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The nucleon-deuteron breakup reaction is analyzed in the framework of a model of single and double
scattering using the off-shell t-matrix elements corresponding to several realistic local two-nucleon potentials.
The multiple scattering contributions are estimated through a model derived from a fixed scattering centers
approximation with a simple separable two-body t matrix.

NUCLEAR REACTIONS 2H(p, 2p)n, E =156 MeV. Calculated cross section
single plus double scattering including exact off-shell two-nucleon t-lnatrix
elements and integral solution in a fixed scattering centers approximation.

I. INTRODUCTION

A large set of experimental data'' is now
available for the deuteron breakup reaction ini-
tiated with 156 MeV protons; this is suitable for
testing the various interpretations of this three-
body reaction. However, the difficulty of the
numerical computations precludes, for the time
being, solving the Faddeev' equations with a
realistic N-N interaction except at low energies. '
Therefore, one has to use a simplified model of
the reaction mechanism. At intermediate ener-
gies, the main features of the cross sections can
be reproduced if one assumes a free scattering of
the projectile on one target nucleon, the other
remaining a "spectator. "' Because of momentum
conservation, the spectator nucleon recoils with
its initial momentum in the deuteron; hence, the
'H(P, 2P)n cross section is the product of a free
N-N cross section with the deuteron momentum
distribution (on-shell impulse approximation).
One improves this description by taking into ac-
count an enhancement by a final state interaction
(FSI) between the target nucleons' ' or a rescat-
tering of the projectile on the spectator nucleon. "
Indeed, the incorporation of "double scattering"
corrections evaluated with N-N on-shell scat-
tering amplitudes and N-N wave functions which
fit the N-N experimental phase shifts leads to a
better agreement with the experiment. The devia-
tion is less than 10% in the "quasifree scattering"
region QFS where one of the three nucleons is
observed practically at rest in the laboratory. "'"
However, when the available energy is almost
equally shared among the three nucleons, the
weight of the rescattering terms increases and
results become sensitive to the N-N parametriza-
tion.

This raises the question of the occurrence of
multiple scattering processes of order higher than

two. The iterative resolution of the Faddeev equa-
tions furnishes a multiple scattering description
of the reaction. There is no assurance of a rapid
convergence for this expansion, although semi-
classical arguments predict that the probability
of multiple collisions decreases when the energy
of the projectile increases. The importance of
third order terms has been tested" "for the
breakup reaction at a lower energy than 156 MeV
and with a separable N-N interaction. Neverthe-
less, the comparison with experiment suggests
that beyond 60 MeV it is not necessary to calculate
higher order contributions. Therefore, a double
scattering model might be a good approximation
for the breakup mechanism at 156 MeV.

Nevertheless, the on-shell frame previously
displayed must be improved for large momentum
transfers, because the energy is not conserved
in each N-N collision. Corrections taking in ac-
count some off-shell effects have already been
estimated, " "but for a precise calculation one
needs to introduce proper off-shell N-N ampli-
tudes as required by the antisymmetrized Faddeev
equations.

Conversely, following the sensitivity of the re-
sults to the nature of the two-body interaction,
the analysis of the three-body breakup experi-
ments will be a tool to look for the N-N interac-
tion off the energy shell and to select among
several on-shell-equivalent interactions.

Some calculations based on this approach of the
'H(p, 2p)n cross section up to 100 MeV with a
realistic potential have been done for the single
scattering terms" ("off-shell impulse approxi-
mation") for which only half-shell t matrices are
needed. Unfortunately, the kinematical region
was too close to the QFS peak to show a sensitivity
to the two-body parametrization. The lack of ex-
oerimental data outside the QFS region inspired
two groups at Orsay to perform measurements
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in kinematical regions which favors N-N scat-
tering very far from the shell. Although the
probability of such events is very small, a final
state interaction condition between the projectile
and one target nucleon can be used to enhance the
cross section leading to a better precision.

In order to test, through the three-body prob-
lem, different N-N local potentials with soft or
hard cores, ""we have computed and analyzed
their fully off-shell t matrix elements. ' The
off-shell differences for relative N-N momenta
and energies which are the most probable through
the double scattering model were found large
enough with respect to the accuracy of the mea-
surements to strengthen our hope of discriminating
among the potentials. We expect a significant po-
tential dependence at the FSI peak where the devia-
tion from the on-shell values is maximum and in
neighborhoods of minima of the cross section
where variations are enhanced by the effect of
interferences.

In the first part of the present work, we have
calculated the first and second order terms of
the iterative solution of the fully antisymmetrized
Faddeev equation and studied their sensitivity to
the details of the N-N realistic potentials, such
as the tensor part and short distance behavior,
and to the off-shell effects. Preliminary results
of our calculations have been published in the ex-
perimental papers'' and in Ref. 21.

