted in the
Faddeev calculations. Also, the next smallest
value of Xo was typically an order of magnitude
larger than the minimal value, and the sensitivity
to this parameter was such that A was clearly
dominating the calculation. Given these basic
ground rules, A was allowed to vary widely, and
even quite implausible shapes were ineffective in
altering the calculated cross sections.

The assumptions noted may be summarized by
a simple basic rule: The search for off-shell
sensitivity must be subj ect to reasonable theoret-
ical guidelines. The latter can be quite general
within certain specified limits, but those limits
must be applied if the results are to be meaning-
ful. Thus, it is quite evident from the above dis-
cussion that the full generality explicated in the

BCF can be used to produce almost arbitrary
"sensitivities" in predicted three-particle observ-
ables. However, these effects are irrelevant if
they do not correspond to plausible interaction
mechanisms. Thus, the three-body problem does
not exist in isolation, and one must interpret
three-particle data in terms of what is known
about the /-N interaction, heavier nuclei, and the
general postulates of nonrelativistic quantum me-
chanics. Otherwise, one tends to engage in math-
ematical games which have little bearing on the
gaps in our basic understanding. It is certainly
unwise (particularly in an era of limited resources)
to justify present or proposed experiments on the
basis of such "sensitivity. "

An illustrative example is provided by the case
of off-shell effects vs three-body forces. As
noted above, one can define various combinations
of two- and three-body potentials which generate
identical scattering observables. Thus, although
there are clearcut technical distinctions, one can-
not distinguish them on the basis of scattering ex-
periments. The only meaningful question one can
pose is whether two-particle forces within a cer-
tain acceptable class can alone account for three-
particle data. The definition of such an "accept-
able class" must clearly be based on one's present
theoretical understanding (and modified if found to
be inadequate). As this author has noted previous-
ly, it is unnecessary to perform massive Faddeev
calculations in order to answer this question. ' It
will suffice to calculate Er, a, (and perhaps a few
additional parameters) to define an equivalent A

operator; all consequences of the given model can
then be quickly explored. In passing, it should be
noted that the emphasis placed on scattering ob-
servables is related to the inability of the BCF to
determine the actual wave function. As this au-
thor has previously pointed out, the electromag-
netic properties of the triton may be used to de-
duce the presence of an effective three-nucleon
force if mesonic corrections can be neglected (or
estimated). " Recent experimental results on the
deuteron form factor appear to indicate that such
corrections are far less significant than had been
supposed, ' and an appropriate generalization of
the previous technique could conceivably yield a
definitive result.

Above we have demonstrated that for a~ven set
of two-particle phase shifts, any and all off-shell
variations can be realized within the context of
the BCF. In conclusion we consider the possible
model dependence of the n-d result as a conse-
quence of the particula~ phase shifts employed.
Thus, since the object of the analysis was to study
off-shell dependence, it was argued that simple
s -wave phases generated by a constant boundary
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condition were adequate for the purpose. This
choice was purely a matter of convenience given
the computer program then available. However,
Haftel and Petersen have argued that these phases
uniquely determine an off-shell t matrix, and
hence that the variations considered must be in-
terpreted as due to three-body forces alone. '
This argument would be valid except for two
major points. The first concerns the alleged
uniqueness of the t matrix, which is apparently
based on earlier work by this author. However,
that work uniquely linked properties of the &eave

function to the t matrix; the argument was not
based on the phase shift. In fact, it is well known
that one can always apply unitary transformations
which leave the phase shift (but not the wave func-
tion) invariant. " Secondly, it is clear from the
presentation given in this paper that the results
of a given calculation are limited only by the
values of the on-shell t matrix in the domain
s' - s~&W'. The extension of t ~ to energies
s &s' is quite arbitrary since it can be compen-
sated by A; and the use of a meromorphic log-
arithmic derivative (with a constant limit at in-
finity) is merely a computational device. " For
example, it is clear that T cannot depend on the
parameter s' introduced in Sec. III, nor the par-
ticular values for t, employed for s &s . It is
conceivable that the type of energy-dependent
parametrization suggested previously for t,
might not yield ~t, —t, ~&e for arbitrary e in the
important region (s~, W}, although this is unlikely
to be important numerically. However, one could
instead simply use t, itself in that region and
match t~ smoothly at s =s'. This is purely
academic insofar as the 14.4 MeV analysis is con-
cerned, since the domain (s~, W) falls into the
effective range region where the simple phases
agree with any model.