However, the question of the sensitivity of the
three-body problem to the off-shell contributions
of the t matrix is debatable. Recently, Wallace"
solved the Faddeev equations and was able "to
describe the gross features of N-d breakup data
through 156 MeV" with a very simplified two-
nucleon S-wave separable interaction averaged
on the elastic N-~ cross section. "This success
could be explained by the possibility that three-
body amplitudes may not be sensitive to the
details of the two-body amplitude used to calculate
them. " Brayshaw" concludes in the same way
from a new method of analysis of the deuteron
breakup at 14.4 MeV. "No off-shell information
can be obtained. . . which is not already implicit
in the value of the n-d doublet scattering length. "
Qn the other hand, for the same energy Kloet4
indicated certain regions in phase space which

promise to be interesting from the point of view
of the cross sections sensitivity to the details of
the nuclear forces.

Now, we presently claim a real sensitivity to
the off-shell behavior of realistic N-N potentials
through the double scattering model. It is a
matter of interest to examine if this sensitivity
will be preserved when are added the multiple
scattering contributions. Therefore, the second

part of this paper is an attempt to estimate the
error due to the truncation of the Faddeev series
at second order.

Taking into account the relatively slow varia-
tion of the N-N interaction at 156 MeV and its
short range character, we practice a "fixed scat-
tering centers"" "type approximation (FSA),
neglecting the relative motion of the two target
nucleons during the collision time. Then w'e pa-
rametrize the N-N t matrix in a S-wave separable
form, the N-~ on-shell amplitude and the range
parameter being chosen in order to reproduce the
results of the second order model calculation with
a given realistic potential. The integral equation
can be solved analytically through this approxima-
tion. The convergence of the series is examined
and the sensitivity to the two-body parametrization
is analyzed.

The structure of this paper is as follows: in
Sec. II, we formulate the single plus double scat-
tering model. Results of the calculation with
realistic local potentials are discussed in Sec. III
and compared with the experiments. In Sec. IV,
the summation of the multiple scattering expansion
is analyzed through the FSA model. We present
conclusions in Sec. V. More details on the present
w'ork can be found in L'Huillier's thesis. "

II. FORMALISM

A. Notation

In the numerical calculations we have used the
relativistic kinematics and taken into account the
proton-neutron mass difference, but in order
to simplify the formulas we neglect in the fol-
lowing the relativistic corrections which are
small at 156 MeV and set m~ =m„=m for the
nucleon mass. We use the units of k=c =1.

We denote by e~ = o', '/m the binding energy of
the deuteron, po, E and p;, E, , respectively, the
laboratory momenta and kinetic energy of the
incident nucleon 1 and nucleon i (i =1, 2, 3) in the
final state. We denote also by ~0 = 3p, and ~; =p;

3 p, the three-body center-of -mass system
(c.m. 3) momenta. The nine parameters p, are
related by the four energy-momentum conserva-
tion relations.

Let us define y. , =-, (p, + p,.), q, =-,'(p, —p, ), p,
=2(p, —p„), where (i, j,k) is a cyclic permuta-
tion of (1, 2, 3). The relative energy of the (j —k)
pair is denoted by e, = g,.'/m and the c.m. 3 energy
by E = & A. 2/m —e~ = ~ A, 2/m + e; .

B. Cross section

When nucleons 1 and 2 are detected in coinci-
dence, the differential cross section in the labora-
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tory, for a nonpolarized beam, is given by:

dE,dQ, dO,

where

J=e TrMM (2)

to p. The plane wave normalization is (r I7&
=(2v) '~'e'~'. The normalized target deuteron
wave function is represented by

(ply&& =(4v) '"-[u( p)+(S)-'"S„(p) (p)], (V)

where S»(p) is the tensor operator.

C. Transition operator U

(3)

The quantity I" is a kinematical factor, whereas
M is an operator on the spin space of three nu-
cleons:

M = —(2)' ~ (2v~I N
I r~ & A, . (4)

A, is the projection operator on the subspace of
triplet states for nucleons 2 and 3 initially bound
in the deuteron. Irl& and

I ~~& are the initial and
final isospin states. The operator N on the spin-
isospin space of three nucleons,

N=(X, g, lUI X, y ) (5)

r=r, —, (r, +r, ),—p=r, —r, .
The final and initial momenta ~, and X, defined in
Sec. IIA are conjugate to r and the momentum LU, ,

(6)

is calculated as a matrix element of the transition
operator U in the three-body center-of-mass sys-
tem.

We introduce the coordinates

Starting from the Faddeev equations one can
write the transition operator U for the fully anti-
symmetrized breakup amplitude as

U =P, (P, +P2+P~)[T3(E)+T,(E)G (E)X (E)]
(3)

where X,(E) is solution of the integral equation

X,(E) = T,(E)+T, (E)G,(E)T,(E)

+ T, (E)GO(E)T, (E)G (E)X,(E),
G, (E) being the three-nucleon free Green function,
P, being the exchange operator in space, spin and
isospin coordinates of pair (2, k). The three-body
operators T;(E) are solutions of

T((E) = (1 P, )[V, + g
—V; Go(E)T, (E)],

where V, stands for the interaction between the
nucleons g and k.

In momentum representation T, (E} is expressed
in terms of the antisymmetrized two-body ampli-
tude t, analyzed in Ref. 5:

(pl, p,', p,'IT)(E) I p„p„p,&=5(p,'+pa-p, —p, )5(P,' P()t;[ p-(, I;, (IE--' )").

The iterative solution of Eq. (9) gives the multiple
scattering expansion of the transition operator U.
The operator N defined in Eq. (5} may be written

N =S, +u, +11,11,(S, +u, }+11,11,(S, +n, ), (12)

&~=-&~~, ill T, (E)G,(E}X.,(E)l~„q,&

=(X, , A-„,lx, (E)l X„y„& . (14)

The symbol 4-„ is related to twice the scattering(-)part of the 2-3 two-body stationary state gp

(15)

where II; is the exchange operator on spin-isospin
coordinates of pair (j, k),

S, -=& ~„I, I T, (E)l ~„v,& =I,( p„x„i, )m, (P,),

(13)

III. SECOND ORDER CALCULATIONS WITH REALISTIC
POTENTIALS

A. First order terms S

In the first order term S, [Eq. (13), Fig. 1], the
nucleon with momentum p, is spectator. The two-
body t, matrix is half-off-shell, the off-shell devia-
tion being given by

(}~a I }= ~ +su =2Ea+ea
1 1
m ' ' rn

The factor y„(P~) is maximum for P~=O and de-
creases rapidly when P~ increases. The amplitude
~3 is more s lowly varying, exc ept in the case of
final interaction (FSI) with a low energy e„. When

&~ is not too large, the FSI produces an enhance-
ment of 8„. For P~=0, S„ is maximum and de-
scribes a quasifree, two-nucleon scattering (QFS),
the t3 matrix is nearly on-shell with &~=280.

In the calculation of S, , the off-shell t3 amplitude
and the deuteron wave function have been computed'
from the following realistic two-nucleon potentials:
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Hamada-Johnston" (HJ), Reid" (hard core RHC
and soft-core RSC), Sprung-de Tourreil" (SSA)
and Gogny-Pires-de Tourreil" (Gl).

Experimental data' ' at 156 MeV are shown in
Figs. 2-4 for typical QFS and FSI situations, in
coplanar geometry. The angle 0~ between p~ and

p is defined with the convention —180'& 6)~ & 180'.
Curves J, are the sum of the three first order con-
tributions to &[Eq. (2)] in fm' calculated with HJ po-
tential. Figure 2 corresponds to p, fixed: E, =50
MeV, 8, =45'. In the upper part, the values of the
energies E, and c, are plotted as functions of 6), .
Quasifree P-P scattering occurs at 6, = —33' with

E3 1 MeV and final P -n interaction at 6, = —69 '
with E, =2.2 MeV. In the lower part, the contribu-
tions of S„S„andS, are plotted separately. S,
and S, are far off shell (&~ =100 MeV), For E, &5
MeV, S, and S, are negligible, but for —0, &50'
the three S, terms interfere and their magnitudes
reflect the value of the deuteron wave function for
large momenta. The enhancement of S, in the FSI

pIG. 1. Graphical representation of the amplitude S~.

region is not strong enough to fit the experimental
bump.

B. Second order terms D

The second order terms D& correspond to the
approximation X,(E) = T, (E) in the evaluation of

u, [Eqs. (9) and (14), Fig. 5]:

D = dp ~p p+q I;3 ~ po-p -2q; ~ po-p '
~ po-p'-p'-+, ' '"

p A

The integral D; has the structure of a first order
amplitude for inelastic scattering: its value is
nearly proportional to the form factor

G(p&, i&)= db«-„,. I p;+a&&&pl q, &

dp 4~ p e ~q&'~
p qy~ . 18

p =v( (19)

dp 4-„. p &, ; pp (20)

The deuteron wave function being maximum for
P =0, we set v, =0. In this case

«.&, =f.[—.'5, —2q„-.'P„(-,'p, —;)']
is nearly the half-shell value at a fixed energy

(21)

This function G(p, , j;) is maximum for the small-
est q, values, especially when p, , is small (FSI).

Though the computation of the off-shell matrix
elements of I', allows an exact evaluation of the
D, integral, we shall use a factorization approxi-
mation to circumvent the overly long numerical
calculations; we replace ~„which varies more
slowly than the other factors, by the spin-isospin
operator (f,&, calculated for a constant momen-
tum:

equal to the laboratory energy Eo. The value v,
=0 is the more justified if p. ; and q, are small,
since in that case the N %wave funct-ion (&-„.[p+q, &

is mainly a l =0 state of the relative motion and
is maximum for P =0.

In Figs. 2-4, curves J, give the second order
contribution to function & [Eq. (2)], and curves
~» the first plus second order values obtained
with the Hamada-Johnston potential. Figure 3
corresponds' to 6), =45 and 8, = —57'. At E, =69
MeV there exists a superimposed experimental
peak due to P-d elastic scattering. In the upper
part the values of the energies E, and &,. are
plotted as functions of E, . Quasifree P-P scat-
tering occurs at E, =88.2 MeV with E, =3.35 MeV.
There are two regions of final P-& interaction,
near E, =31 MeV with e, =-0.08 MeV and near E,
=110.6 MeV with &, =0.13 MeV. In the lower part
of the figure, the contributions J, (i, l, T) are
plotted separately with i =1,2, 3 referring to D, ,
l =0 and 2 to the S and D components of the deu-
teron wave function, respectively, and T =0 or 1
to the isospin parts of 4„..