It should therefore be clear that there are vast
differences between the generalized BCF and the
boundary condition model popularized by Fesh-
bach and Lomon. " It is unfortunate that both the
title and historical development of the approach
have caused the two to be confused. Hopefully,
the present article will serve to make clear the
distinction. Although the trinucleon results are
generally regarded as disappointing, there is
nevertheless valuable information to be learned
in that system. The very absence of off-shell
sensitivity in the low energy region should make
it possible to pin down hard to measure N-N pro-
perties such as the n-m effective range parameters,
the 'I', phase, and the e, mixing parameter. '
Furthermore, this absence of sensitivity may be
understood from the fact that momenta q & 1 fm '
are needed to probe the region where A has struc-

ture, whereas the momenta which are numerically
important correspond to v physical, or q ~ Q
This implies that for TI. & 45 MeV cross sections
could begin to exhibit some sensitivity to the off-
shell properties. This is not an easy regime to
handle theoretically, since many angular momen-
tum components of the N-N interaction will con-
tribute. For this reason Faddeev-type calculations
with other than trivial forces will not be feasible
for this purpose in the near future. However, the
simplified structure of the BCF makes it an ideal
tool for probing this region.

The author wishes to thank the Aspen Center for
Physics for its hospitality during the preparation
of this manuscript.

APPENDIX: BOUNDARY CONDITION FORMALISM

The on-shell properties of the Py subsystem are
specified by a boundary condition at a relative
displacement x =a,

(Al)

applied to the asymptotic form of the two-particle
(partial) wave function g'",'. This results in a spe-
cific representation for the t matrix;

f'(s )=N (z )/D (y ),
N ((» )=(a X, —l)j, (a ~ )+a ~ j„,(a K },

(A2)

D, (z ) =ivpz„[(a X, , —f)h, (a~K )

+a zg„,(a K )].
In previous work it was assumed that a can be so
chosen that X,(z ') is a meromorphic function of
K~' approaching a constant X $ as
provides an essentially unique analytic continua-
tion from the physical region (z '& 0) where
X~, (v„') is completely determined by the phase
shift (5,), to the domain -~ & v '& 0 required by
the Faddeev (or BCF}equations. This assumption
is in accord with empirical experience concerning
the N Nsystem2' (an-d is apparently true for had-
ron-hadron scattering in general, insofar as the
phases are known"). However, we are concerned
here with a purely mathematical statement re-
garding off-shell equivalence, and in general the
phases will not be in accord with this assumption.
Nevertheless, one can simply modify the pre-
vious prescription by taking X~(v '} directly from
the model in the physical region (and such that the
proper residues are generated at any bound state
poles), and using the meromorphic form to the
left of some matching energy s &s'. The value
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&nxyl6', Ipx'y'&=5„s(x-x')5(y -y')d", i(x, y),
5", '(x, y) = 8(x a)-8(xs —as)8(x„-a„),

(A3)

where xs, x& are appropriate linear combinations
of x and y. Application of the boundary condition
sets x =a, bringing in 5', (a, y) as an explicit
factor. For each channel a there exist displace-
ments y =y' and y=b such that

tP,' '(a., y)=1, y&h

=0, y& (A4)

It is convenient to introduce operators 8 and (9,
which correspond to the step functions 8[y„-y)
and 8[b -y), respectively, in the coordinate re-
presentation.

In practice, the short-range character of the
interaction effectively restricts one to a finite set
of l values in each channel (l~ l"'"). For a given
L, the equations are thus written on a truncated
space corresponding to a finite range for L, X. De-
fining an operator Q such that

of t~, will then be identical with that of the model
in the accessible physical domain s ~ & s ~& W, and
hence t, (s„}=t~~(s„}.Below and inthe text we

use%~ and D~ to denote N
&

and D~ with A.
&

re-
placed by its asymptotic value A. ~.