Figure 4 at E, =50 MeV and 8, =30' exhibits a
final P-n interaction with energy &, =0.01 MeV.
Though this &, value is smaller than in the pre-
vious case, J, has a less peaked structure be-
cause of the larger momentum transfer q', . Figure
6 shows, as a function of &„ in the FSI region, the
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experimental data and curves ~, and ~» of Fig. 3.
Comparing ~» with the curve "S"obtained by
cutting the l&0 components in

~ &„,), one notes
that the I =0 final interaction gives the main con-
tribution but that the neglect of l &0 waves indicates
a nonnegligible error even at the FSI peak. The
curve "C" obtained with the S deuteron wave func-

tion, shows, as it is also clear in Figs. 2-4, that
one cannot neglect the D component when the mo-
mentum transfer is large. If one omits the l&0
waves both in initial and final states "SC" one
gets fortuitously the best agreement with the ex-
perimental data.

In Fig. 6 we indicate at the FSI peak the values
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FIG. 2. H(p, 2p)n reaction at 156 MeV, E& =50 MeV,
0~ =45 ~ The lower figure shows the values J = (1/E)
do/dE&d Q~dQ& calculated with Hamada-Johnson potential.
J& and J& are the contributions of order 1 and 2 separate-
ly. J&& is the sum of the contributions of orders 1 and 2.
The curves J~ (k, l) show the contributions of amplitude

g for the componentl =0 or 2 of the deuteron. The ex-
perimental results are those of Ref. 1. The upper figure
gives the values of EI, and e~ as functions of 9&.

FIG. 3. H(p, 2p)n reaction at 156 MeV, 0& =45',
0& =-57'. In the lower figure, curves J&(i, l, T) show
the contribution of the amplitudes D; for the component
l = 0 or 2 of the deuteron and isospin T =0 or 1 of the

A&. amplitudes. Other designations are the same as in
Fig. 2. In the central figure, the experimental results
are those of Ref. 2. The upper figure gives the values
of E; and e; as functions of E~.
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FIG. 4. H(P, 2p)n reaction at 156 MeV, E~ =50 MeV, 0~ =30'. Designations are the same as in Fig. 3. The experi-
mental data are those of Ref. 1.

of &„&„and&„ obtained with RHC (triangles},
SSA (squares}, and Gl (circles) potential. The
spreading is about 20%%uo. It is similar near the
FSI peak in Fig. 4 but much smaller in the QFS
region where the dominant first order term is
nearly on shell. The differences between the
potentials reveal large off-shell effects which
come mainly from the second order terms,
especially through the form factor G(p;, q; )
[Eq. (»)].

Let us compare the calculated values ~» to
the experimental data. '' They reproduce the
structure of the experimental ~ but none of the
potentials give a quantitative fit. In the QFS
region E, &5 MeV, the first order ~, is close to
the data and ~» is slightly smaller than J,. In
kinematical situations intermediate between QFS
and FSI, i.e., E, & 10 Me V and &,. & 2 Me V, J, and

~, are of the same order of magnitude and inter-
fere. ~» is systematically larger than the data,

with less deep minima. In FSI regions, e, &2 MeV,
~, gives the main contribution and reproduces the
shape of the experimental peak provided 8,. is
large (see Fig. 3), but &» is too large. On the
contrary, if E& is small (see Fig. 4), &» is less

).+ p

FIG. 5. Graphical representation of the amplitude D;.
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FIG. 6. H(p, 2p)n reaction at 156 MeV, Og =45', 0)=—57'. Jg, Jj, and J&2 have the same meaning than in the previous
figures and correspond to calculations with HF potential and to the factorization with &; =0. J&& is related to a factoriza-
tion with &; =-p&. Curves labeled C and S show the values of J~2 when the D components of the deuteron and the partial
wave l & 0 in the final state interaction are neglected, respectively. SC contains both approximations.

shaped and smaller than the experiment. Recall
that, in the calculation of D, [Eq. (18)], we made
a factorization approximation. Let us remark that
(&-„,

~ p+q;) has a pole for
~ p+q, ~ =y, ; this rela-

tion is satisfied for p = p,. —q; = —p~. In order to
test the factorization approximation with v; =0
[Eq. (19)], when q; is not small, we have tried
an alternative value v, =- p„which is to give the
largest deviation from v& ——0 if P~ is large, i.e. ,
p,. or q, is not small. In that case (t, ), is the
two-body t, matrix of the corresponding S~ term.
The difference between the two calculations
(curves &» and &» in Fig. 4) is small. The
factorization cannot be held responsible for the
discrepancy between the calculated and experi-
mental values. Therefore, despite this approxi-
mation, the previous conclusions regarding the
occurrence of off-shell effects remain, but the
model of multiple scattering up to second order
is not precise enough for discriminating among
the potentials.

In order to improve the model one might try to
evaluate the next multiple scattering terms. But
there is no indication of a good convergence of
the expansion. Besides, with realistic two-nucleon
interactions one runs into increasing numerical
difficulties. On the other hand, the exact solution
of the Faddeev equation for energies higher than

100 MeV is, for the time being, out of computa-
tional ability. In the following section we derive
a model integral equation for the N-d scattering
operator based on the fixed scattering centers ap- '

proximation. This model preserves the structure
of the Faddeev integral equation, while avoiding
the calculation of the multiple scattering expan-
sion. We use simplified two-body interactions in
order to compare with the results of the first plus
second order model and to test the ability of the
integral equation model to improve the fit of the
experimental data.

IV. SUMMATION OF THE MULTIPLE SCATTERING SERIES

IN A FIXED SCATTERER APPROXIMATION

A. Description of the model

Our model is based on the fixed scatterer ap-
proximation (FSA) used in elastic nucleon-nucleus
scattering. '4' " This approximation appears to be
successful in nucleon-deuteron elastic scattering.
We extend it to the breakup reaction for evaluating
the terms of the multiple scattering series of
orders greater than or equal to two; the first
order terms S, are supposedly exactly calculated
from the off-shell N-N amplitudes.

Let us consider the &, 's terms [Eq. (14)] which
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describe multiple scattering process:

S&- 6& p' A&, p' X, E A, ;p p y„dpdp',

(22)

The solution X,(E) of Eq. (9) is the elastic transi-
tion operator minus the pickup term; it implies
successive scatterings of nucleon 1 on nucleon 2

and 3 initially bound in the deuteron. For small
g;, &, is closed to &, (FSI kinematics), the final
N-N interaction of S& which is contained in the
wave function (&„.I

p') contributes mostly in the
l =0 partial wave and its structure looks like
(y„ I p') . Consequently, for a small final relative
&-N energy &, , S, is similar to an elastic ampli-
tude. If the FSA is valid for elastic scattering,
it has to be equally valid for the evaluation of ,
when ~, =~0. When p. ; is large, this approxima-
tion does not seem to be justified. But in the QFS
kinematic regionP»=0, , is a small correction
compared to the first order S» and can be evaluated
approximately from FSA. Finally, if we calculated
the three &; terms in the FSA for all kinematical
regions, we hope to reproduce the maxima of the
cross section and to have a good estimation of its
magnitude between the peaks.

We introduce the FSA by means of two assump-
tions:
(i}First, the matrix elements of the free nucleon
Green operator

& ~'; p'IG. (E)l ~; p&

3 A.
' 1= p' E —————b,-+is p 5(X' —X)

4 m m

is approximated with the neglect of the binding
energy e~ and of the relative energy (1/m)b, z
corresponding to a fixed relative position of the

In order to get a simple analytical expression we
assume for antisymmetrized two-nucleon scat-
tering amplitudes an isotropic form:

(~'lt (E M)l»- ~( ' " ~(
4 v 'M g'(A.„A.,)

x j(x„M)(1 (26)

with

g (A., X ) = [ A.2 i p'(A. )] (27)

Then the solution of the integral equation (9}is

two-target nuc leons:

&&'; p'I G.(E) I &; p&

=2M, „, . 5(p —p')5(X X'), (23)
0

where I= 3 m is the reduced mass in the entrance
channel. With this approximation and for a local
potential V without exchange one has"

&
~'; p'

I T.i, (E) I &;p) = ~(p p')e-""""' ' ' '
x (X'I t„,(E, M)IX&,

(24)

where (&'I t(E, M)l X& is the off-shell amplitude
for the scattering of a particle of mass M and

energy E = &,'/2 M by the potential V centered at
the origin.
(ii) Second, the formula (24} is supposed still
valid for a local or nonlocal potential with ex-
change.

These two assumptions lead to a local approxi-
mation in p for X,(E}:

& &, ; p'lx, (E)l~.; p& =~(p - p')& ~&I 1;(p) I &,) . (25}

given by:

(A, IF (p)l A. ) = — ' ' ~ j(A. M)e-&' " 'o-"& '
[A(p X )-B(p X )II ]

01 0
(29)

1 —2x'(p} + e '~o ~x(p}
[1— '(p)][1 —4 '(p)]

(29)

E( ~ )
1+ ' ' ~x(p)[3-4x'(p)]

[ — '(p)][ — '( )]
(30)

(31)
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Finally, ; is computed numerically from &,
(Eqs. 22, 25, and 28). Expa»ton of (&;IF,(i)l~o)
in powers of x(p), if it converges, gives a multiple
scattering representation for S;. Note that the
first order term obtained by setting A. =8 = 1 in

Eq. (28) describes a double scattering process:

dp(Z-„[ p)(X,.~t, (E, M)P, )e '~i'~(P) y, ) .

which provides ~„~„and J». Nevertheless, our
aim is to perform a qualitative analysis of the
multiple scattering contributions. So, we shall
substitute for the realistic wave functions and
&-& interactions simpler parametrized represen-
tations which simulate the main realistic fea-
tures, but remain easily manageable. Hence-
forth, the HJ potential will be used for reference.