The boundary conditions are applied to the three-
particle wave function in the exterior region, de-
fined by the requirement that each pair of particles
Py is separated by a distance x & a . The dis-
placements x, y are taken (for a given n) to be
conjugate to the momenta p, q, and hence the basis
in the coordinate representation is lnxy). A pro-
jection operator (P, on the exterior region is most
simply defined in this representation

&ni&ylQIPl & y ) = 5as a QgVi'x'(y) ~

5(y-y'} ~

) 8+X'
QI xi%'(y) t Pi xi 'x'(a y)

(A5)

=1 e.
As a consequence of Eq. (A4), it follows that

(1 —8,}Q = (1 —8,)Q = 1 —8, ,

eq =0.
The BCF equation can be stated in operator

form by defining Ã, g such that

& npqIN I
pp'q'&= 5.s5(q- q')

(A6)

(A

P p.p' N"' p'

& np q Ig I
pp'q'& = 5~5(q - q') p'

(A8)

The operator N is then defined via the relation

NtP, = (1 —8)(QN+ N), (A9)

and corresponds to the function N '~ given in
Eq. (41) of BCA. We note that (1 —8)N is nonzero
only in the finite domain y & y & b . With this
notation the equations derived in BCA imply that

where I","q,'iq (a, y) is the partial-wave projection
of 5'i l(a„, y}, an inverse Q may be defined on the
truncated sPace such that

(1 —8)QQ = (1 —8)QQ

&niiuf IK -4"I@'"'q') =&«1ql(1 —8)Jt+ 8C
I
pi'&'q')D'l'(K'),

&nlAq I(1 —8)K&~
I
pl'x'q'&= dp'p' &nLMlAK q I(1 —8)Q(MP I N)Go@I pLM—l'x'p'q'),

0

& nlhq I
8K"'

I
Pl'&'q') =

& nliul
I
8 IPl'&'q'& N's", , (Ks') s' s '

Ds'g, '( Kg')-D, (K')

(A10)

Here

&«~ull8lpi'&'q'&= 5. 5 5.. 8 (q, q'; y'.),
2r' qj „+,(rq)j, (rq') —q'j„„(rq') j„(rq)

. gsgyg yr) 2 12

(A11)

and K corresponds to Eq. (8) with W replaced by
a negative energy parameter W & min(s', ). The
purpose of this device is to compensate the ex-
ponential growth of d in the limit q'- ~ by the
explicit factor Dz, '. (Ks). With this convention
the functions B, 6 are arbitrary real-valued L,

operators on the lnlAq) basis. For a given set
of potentials they can be constructed via Eq. (64).
The appearance of Ka in the expression for 8K',"
is somewhat arbitrary; what has been done is to
insure the correct expression for Im8K~+'[Eq.
(58}]by choosing the simplest form which is
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analytic and I., [note that the bracket in Eq. (A10)
tends to zero faster than the exponential since
N8, , -N~„' and D@.(vz)-Dz, (Kg) as q'- ~]. The
driving term is given by

(afg~u, =(aluf~~. q~qNs, (I 1-) . (A12)

In conclusion, we observe that although the equa-
tions stated above are designed to approach a
specific limit (singular cores) as 8, C -0, they
possess a disadvantage for data analysis in that
the operators become rather complicated in the

near-overlap region y' ( y & b . Phenomenologi-
cally, there is no reason to insist on this picture,
and one can greatly simplify the numerics by re-
placing 8 by 8~ in Eq. (A10).2e Noting that

(1 —8 )Q(MP, I N) =-(1 —8 )NI, (A13)

the corresponding integral for (1 —8„)K',0' can be
done analytically, and is essentially given by Eq.
(3'f) of BCA. One can easily verify that the equiv-
alence theorem of Sec. IV goes through as before
(e.g., Y, becomes 8», etc.).
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