(32) 2. First order term

It is similar to the D; analyzed in Sec. IIIB for
the case of the factorization approximation [Eq.
(20)], the form factor is identical but the two-
body interaction

&-."p, —2q;It (2@ +eg 2~I 2p, )

is now

&-'. p, —2q, ~t, (-;Z„3m)~-', p, &.

B. Pararnetrization of the two-body interaction and wave

functions

l. MetIIod for determining f(Xp M )

In principle, the only parameters of the model
are relative to the scattering amplitude
(X'~ t, (E, M)~ X) that is to say the "on-shell" value

f (X~, M) =Re' ~ and a—range parameter P(&,}. They
could be fixed by fitting the off-shell scattering
amplitudes for mass ~, at energy E, calculated
from a realistic potential. But this method ap-
plied to HJ or SSA does not give precise values
for f(&„M)because the scattering amplitude is
strongly anisotropic. The parameter P(&,) which
reproduces the off-shell effects is found to be
increasing with the energy; for example, the
results at Ep =155 MeV are compatible with values
of P between 4 and 6 fm ', while at zero energy
the value of P is close to 1.2-1.4 fm '.

Hence we have used an alternative method,
which allows us to fix f (&„M) and to verify the
self-consistency of the choice: first, we deter-
mine f (&„M) in such a way that double scattering
contributions ~, to the cross section calculated in

the FSA model from the D, 's [Eq. (32)] equals the
values &, obtained from the D,. 's [Eq. (20)] with a
realistic potential. As ~, is proportional to
~ f (&O, M)~' this procedure gives &. Then, the
phase y can be chosen in order that ~» reproduce
the interference between the single S,'s and double
scattering amplitudes D, 's as observed in the sum

The method works if B and y are found in-
dependent of the kinematics.

The previous device would imply calculating the
first order terms S~'s, and the wave functions
( p~ y~) and (&~. ~ p) which enter in the FSA value

~2 and J» from the same realistic 2V-N potential

Let us examine the single scattering term S, :
PS

Sa= &a fs ~ ~ 2
lI'a A(pa) ~

(i}As the normalized Hulthen deuteron S wave
function reproduces quite well the sum of the S
and D density probabilities of momenta of a
realistic HJ wave function, we choose for y~ the
parametr ization:

with N, =0.259 fm' ', &, =0.232 fm ' p
=1.202 fm '
(ii) For the sake of consistency with the FSA two-
body parametrization of formula (26}, we adopt
for the half-shell ~-& scattering amplitude a
separable S-wave representation in each spin
channel S =0 and 1:

(26')

with form factor

(27')

Starting from the one-rank separable potential
associated with this form factor, we should obta, in

with

(P, 2») = & '&, (V )9~'(P 4), (34)

A fit of the scattering lengths and effective range
parameters fixes &p=0.046 fm ', P -1.1-1.2 fm ',

and P, -1.4 fm '. But the N-N cross sections cor-
responding to amplitudes (34) are satisfying for
small energies even when g is large, but dis-
agree with the experimental data for large p.
We then substitute in Eq. (26') for the modulus
of the elastic amplitude an average value cal-
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-1
10

8,= 45
P-2S
A=g,

p-57

R=.4

Moreover, we keep P, =P, =P„, i.e., a value cor-
responding to a low energy value, because the
first order terms are either on the energy shell
p, =p (QFS), thus independent of P, , or very
small when l» and (g —p) are large. We have
conserved, for want of a better value, the
Yamaguchi phase shift &, (i») which is suitable
for small p (FSI):

10
-2 ~.(p) = »-gD. (p) . (37)

"12 "Ir.—J---J-
E& MeV )100 80

I I

60
I I

40 20 0

FIG. 7. H(p, 2p)n reaction at 156 MeV, 0& =45',
02 =-57' FSA cross sections J&2 and the integral solu-
tions J ~

do ~='
If, (p, » ~)l' =—

dQ
(8=60') .

(36)

culated from HJ potential at c.m. energy c = (h'/
m)p ' and angle 8 as follows:

d(x
~='

I f,(~, 2 ~)l' = —„-„(&=9o'),

In fact, the corresponding first order contribu-
tion, labeled ~„ is not very accurate compared
to the exact ~, whenever large interferences arise
between the three S» amplitudes I see below Figs.
(7)-(10)j; so the QFS peak is slightly overesti-
mated and ~, has too much enhancement close to
the FSI kinematics at 6}, =30'. But in the mean

J, is good enough for our proposal.

3. Parametrization of &&P I p

%'e parametrize the final N-N scattering function

by a central S-wave function with a dependence on

p corresponding to that of the deuteron and using
the scattering amplitude defined through Eqs.

f 1 I 1

0
10

I

~ P

-1
10 I

P

2
10

I

P

r ~II

+
12

J
12

J+
12

—+&
J+

J
J3

20 50 90 20 50 90 20 so (-82 decJ )

(b) (c)

FIG. 8. H(p, 2p)n reaction at 156 MeV, E1 ——50 MeV, 0& =45'. (a) FSA cross sections J&& and the integral solutions
(b) FSA cross sections up to order 2, 3, and 4, calculated with y =25'. (c) FSA cross sections up to order 2, 3,

and 4, calculated with y+ =-130'.
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FIG. 9. H(p, 2p)n reaction at 156 MeV, E~ =50 MeV, 0& =30 ~ Designations are the same as in Fig. 8.
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FIG. 10. H(p, 2p)n reaction at 156 MeV, 0~ =45', 8&=-57'. FSA cross sections up to order 2, 3, and 4 and integral
solution calculated with y+ =130 in the upper part and y =25 in the lower part.
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(26'} and (35}-(37):

«-„IP&& =(2~) '"
p

"'~ m r.

(38)

Then 8, and S; see the same final interaction as
required by the Faddeev equation [Eq. (8}].

4. Fit of f('A(), N ) =Re'~

Vfe have searched for the three kinematical
situations considered in Sec. IVB3: (1) 8, =45',
8, =- 57'; (2) E, =50 MeV, &, =45'; (3) 8, = 50

MeV, ~, =30', and for each point, first the value
of 8 such that ~, equals ~„ then the phase y
which allows us to conserve the ratio

i.~( i+~ ) = ia~K+ a} . (39)

The phase is obtained from a second order linear
equation which has two solutions y, and y (ex-
cept when J, differs very much from &„ case (3)
near the FSI peak where no solution has been
found). R and p, vary slightly with the kinematics
as shown on Fig. (11) in case (1}, but at first ap-
proximation one can consider them as constants
and extract average values. For example, with

I

g„-45'
5 yo

2

10
-2

'P'=~30'

J„2 P:2S'

«3
10

80

4.

R=.4

A=103
0 =4.
g -1,2

120-
40

20

30-

20-

0 10
6.

0 2.

9=1.2

100
i

t)0 60 40

I

20 (E~ Me@)

FIG. 11. The lower and central figures show the fitting of the two-body am litudesf P. I)=R ey mp i u esfP. O, ) = exp(iy ) as a function
o in m . e upper igure compares the reference amplitude J&& [Eq. (39)] with the fitted ones J+ (P =4 R=0.4
y'=130') and J&&(P=4, R=0.4, y =25).

i2
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P =4 fm ', one obtains

R =0 40 +0 02 fm, y =25' +5', and

y, =130' +10'. (40)

C. Results and discussion

The FSA cross sections up to second order
J,', and the integral solution ~ ' corresponding
to R=0.4 fm, y, =130', y =25', and P=4 fm '
are compared to the experimental data on Fig. 7
for 6, =45', 6, = —57', on Fig. 8(a) for E, =50
MeV and &, =45', and on Fig. 9(a) for E, =50 MeV

It appears that the multiple scattering process
corrects in the expected way the second order
contribution. ~ best reproduces the experi-
mental shape but overestimates the FSI peak,
whereas ~ gives a better account of the average
magnitude but flattens the structure. The fitting
is less satisfactory near the FSI peak in Fig. 9(a).
This is mainly due to an overevaluation of ~, in
this region.

In Figs. 10, 8(a), 8(c), 9(b), and 9(c) partial
summations of the multiple scattering up to order
4 have been displayed. They indicate that the ex-
pansion has not yet converged for N=4.

We have repeated the above calculations for
values of R and y in the range R +0.05 fm and

y
' +10'. This spread is allowed by the fitting

procedure of Sec. IVB4 and corresponds, at the
same time, to the range of on-shell variations
of the phenomenologieal two-nucleon potentials
used in Sec. III. It appears that the resulting
variations are the same order of magnitude for
~» and ~ and comparable with the flucutations
shown in Fig. 5 for realistic potentials up to
second order. This might indicate that the sen-
sitivity to the potentials, displayed in the evalua-

For P =6 fm ', 1000 fm ', R is found slightly
larger; the phases remain practically unchanged;
differences are more important for lower P values.

In conclusion, as we have noticed a good stability
for R and y in spite of very different kinematics,
this gives some credibility to our method for fixing
f (A~, M).

The upper part of Fig. (11) analyzes the sensitiv-
ity of ~» to the detailed variations of & and y by
comparing the values &,', calculated with P =4 fm ',
R =0.4 fm, y = 25', or y+ = 130' the fitted ones
[Eq. (39)]. One sees that the averaging of R and

q changes significantly neither the shape nor the
magnitude of this second order contribution. Sim-
ilar behavior is observed when P is varied.

tion of ~» in Sec. III, could be approximatively
preserved but not amplified in an exact calcula-
tion.

The two-body off-shell effects in the three-body
problem are contained, in our calculations, both
in the final &-& wave function (4-„.

~ p } via the
half-shell amplitude t(g, , y, ; p, , ), and in the
successive interactions of the multiple scattering
expansion. Large off-shell effects (up to 300 MeV)
are contained in the final wave function and were
analyzed in the second order model. Fixing R
and p', parameter P was then varied. One gets
very small variations (less than 20%) for P
between P =4 fm ' and 1000 fm '. On the con-
trary, for P =Po =1.2 fm ' the ratio ~&(Po) —7(13)~ /
~(P ) reaches 200% in some kinematical regions.
Let us recall that parameter P determines the
off-shell variation of the chosen interaction
[Eqs. (26)-(27)] through the form factor (P'+&')/
(P'+X 2) where &o =1.82 fm ' is the on-shell &

value. The sensitivity of the results to an altera-
tion of P is some test of the off-shell intermediate
propagation since two-body amplitudes heavily
weighted, in the summation, on their on-energy
shell point would imply independence of P. The
variations observed when P decreases from JB

to P, indicate that the off-shell values do con-
tribute; but the quasi-invariability of the results
for P& P means that intermediate & are cut io'
values much less than 4 fm '. One may conclude
that there is, in the intermediate propagations, an
effective contribution of the off-shell two-body
amplitudes but limited to off-shell deviations
[& —~J much less than

~
4 fm ' —&,[

= 2 fm '.
We noticed that the results for R =0.4 fm, y

=25', and P =Po =1, 2 fm ' are closer to the ex-
perimental values than for P =4 fm '. Though this

P, value does not agree with the off-shell varia-
tion of realistic local potentials, which is less
pronounced, it might correspond to a better pa-
rametrization of an effective isotropic two-nucleon
interaction in the three-body problem due to a
larger effective range. Let us notice that the in-
action with R, y, and P, is similar to the one
used by Wallace" in Bn exact three-body calcula-
tion. His results at 156 MeV are very similar to
ours in comparison to the experimental data as
well as for the relative contributions of the multiple
scattering expansion. This is indicative of the
validity of the fixed scattering center approxima-
tion at 156 MeV, though the common deficiency
of Wallace calculations and ours is the over-
simplified form of the two-body interaction. Thus,
when J ' is calculated, instead of ~ and y', with
the fitted values R and y', which simulate an
angular dependence of the interaction, the agree-
ment with the experimental data is improved.
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V. SUMMARY AND CONCLUSION

Experimental data of the P +'H- 2P +n reaction
at 156 MeV covering the kinematical regions far
from the quasifree scattering were analyzed in
order to find an answer to the following questions:
(i} Is it possible, through this reaction, to get
information on the off-shell two-nucleon t -matrix
elements and discriminate among several on-shell
equivalent nucleon-nucleon potentials& What is
the precision of the calculations required to make
a reliable selection~
(ii}What kind of three-body reaction model can
give this precision and, more particularly, is it
possible to succeed in the framework of a multiple
scattering expansion for the three-body amplitudes

In the first part of the present work, the cross
sections were calculated up to second order in the
Faddeev multiple scattering series, with the input
of exact off-shell t -matrix elements corresponding
to several phenomenological nucleon-nucleon po-
tentials.

In the kinematical regions of final state interac-
tion where the off-shell effects are the most ef-
fective, one gets deviations among the potentials
which are larger than the experimental uncer-
tainties. This indicates a potential selectivity
of the reaction to the two-nucleon interaction but
it appears also that the second order calculations
are not precise enough to allow any significant
choice.

In the second part, the three-body reaction cross
section ~ is evaluated in the framework of a fixed
scattering centers approximation which allows an
estimation of the complete multiple scattering ex-
pansion. We used a simplified two-body interac-
tion, the parameters of which are fitted to repro-
duce the J» cross section up to second order,
calculated in the first part with realistic poten-
tials. The cross section J improves the second

order calculations in the expected way and gives
better agreement with the experimental data.

The two-body interaction implied in our calcula-
tions is similar to the one used by Wallace" in an
exact solution of the Faddeev equation. Our re-
sults agree with those of Wallace at 156 MeV,
especially with regard to the contributions of the
successive multiple scattering terms. This com-
parison indicates that the FSA model is sensitive
enough to validate the following conclusions:
(i} The sensitivity to the nucleon-nucleon poten-
tials would be approximately preserved but not
amplified in an exact calculation compared to the
second order approximation. This allows us to
retain the variations of ~» calculated in the first
part with several realistic two-nucleon potentials
as a test of the sensitivity of the three-body cross
section to the potential. Kinematical regions of
final state interaction, where the spreading among
the potentials is larger than the experimental
errors, are particularly suitable for this discrimi-
nation. Results of Fig. 5 give also an indication
of the required precision of the calculations in
order to allow' a selection among the potentials.
(ii}At the same time, results of Fig. 5 show that
a calculation up to second order terms of the
Faddeev expansion is not precise enough for this
selection though it describes the qualitative fea-
tures of the P +'H - 2P + & cross sections at 156
MeV.
In the FSA model we found that the expansion has
not yet converged in the fourth order. Though

the convergence might be different with a realistic
two-body interaction including l &0 partial waves,
it is probably, in the best case, very slow at 156
MeV. Taking into account the increasing impreci-
sion of the numerical evaluation of successive
terms, it is doubtful that one can get enough pre-
cision if the Faddeev series is truncated at a
small number of terms.
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